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Abstract 

Most standard temporal phase-shifting algorithms evaluate the phase by computing a 

windowed Fourier transform (WFT) of the intensity signal at the carrier frequency of 

the system. However, displacement of the specimen during image acquisition may 

cause the peak of the transform to shift away from the carrier frequency, leading to 

phase errors and even unwrapping failure. We present a novel TPS method that 

searches for the peak of the WFT and evaluates the phase at that frequency instead of 

at the carrier frequency. The performance of this method is compared with that of 

standard algorithms by using numerical simulations. Experimental results from high-

speed speckle interferometry studies of carbon fiber panels are also presented. 

 

OCIS codes:  120.6160, 120.5050, 120.2650, 120.7280, 120.4290. 
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1.  Introduction 

During the last two decades, Electronic Speckle Pattern Interferometry (ESPI) has become 

a standard technique for obtaining accurate, reproducible and fast measurements of shape 

and deformation of rough surface objects.1 The high sensitivity of this technique constitutes 

at the same time both its main strength and its main drawback, especially when it is aimed 

to be applicable in real world environments, because of its vulnerability to disturbances 

such as thermal convection and vibration.2 Partial solutions to this problem have been 

developed such as the use of pulsed lasers, active phase stabilisation systems,3 shearing 

interferometers and dynamic high-speed phase-shifting ESPI systems.4-7 This last approach 

is a rapidly growing one due to the lower cost of high-speed image sensors, the availability 

of fast phase modulators, and the important advantages that temporal phase-shifting (TPS) 

methods present when combined with temporal phase unwrapping. 

When a coherent beam propagates from a test object and interferes with a temporal phase-

shifted reference beam on the image plane of an optical system, a modulated intensity 

signal is obtained at each pixel. If this intensity distribution is sampled at a temporal rate 

high enough to satisfy the Nyquist condition, then the series of images can be evaluated 

with TPS algorithms to compute the object wrapped phase evolution at any given pixel.2 

This procedure is carried out through the evaluation of the arctangent function of a ratio of 

two linear combinations of a set of measured intensities. Afterwards, the phase change 

relative to the first phase state can be obtained by means of temporal unwrapping.8 The 

physical measurand of interest (e.g. shape, deformation, displacement or index of refraction 

fields) is finally computed from the phase distributions and the knowledge of the sensitivity 

vector of the interferometer. 
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TPS algorithms are susceptible to random and systematic error sources such as higher 

harmonics in the intensity signal, phase shifter miscalibration, nonlinear response of the 

photodetectors, random intensity noise, speckle decorrelation and vibration. Thus, they 

have been developed to obtain error-free phase distributions, at least up to a second order 

dependence on the error parameters.4, 9-12 

When a dynamic high-speed TPS interferometer is used off the optical table, it is likely to 

be subjected to environmental vibration, for example when relatively low strain-rate tests 

are carried out on materials or structures using loading by vacuum or by tensile test 

machine. The effect of vibration on the unwrapped phase depends on the particular phase 

shifting algorithm used, the amplitude and frequency content of the vibration and the object 

phase itself. The object phase dependence introduces a phase error that appears as a ripple 

with twice the spatial frequency of the original fringe pattern in smooth wavefront 

interferometers or as a random field in speckle interferometers. In order to obtain a 

successful measurement under such conditions, two requirements must be fulfilled during 

image acquisition. (i) The total phase change between successive images resulting from the 

deformation, the vibration, and the phase shifter, must lie within the range (-π,π) at all 

points on the object. The upper limit is equivalent to requiring that the temporal intensity 

signal for each pixel is sampled according to the Nyquist condition, which depends on the 

framing rate of the camera, the phase step between samples and the object displacement 

(deformation plus vibration). Likewise, the lower limit follows from the need to avoid 

interference from the dc and negative frequency peaks of the spectrum. (ii) The object 

motion and the acquisition sampling rate must be such that the time evolution of the 

observed displacements can be approximated reasonably well by its first-order Taylor 
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polynomial expansion, i.e. the displacement is approximately a linear function of time. 

