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Abstract. In the paper pH control problems in fed-batch biochemical processes are analyzed. Process mathematical 
model was based on the first principles and identified using available experimental data. An adaptive pH control sys-
tem based on gain scheduling approach was proposed. Significant increase in control quality as compared to a standard 
PI control system was achieved. 
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1. Introduction 

Modern biochemical processes are very complex 
and difficult to control [7]. The dynamics of such 
processes is nonlinear and time-varying. The problem 
is even more difficult since there are few reliable 
online measurement methods for such important bio-
chemical quantities like biomass concentration [7]. 
Therefore, often application of complex and time con-
suming mathematical models for off-line optimization, 
indirect state estimation and optimal online control is 
required. On the other hand, control systems should 
use mathematical models as simple as possible in 
order to avoid high computational load and numerical 
problems. This makes the task of high quality control 
complicated. 

High quality control of pH is difficult because of 
many reasons. Some of them are: very strong nonli-
nearity of biochemical processes, titration curves and 
pH measurement itself, high sensitivity of the micro-
organisms even to small temporary deviations of pH 
level in the cultivation media, and drift of the pH sen-
sors [1, 5]. 

In the literature there are many approaches for 
high quality pH control. Nevertheless, most of them 
suffer from the drawbacks already described [2, 8]. On 
the other hand, well functioning pH control systems 
can be used to monitor biological reaction rates [6]. 
Therefore, it is of primary importance to elaborate 
simple, robust and easy to implement methods for pH 
control in fed-batch biochemical processes. 

2. Experimental setup 

The investigated fed-batch biochemical process 
was carried out in a laboratory scale bioreactor 
(B. Braun Biostat ED10). The experimental set-up is 
presented in Figure 1. The vessel is equipped with 
pressure and temperature sensors, and probes for pH, 
and dissolved oxygen concentration measurements. 
Airflow is measured and controlled by a mass flow 
controller. The flows of acid, alkali and feeding solu-
tions were controlled using peristaltic pumps. Compo-
sition of the exhaust gas was determined by a para-
magnetic oxygen analyzer OXOR 610 and an infrared 
carbon dioxide analyzer UNOR 610. 

Signals from the DCU control unit at the bioreac-
tor are transferred to a workstation running B. Braun 
MFCS software using a RS232C serial communi-
cation. 

During the cultivations, the medium temperature, 
the pH, the dissolved oxygen partial pressure, and the 
head-space over-pressure were controlled via B. Braun 
DCU front-end control system. 

During fed-batch cultivation process performed 
off-line samples for biomass concentration measure-
ment were taken each 0.5–1 [h]. The biomass concent-
ration was determined using standard dry weight 
technique [7]. 

3. Mathematical model of the process 

The main controlled variable in the analyzed cont-
rol system is pH level of the medium which is related 
to the concentration of free hydrogen ions as follows 
[1]: 
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Figure 1. Experimental setup 
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Concentration of hydrogen-ions in a fed-batch cul-
tivation process can be modelled taking into account 
influence of bacterial growth, addition of acid and 
alkali solutions during pH control and dilution effects: 
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where: 

H
C +

and 0
+HC – concentration of hydrogen-ions in the 

cultivation medium and in the feeding solution, 
respectively, [mol/l], the latter concentration can differ 
from the one calculated theoretically and is subjected 
to model based identification; 
x– biomass concentration in the cultivation medium, 
[g/l]; 
μ – specific biomass growth rate, [1/h]; 

pHF – flow of the alkali solution for pH control, [l/h]; 

sF – flow of the feeding solution, [l/h]; 

V– cultivation medium volume, [l]; 

1 2,α α – model parameters to be identified from 
experimental data. 

The terms of the first summand in parenthesis on 
the right hand side of the differential equation (2) are 
related to biomass growth and maintenance, respecti-
vely. During the metabolic reactions in the microbial 
culture excessive production of H + ions takes places, 
and the addition of alkali solution is necessary in order 
to maintain constant pH level which is optimal for the 
growth of bacteria and/or production of the target 
product. 

The second summand takes into account the in-
fluence of the flow of the alkali solution for pH cont-
rol. The last one accounts for the dilution effect of the 
feeding solution. 

The initial value (0)
H

C +
is equal to 710− [mol/l], 

and this level corresponds to pH 7. 
The biomass growth in the fed-batch process can 

be modelled by means of the differential equation 

.s pHF Fdx x x
dt V

μ
+

= −  (3) 

The initial value (0)x  is determined after inocula-
tion, and is known at the beginning of each cultivation 
process. 