Such a case corresponds to linear miscalibration of the phase shifter. Many modern TPS 

algorithms are insensitive to linear errors but not to higher order miscalibration errors.  

In addition, the particular TPS algorithm used for phase evaluation should: (iii) be 

insensitive to high-frequency vibration components in order to obtain a phase distribution 

with low rms spatial error, and (iv) be able to keep track of high-amplitude, low-frequency  

vibration without losing the continuity of the measurement. 

Previous research on harmonic and random vibration showed that standard TPS algorithms 

cannot fulfill requirements (iii) and (iv) at the same time.13,14 Long window TPS algorithms 

present low sensitivity to high-frequency vibration, but they are vulnerable to high-

amplitude low-frequency vibration. In Ref. [14] it was suggested that an adaptive TPS 

algorithm could be used to evaluate the object phase when using long window TPS 

algorithms in the presence of low-frequency vibration.  

Of the many TPS algorithms published to date, only a small fraction can be considered to 

be adaptive. Of these, the four-frame Carré algorithm is the best known.15 A five-frame 

formula following the same idea was described by de Lega.4 A more general adaptive 

algorithm, based on searching the phase of a wavelet transform of the intensity signal was 

proposed in Refs. [4] and [16]. Although there are similarities between the wavelet 

transform and windowed Fourier transform (WFT) used here, one drawback of the wavelet 

transform should perhaps be pointed out, namely that the temporal and frequency resolution 

is different for sample velocities having equal magnitude but opposite sign.   

Our purpose in this paper is to present the results of a TPS algorithm that searches for the 

peak in the modulus of the windowed Fourier transform. Numerical simulations were 

carried out representing object motion in the presence of pseudo random vibration with 
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known spectral content. Throughout this paper, we regard the vibration as a source of noise 

whose influence we are trying to minimise by adaptive phase shifting evaluation. The 

performance of several standard and adaptive TPS algorithms was studied and compared by 

evaluating the rms phase change error and the unwrapping success rate. A theoretical 

description of the ridge-searching algorithm is presented in Section 2. Numerical results 

and discussions are presented respectively in Sections 3 and 4. Experimental confirmation 

of the simulated results is presented in Section 5, using data from the 1 kHz phase-shifting 

speckle interferometer described in Ref. 5, with conclusions summarized in Section 6.  

2.  Ridge Searching Algorithm 

In this section we present the ridge searching algorithm that is used to improve the phase 

estimation obtained through standard TPS algorithms. We assume the use of an out-of-

plane interferometer like the one shown in Fig. 4; other interferometer configurations 

require simply a different scaling factor relating phase change to displacement. For 

completeness and clarity we include a transcript of the equations for phase evaluation, Eq. 

(1) to Eq. (5), that may be found in Refs. [1] (chapter 2), [5], [13] and [14]. 

A set of Nt intensity samples recorded by a single pixel in a temporal phase-shifting 

interferometer  can be written as: 

)cos()( 0 tIItI m φ+Φ+=  t = 0, 1, ..., Nt -1          (1) 

where I0 is the dc term of the signal, Im is the amplitude of the intensity modulation, Φ = Φs 

+ Φd is the object phase to be measured which includes a speckle random phase Φs and a 

phase term Φd due to object displacement, φ = 2π/N is the phase shift between successive 

samples that in our interferometer was introduced by a Pockels cell (N being an integer 
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number of samples per 2π cycle of the carrier) and t is a non-dimensional temporal index or 

frame number. 

A wrapped (mod 2π) estimator of the object phase change between frame t and the first 

frame in the sequence, t = 0, is given by: 
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where N(t) and D(t) are respectively proportional to sinΦ(t) and cosΦ(t), and are given by 
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and where Nt is the total number of frames in the sequence. Phase changes are calculated in 

order to remove the initial random speckle phase distribution Φs, which is assumed to 

remain constant. The complex variable Z(t) is defined as:  
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where the coefficients a(t) and b(t) depend on the particular phase shifting algorithm used 

to calculate )0,(ˆ twΦ∆ . The complex exponential term in Eq. (4) eliminates the signal 

modulation introduced by the temporal carrier phase φt = 2πt/N. 

By defining 

)exp()()()( titwtibta ′−′=′+′ φ ,                 t' = 0, 1, 2, ..., M-1,       (5) 
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it can be seen that the term in the square brackets in Eq. (4) is equivalent to the discrete 

windowed Fourier transform (WFT) with respect to the time variable t, of the intensity 

signal evaluated at the modulation frequency kt = 1 (see Ref. [1] (chapter 2)): 

( ) ∑
−

=
−+=

1

0'
)/'2exp()'()'(,~ M

t
tt NtkittItwtkI π              (6) 

where w is a sampling window of length M, and the notation I~  denotes the Fourier 

transform of I. A particular case of the window function w(t) is the well-known Hanning 

window,  
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Equation (6) can be expressed in terms of the continuous Fourier transform as: 

( ) ∑∫
∞

−∞=

∞

∞−

−−+=
n

tt dNkintIwtkI ττπτδττ )/2exp()()()(,~ ,        (8) 

where τ is a continuous non-dimensional variable, n is an integer number and δ ( ) is the 

Dirac delta function. The right hand side of Eq. (8) can be interpreted as the Fourier 

transform of a sampled intensity distribution ∑∞
−∞=

−+ n ntI )()( τδτ  multiplied by a 

continuous window function w(τ). The product ∑∞
−∞=

−+ n ntIw )()()( τδττ is then equal to 

the discrete set w(t' )I(t + t' )  with t' = 0, 1, ..., M-1. 
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Using Eq. (1) evaluated at time t+τ, )cos()( 0 φτφτ ++Φ+=+ tIItI m , making use of the 

convolution theorem, and the fact that 2/)]exp()[exp(cos θθθ ii −+= , the Fourier 

transform in Eq. (8) can be worked out to obtain: 

( ) [ ]),(),()()(~,~ tkBtkBkAkwtkI ttttt −+ ++∗=           (9) 

where 
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and where * indicates the convolution operation. The three terms occur respectively at kt = 

0, +1and −1 and represent the continuous Fourier transform of a cosine wave plus a dc 

offset. These peaks are repeated along the kt axis at integral multiples of N due to the 

sampling of the original signal. In Eq. (9), the convolution with the transform of the 

window function is equivalent to placing a copy of )(~
tkw centered on each delta function. A 

schematic view of the spectrum is shown in Fig. 1. 
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If the object phase Φ = Φs + Φd remains constant during the acquisition of the M frames, the 

terms exp(±iΦ) can be taken out of the integrals. Then, for j = 0, ),(~ tkI t  is equal to the 

discrete WFT of I(t) and:  

 

)()( 0 tt kIkA δ= ,                (13) 

)1()](exp[
2

),( −+Φ=+ t
m

t kti
I

tkB δφ ,           (14) 

)1()](exp[
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m

t kti
I
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In general, I0, Im, and Φ = Φs + Φd in Eq. (1) are all functions of time. We will assume a 

negligible variation of I0 , Im and Φs but a slow evolution of the object phase Φd during the 

acquisition of the M frames. In this case, Φd(t) can be approximated by a first order Taylor 

expansion: 

ttttt ddd δδ )()()( Φ+Φ≅+Φ &              (16) 

where −∆t ≤δt ≤ ∆t  and ∆t = M/2 is the half-width of the sampling window, )(tdΦ  is a 

phase term which is constant during frame acquisition and )(tdΦ&  is the object phase 

temporal gradient (in radians×frame-1), which is proportional to the out-of-plane component 

of velocity )(tz& of the sample:  
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)(4)( tztd &&
λ
π

=Φ .                (17) 

Standard TPS algorithms evaluate the phase from M frames starting at time t and the value 

obtained is assigned to the frame t + M/2 .14 In Eq. (16), the phase is also computed at t + 

∆t. 