Another key quantity of the adaptive control sys-
tem is oxygen transfer rate, OTR [1]: 
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where: 
OTR – oxygen transfer rate, [g/h]; 
Q – aeration rate, [Nl/h]; 

2rOM – molar mass of the oxygen, [g/mol]; 

AN – Avogadro’s number, [mol/l]; 

2 2
,

O in CO in
C C – volumetric concentrations of oxygen and 

carbon dioxide in the aeration flow, respectively, [%]; 

2 2
,

O out CO out
C C – volumetric concentrations of oxygen 

and carbon dioxide in the exhaust gas, respectively, 
[%]. 

On the other hand, the oxygen uptake rate, OUR, 
can be evaluated from the equation taking into account 
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oxygen demand for the biomass growth and main-
tenance: 

1 2 ,OUR xV xVβ μ β= +  (5) 

where 
1 2,β β – model parameters to be identified from 

experimental data. 
Cultivation process consists of two distinct phases 

(biomass growth and product formation phase), in 
which these coefficients have different values that 
should be identified separately. 

Assuming that oxygen consumption and transfer in 
the process reaches equilibrium, i. e. OUR OTR= , and 
taking into account (4)-(5) one can calculate the 
specific biomass growth rate as follows: 
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All the variables except of x can be measured 
online during the process. Each time moment the 
biomass concentration x is obtained applying nume-
rical integration of (3) in real time. The value of μ  
calculated using (6) is applied in the next integration 
step solving (3). 

Additionally, for the simulation purposes the mo-
dels for evaluation of feeding and alkali solution flows 
are elaborated: 

xs 0

,
Y Ss

xVF μ
=  (7) 

axY ,pHF xVμ=   (8) 

where: 

0S – substrate concentration in the feed, [g/l]; 

xsY – biomass/substrate yield coefficient, [g/g]; 

axY – alkali/biomass yield coefficient, [g/g]. 

4. Identification of the process model 
parameters 

The overall process model consists of the equa-
tions (1)-(8). The identification of the process model 
parameters was performed in several distinctive steps. 
First, by solving (3)-(8) the unknown parameters 

1 2 and β β were found. These parameters were identi-
fied for biomass growth (0–9 [h]) and product forma-
tion phase (9–16 [h]) separately. The optimization 
criterion for the identification procedure was minimal 
RMS deviation [4] between the modelling results and 
the experimentally obtained data for x. The model 
based identification was performed using Matlab/Si-
mulink (Mathworks, Inc.) environment. During the 
optimization procedure the Nelder-Mead algorithm 
was used. The identified values of the parameters 

1β  
and 

2β are given in Table 1. 

The modelling trajectories of OUR and x showed 
good coincidence with the experimental results (see 
Figure 2). The identification of parameters 

1β  and 

2β resulted in 0.45 [g/l] RMS deviation for x.  

Table  1 

Value Model 
parameter Phase 1 Phase 2 

Units 

β1 0.8646 1.4700 [g/g] 
β2 0.0180 0.0038 [g/(gh)] 
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Figure 2. Simulation results of the identified x and  

OUR model (solid line – OUR; dashed line – modelled 
trajectory of x,  – experimental data of x) 

In the next step of identification procedure, the 
parameters 

1 2,α α  and 0
+HC  were identified. For the 

identification of these parameters, the series of spe-
cially designed experiments were used.  
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Figure 3. Simulation results of the identified pH model  

(  – experimental data; × – simulation results) 

During the experiments, the pH of media was cont-
rolled during the predefined time, later the controller 
was switched off ( 0pHF = ) letting the pH value to 
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decrease due to the ongoing metabolic reactions. 
Some time later the action was repeated again, and so 
on. As a result, one has obtained the parts of the pro-
cess with controlled pH, and the parts of the process 
with freely falling pH value (see Figure 3). 

First, the equations (1)-(2) were added to the 
already identified model (3)-(8). Then the unknown 
coefficients 

1α  and 
2α  were identified from the pH 

profile, where 0pHF = . Later on, the identified values 
of the parameters 

1α  and 
2α  are fixed and the optimal 

value of 0
+HC was calculated using the data from the 

periods of the process where pH was controlled. 
The optimization criterion for the identification 

procedure was minimal RMS deviation between the 
modelling results and the experimentally obtained data 
for pH. The identified values of the parameters 

1 2,α α , 
and 0

+HC are given in Table 2. The modelling trajec-
tories of pH showed good coincidence between the 
modelled and experimental results (see Figure 3). The 
identification of parameters 