Considering Eqs. (11), (12) and (16), the terms B+ and B- close to the normalized frequency 

axis origin, kt=0, will be given by: 
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It can be seen that the effect of the phase gradient )(tdΦ& is to shift the normalized carrier 

frequency from kt = 1 to the normalized ridge frequency 

π2
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1)(
Nt

tk d
r

Φ
+=
&

.               (20) 

This effect is shown schematically in Fig. 1. The phase Φs + Φd(t) can now be computed at 

the first order approximation of the instantaneous carrier frequency kr(t) instead of at kt = 1. 

In order to do this, it is necessary to find kr(t), which by definition is the maximum 

magnitude of the WFT for time t, excluding the dc peak. Computing this maximum for all t, 

the ridge of the temporal signal is extracted. Afterwards, the WFT is evaluated over kr(t) 

using Eqs. (9), (18) and (19): 
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For a Hanning window with M samples, the first minimum occurs at kt = 8/M, that is at 0.5, 

0.25, and 0.125 for M = 16, 32 and 64 respectively, with subsidiary peaks below 

0.023 )0(~w . Therefore, as )(~
rkw < 0.023 )0(~w  for kr > 8/M, the first and third terms in Eq. 

(21) can be neglected. In this case, Eq. (21) is reduced to: 

[ ] [ ]{ }ttiw
I

ttkI ds
m

r φ+Φ+Φ= )(exp)0(~
2

),(~          (22) 

The zero order approximation of the wrapped object phase change, )0,(ˆ tdwΦ∆ , can then be 

obtained from Eqs. (2) and (3) using: 

[ ] ( )tittkItZ r φ−= exp),(~)( .             (23) 

Using Eq. (16), together with the relationship between the phase gradient dΦ& and the ridge 

normalized frequency specified by Eq. (20) for N=4: 

[ ]1)(
2

)( −=Φ tkt rd
π& ,              (24) 

together with the fact that 2/Mt =∆ , the object wrapped phase change approximated to 

the first order at the centre of the time window is evaluated by: 

[ ]1)(
4
 )0,(ˆ)0,

2
(ˆ −+Φ∆≅+Φ∆ tkMtMt rdwdw

π .        (25) 
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Finally, the continuous phase change )0,(ˆ ttdu ∆+Φ∆  is obtained through temporal phase 

unwrapping using the method described in Ref. [5] as algorithm 2. 

The ridge-searching algorithm can be summarized as follows: 

1. Set t = 0. 

2. Subtract dc term from I(t+t’), with t’=0, 1, …, M-1. 

3. Evaluate [ ]ttkI r ),(~  using Eq. (6) and the intensity samples obtained in step 2. 

4. Compute the value kr(t) for which [ ] ),(~ ttkI r  is a maximum by means of a root 

searching algorithm such as binary chop, Newton-Raphson, etc. 

5. Evaluate the zero order approximation of the object phase change )0,(ˆ tdwΦ∆  using 

Eq. (23). 

6. Evaluate the first order approximation of the object phase change )0,(ˆ ttdw ∆+Φ∆  

using Eq. (25). 

7. Unwrap )0,(ˆ ttdw ∆+Φ∆ . 

8. Set t = t+1 and repeat steps 2 to 8 until t = Nt – M. 

 

3.  Numerical Simulation 

A  Pseudo-Random Vibrations 

In order to evaluate the performance of the ridge-searching algorithm, the intensity signal at 

an arbitrary pixel was simulated using the method described in Ref. [13]. The simulations 

represented the interference signal between a temporal phase-shifted reference beam with φ 

= π /2, and an object beam propagating from a surface submitted to pseudo-random 
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vibration. Normally, the spectral content of vibration is specified in terms of target velocity. 

Design criteria for metrology laboratories are often based on either peak velocity spectra or 

probability density spectra for velocity. These are typically specified to be flat from dc up 

to a corner frequency, f0, with a high frequency roll-off.17,18 This approach was adopted in 

the present study by specifying a spectral density function for velocity, S(f) as follows: 

S( f ) =
S0       0 < f ≤ f0

S0 f0
f

          f0 < f   
 
 
 

             (26) 

where S0 is the spectral density for the flat portion of the spectrum (with units of µm2 s–1). 