1 2,α α  and 0
+HC  resulted in 

0.012 RMS deviation for pH.  

Table 2. Identified values of the pH model parameters 

Value Model 
parameter Phase 1 Phase 2 

Units 

1α  0.422⋅10-7 0.4088⋅10-7 [mol/g] 

2α  0.011⋅10-7 0.0179⋅10-7 [mol/(gh)] 
0
+HC  –5.367⋅10-5 [mol/l] 

5. Mathematical model of the adaptive control 
system 

After the creation of the process model (1)-(8), and 
the identification of the unknown model parameters, a 
mathematical model of the adaptive pH control system 
was elaborated. The general structure of the adaptive 
pH control system applied is shown in Figure 4. 

 
Figure 4. General structure of the adaptive pH control 

system 

The objective of the proposed adaptive control sys-
tem is to guarantee significantly lower tracking error 
of pH as compared to the standard PI control system, 
and at the same time it should maintain sufficient 
stability when the maximal possible disturbances of 
the process occur. In the controller’s input the error 

between the set point and the actual value is recal-
culated from pH to 

H
C +

. In order to investigate which 
of the controller parameters should be adapted online 
the equation (2) is linearized around the working 
point. Under the equilibrium conditions around the 
working point, the following equations are valid: 
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After the linearization of (2) around the working 
point one gets: 
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Equation (12) is a first order differential equation, 
where the object output is change of concentration 

H
C +Δ , and the object input is change of alkali feeding 

rate 
pHFΔ . The structure of the corresponding process 

transfer function (in Laplace transform) around the 
working point is 

0
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and the coefficients of the transfer function (13) are as 
follows: 
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Unfortunately, the process model has no clearly 
defined delay. Hence, for the tuning of controller para-
meters it is not possible to apply the empirical tuning 
rules involving delay. 

It was shown (e.g., [3]) that for such structure of 
the process model the derivative part of the PID cont-
roller is not able to additionally improve the control 
quality as compared to a control system based on PI 
controller. 

In order to investigate the functional relationships 
between the controller’s tuning parameters and the 
process variables it is of advantage to write down the 
internal model control tuning rules [3]. After their 
simplification taking into account (14)-(15) one gets: 
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The final expressions in (16)-(17) show that only 
Ti depends on x, which is the main disturbance during 
the control, while Kr depends on V. Because in the 
analyzed case the latter variable varies during the 
process within a narrow range (5–5.5 [l]), its influence 
on Kr is relatively small. Hence, in the first simplified 
approach the parameter Kr can be excluded from the 
adaptation rules. Later on, the adaptation algorithm 
can be enhanced by this rule in order to make a fine 
tuning of the control system and additionally to im-
prove control quality. 

A possible way to calculate first guess values of Kr 
and Ti in the standard (non-adaptive) PID control 
system is an application of the Ziegler-Nichols tuning 
rule (sensitivity approach) [3] for PI controller: 

r UK =0.45K ,  (18) 
 

i UT =0.833T ,  (19) 
where: 

UK – gain margin for loop stability; 

UT – period of the oscillation frequency at the stability 
limit. 

In the investigated case this technique was used to 
calculate the initial values (at t=0 [h]) of parameters 
Kr and Ti. In order to adapt online the value of Ti it is 
not possible to use the values of biomass concentra-
tion x because in the analyzed case it is not measured 
online. Nevertheless, it is possible to use another vari-
able that is closely correlated with x and can be 

calculated or measured online, e. g., OUR. As it can be 
seen from (5) and (17), OUR is linearly correlated 
with the denominator of the tuning rule for Ti. There-
fore, in order to adapt the controller parameters online 
by means of gain scheduling technique [3] the follow-
ing empirical equation was elaborated and used: 

1
i

2

T ,
OUR
γ

γ
=

+
 (20) 

where 
1 2,γ γ – empirical coefficients that were deter-

mined empirically during the design process.  
The values obtained in the analyzed case are given 

in Table 3. 

Table 3. Identified values of the Ti model parameters 

Model parameter Value Units 

1γ  0.50 [g] 

2γ  4.50 [g/h] 

Later on, for additional improvement of control 
quality the following empirical equation was used for 
the adaptation of Kr by means of gain scheduling 
technique: 

r r0
0

K K ,V
V

=  (21) 

where: 
V0 – initial volume (at t=0 [h]); 
Kr0 – initial value of Kr (at t=0 [h]) calculated using 
Ziegler-Nichols tuning rule. 
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Figure 5. General view of the adaptive pH control system model 
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6. Results and discussion 

The model of the adaptive pH control system was 
built using Matlab/Simulink environment. General 
view of the model is presented in Figure 5. 