This function has a 20 dB per decade roll-off above the corner frequency f0, the value of 

which was fixed at 50 Hz. The severity of the vibration was controlled by varying the 

single parameter S0.  

The desired spectral content was achieved by frequency-domain filtering a one-dimensional 

array of independent random numbers from a normal distribution with zero mean and unit 

variance. A 20dB/dec rolloff filter was applied to its amplitude spectrum from DC to the 

corner frequency f0, and another 20dB/dec rolloff above f0. The real part of the inverse 

Fourier transform of the filtered spectrum, after suitable scaling, then specified the sample 

displacement time history z(t). Figure 2 is an example of an average of 100 independent 

velocity spectra created in this way with a scaling chosen such that the rms phase amplitude 

was σφ = 2π and the corresponding rms displacement amplitude was σz = λ/2. The spectrum 

is seen to follow the form specified by Eq. (26), with a mean spectral density at the plateau, 

S0 = 0.51. 

B  Rms Phase Change Error 
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Simulations were carried out in accordance with the procedure described in Ref. 14. In a 

speckle interferometer the object phase Φ includes an implicit speckle phase term Φs that 

varies from point to point in space and that is uniformly distributed over the range [-π, π). 

This spatial variation causes the errors in the unwrapped phase change values uΦ∆ ˆ  to vary 

from one pixel to another. In the simulations, therefore, L object phase values Φl have been 

chosen equally spaced over the range [-π, π) and the index l was used to designate them. 

Moreover, any frame tj can be considered as the reference frame for the remaining ones. 

Therefore, the rms phase change error σ(t, tj) for a given time t and reference frame tj has to 

be averaged over all possible object phase values Φl. This can be written as: 

[ ]
2

1
21

0
),(ˆ )  ,,(ˆ1),(
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σ (t, tj) measures the dispersion of the phase change obtained for different pixels, varies 

rapidly in time and depends on the reference frame chosen. After averaging over these 

indexes, we obtain: 
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where sj is the number of reference frames considered and s = Nt – M is the maximum t 

value for which a phase value can be calculated. In this way, σ represents an average rms 

measure of the spatial dispersion in calculated phase change values.  

C  Unwrapping success rate 

When measurements are carried out in the presence of vibration, phase errors will appear as 

described in the previous section, but the most damaging effect is the possible inclusion of 

a 2π unwrapping error in the estimated phase. This error depends on the presence of steep 

gradients in the input phase as well as the amplitude of modulation of the intensity signal 

and the particular TPS algorithm used. Thus, in order to evaluate the probability of a 

successful phase evaluation for a given TPS algorithm, we computed the unwrapping 

success rate (USR). This parameter is defined as the ratio of the number of successfully 

unwrapped signals to the total number of unwrapped ones. The unwrapping of a wrapped 

phase time sequence of given length is assumed to be correct if the unwrapped phase agrees 

with the corresponding input phase to within ±π for the last frame of the sequence. Even 

though this condition may be fulfilled for the last frame, large phase gradients can cause the 

unwrapped and the input phases to split apart and to match again by chance during some 

time within the sequence. Though this case should not be considered strictly as a successful 

unwrapping, it is quite rare, at least for the cases of interest where the probability of a 

successful unwrapping is close to 1. The unwrapping success rate does not refer to the 

unwrapping process alone, but mainly to the phase evaluation procedure. The numerical 

simulation allows us to evaluate this parameter for several conditions that cannot be carried 

out experimentally and also to associate the cause of failure to the vibration itself and not to 

other sources of error. 
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4.  Results and Discussion 

When kr = 1, Eq. (25) reduces to the phase estimator normally used when applying standard 

TPS algorithms. In this case, )0,(ˆ ttdw ∆+Φ∆  will be equal to the zero order term 

)0,(ˆ tdΦ∆  and corresponds to the case where the object is motionless. However, 

displacement of the object during acquisition or variations in the phase steps introduced by 

the phase-shifter device may cause the peak of the transform to shift away from kt = 1. 

While the peak shift is proportional to the object velocity in the direction of the sensitivity 

vector of the interferometer, the peak width is inversely proportional to the length M of the 

sampling window used and the peak intensity depends on the amplitude of modulation of 

the intensity signal Im inside the sampling window.  

When kr< 4/M, interference effects may occur at kr due to a superposition with the negative 

frequency term (see Fig. 1). This also may occur near the Nyquist frequency limit at kt=2, 

for kr>2 - 4/M. Therefore, the phase gradient dΦ&  will be restricted to the range 

( )φMd 41−<Φ&  rad frame-1. As a result, the out-of-plane velocity of the sample (in µm 

frame-1) will be restricted to the range: 

π
λφ
4

41 





 −<

M
z&                 (30) 

For M=64, λ=0.532µm, φ = π/2 and T = 1 ms, the velocity range is thus z& < 62.3 µm s–1, 

very close to the Nyquist limit Nqz& = 66.5 µm s–1. Eq. (30) shows that the allowed velocity 

range is greatly reduced for M < 8.  
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Short window TPS algorithms, which are associated with a broad peak in the frequency 

domain, ensure a non-zero signal level along the line kt = 1 even for large frequency shifts. 

On the contrary, when long-window TPS algorithms are used, the narrow peak of the 

transform in the frequency domain leaves the carrier frequency with a signal level too low 

and close to the noise level for phase evaluation. Such shifts may occur due to high-

amplitude low-frequency vibration of the test object and also to rigid body motion or low 

speed deformations during acquisition. As a result, the continuity of the measurement may 

be lost due to the absence of signal at kt = 1. A frequency shift greater than the peak 

halfwidth is interpreted in the time domain as the absence of the carrier frequency in the 

modulated intensity signal. It is easy to understand that under these circumstances, TPS 

algorithms which evaluate the phase of this carrier will fail. 

Long window TPS algorithms are particularly useful when measurements are carried out in 

non-controlled environments and the presence of vibration could affect the precision of the 

measurements. Even though long window TPS algorithms show reduced sensitivity to 

vibration as a consequence of the integration process that occurs during the window 

duration, they are vulnerable −as proved for harmonic vibration− to frequencies close to the 

dc term and to twice the frequency of the carrier, with sensitivity bands whose widths 

depend inversely on the window length of the TPS algorithm.14 The ridge-searching 

algorithm aims to solve this problem by adapting the phase evaluation to the instantaneous 

carrier frequency produced by object movement and the action of the phase shifting device. 

A  Numerical Simulation 

Typical results are presented in Fig. 3 from one of the simulations described in section 3.1, 

for the case σφ = 3π/2 or σz = 3λ/8. The intensity signal and a gray level representation of 
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the WFT of the signal, ( )tkI r ,~ , in the kt vs. t domain (using a 32-frame Hanning window), 

are shown in Figs. 3(a) and (b), respectively. The calculated ridge position, kr(t), is plotted 

in Fig. 3(c), with the intensity modulation evaluated along the line kt = 1 displayed in Fig. 

3(d).  

Fig. 3(e) shows the original input phase change ∆Φ(t, 0) = Φ(t) – Φ(0) obtained through the 

simulation described in section 3.1, for σφ = 3π/2 or σz = 3λ/8. ). The unwrapped phase 

change evaluated through standard and ridge-searching 32-frame algorithms are also 

shown. This is a typical example of a successful phase evaluation for the ridge-searching 

algorithm and of an incorrect one for a standard TPS algorithm. The phase calculated at kt = 

1 is not correctly evaluated and considerable offset errors occur along the time history of 

the phase. By looking at the behavior of kr(t) , ∆Φ(t) and Im(t), it can be seen that these 

errors occur especially when the peak of the WFT, i.e. the ridge, shifts considerably from kt 

= 1 near frames 60 and 160. The intensity signal shows a loss of modulation near these 

frames. By contrast, in the regions between frames 16-60, 65-160 and 180-280, the slope of 

the phase, which is proportional to surface velocity, that is evaluated at kt = 1 is nearly the 

same as that of the phase evaluated over the ridge.  