The process model consists of functional blocks 
for modelling of (1)-(8). Additionally, for the model-
ling of behaviour of the pH sensor the first order 
transfer function and delay were introduced. Their 
parameters were identified in advance. The controller 
implemented is a discrete PI controller that uses the 
deviation of the pH signal from the set point as an 
input. The output of  the controller is alkali solution 
flow rate 

pHF . Also the block for the modelling of dis-
turbance (specific biomass growth rate, μ) was used. 

The simulation was performed under the starting 
conditions similar to the experimental ones. The set 
point for pH was set to 7.0. Despite that the controller 
was set to work in PI mode, the tracking error was 
increasing due to exponentially growing biomass con-
centration that has acted as a disturbance. 
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time, [h]  
Figure 6. Tracking quality of the adaptive and standard 
control systems (dashed line – standard PI; dotted line – 

with adaptive Ti; solid line – with adaptive Ti and Kr) 

The simulation results (see Figure 6) show that the 
tracking error of both investigated adaptive PI control-
lers (with one and two adaptive parameters, respecti-
vely) was significantly lower than the one in the case 
of a PI controller with constant tuning parameters. The 
signal of the controller output (alkali solution flow 
rate) is shown in Figure 7. 

At the end of the process the adaptive controllers 
still were able to keep pH value of ~6.999 as com-
pared to 6.97 in the case of the control system based 
on the standard PI controller. One can show that with 
the increasing amount of biomass in the bioreactor at 
the end of the process the pH level rapidly decreases 
and reaches the value of, e. g. ~6.9 at t=12 [h] in case 
of standard PI control. Nevertheless, using the adap-
tive control system it is possible to keep this value at 
6.998. 

The tuning parameters of the standard PI control 
system were chosen taking into account the dynamics 

of the control object at the beginning of the process. If 
one tries to reduce the tracking error at the end of the 
process and tunes the controller parameters on the 
basis of the process dynamics at the end (at t=10 [h]), 
and uses these values during the whole process, it can 
lead to instability of the control system. Hence, the 
only solution is to gradually adapt the value of Ti. The 
evolution of Ti according to (20) during the adaptive 
pH control process is shown in Figure 8. Additionally, 
the simulation with two adaptive parameters (Ti and Kr) 
was performed (see Figures 6-8). 
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Figure 7. Output of the controller (alkali solution flow rate) 
of the adaptive and standard control systems (dashed line – 
standard PI; dotted line – with adaptive Ti; solid line – with 

adaptive Ti and Kr) 
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Figure 8. The evolution of Ti and Kr values during the 

control using the adaptive control system 

During the 1–1.5, 3.5–4, 6.5–7, and 9–9.5 [h] of 
the process the disturbance in form of stepwise re-
duced biomass specific growth rate was introduced 
(both times from 0.5 to 0.1 [1/h], and vice versa). This 
is a typical case in practice when substrate or oxygen 
supply is disrupted due to malfunction of the equip-
ment. At the same time this kind of disruption proved 
to be the most significant disturbance of the process. 
In order to keep the desired pH level an appropriate 
action of the pH controller is required. The simulation 
results (see Figure 6) show that in the case of adaptive 
control (with adaptive Ti) the overshoot was about 
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30 % smaller, and the tracking error during the intro-
duced disturbance was of the magnitude lower. 

The control quality in the case of adaptive para-
meters Ti and Kr is further improved by reducing the 
tracking error and the overshoots during the presence 
of disturbance (see Figure 6). This proves once more 
the effectiveness of the proposed adaptive control 
approach. 

7. Conclusions 

The simulation tests of the adaptive control system 
were performed taking into account the process 
actuators’ nonlinearities that apply in the real process. 
Moreover, the control system was tested in a wide 
range of disturbances, which are typical to the process 
and which affect the control quality and stability. The 
only factor that was not considered during the simula-
tion was measurement noise. The influence of this 
factor will be tested on a real control system. The 
proposed adaptive control algorithm was simulated 
under typical and extreme operating conditions of the 
control system and it has proved to be a robust and 
stable solution ensuring high quality pH control under 
the tested conditions of the analyzed biochemical fed-
batch process. Nevertheless, further experimental in-
vestigations should be carried out in order to imple-
ment the proposed approach into a real control system 
and to perform extensive tests with the proposed adap-
tive control system, which could become a real alter-
native to standard PID control system. 
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