In order to measure the probability of a successful phase estimation without loss of phase 

continuity, we evaluated the unwrapping success rate over 100 signals I(t) similar to that 

shown in Fig. 3(a). Table 1 shows the results for the USR for different standard and ridge-

searching TPS algorithms based on the Hanning window. It is seen that the USR increases 

considerably when the ridge-searching algorithm is used, no matter what length is chosen 

for the sampling window, except for σφ  ≥ 2π and M=64, which is a particularly difficult 

case because of the high amplitude of the vibration. 



 20

Table 2 shows the rms phase change error σ  for different TPS algorithms that evaluate the 

phase over kt = 1 or over the ridge kr(t). It is seen that there is no substantial difference in 

the rms error when the phase is evaluated over kt = 1 or over the ridge, even when the 

length of the sampling window is changed. 

B  Experimental 

As an application example, we used the ridge searching algorithm to measure sub-surface 

delaminations in a carbon composite material when subjected to vacuum loading. The 

measurements were carried out in the presence of mechanical vibration and without 

vibration isolation, using a high-speed dynamic speckle interferometer running at 1 kHz 

(see Fig. 4).5 Figure 5 shows a cross-section through the unwrapped phase map, 

corresponding to the out-of-plane surface displacement along a line above the delamination, 

obtained using both a standard 64-frame Hanning window algorithm (which evaluates the 

phase at kt = 1) and a ridge-searching algorithm with the same sampling window. 

Smoothing of the numerator and denominator of Eq. (5) was carried out by convolving with 

a 3 × 3 kernel of equal values, using the temporal unwrapping algorithm 3 in Ref. [5]. The 

plots show the accumulated deformation with respect to the first frame of a sequence of 512 

frames. The difference is dramatic: while the ridge-searching algorithm allows the 

measurement to be done, the standard algorithm completely fails during phase evaluation. 

6. Conclusions 

In this paper, we presented a novel method for temporal phase evaluation of data from a 

high-speed speckle interferometer The algorithm is based on a first order approximation of 

the object phase inside the used sampling window and on the windowed Fourier transform 
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(WFT), and involves the evaluation of the phase at the instantaneous ridge frequency kt = 

kr(t) instead of at the normalised carrier frequency kt = 1. The algorithm is especially useful 

when used with long sampling windows M ≥ 16, in which case it is robust against low 

frequency vibration and presents low rms spatial errors in the phase change estimator. The 

algorithm is able to track the phase during the time history of the deformation without 

losing the continuity of the measurement and with low rms error, which was not possible 

with standard TPS algorithms. Therefore, the temporal history of a slow deformation can be 

obtained, even in the presence of random vibration and without vibration isolation during 

the acquisition of the interferograms. 
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Figure Captions 

Figure 1.  Schematic view of the windowed Fourier transform of the intensity signal at an 

arbitrary time t for which the ridge appears at kr(t). The transform of the 16-frame Hanning 

window is shown centered on each delta function. This case corresponds to an object 

moving with velocity )1(
8

−= rkz λ
& µm s-1 and the effect of the velocity is to shift the peak 

from kt = 1 to kt = kr(t). 

Figure 2. Velocity spectrum of the pseudo-random vibrations used in the numerical 

simulations. 

Figure 3. Result of the analysis of a pseudo-random vibration signal having a spectrum 

similar to that shown in Fig. 2. (a) Intensity signal; (b) gray scale representation of the WFT 

of I(t) in the kt vs. t domain measured with the ridge-searching algorithm; (c) ridge 

trajectory kr(t); (d) intensity signal modulation Im; (e) original input phase compared to the 

unwrapped phase change evaluated through standard (S-TPS) and ridge-searching (RS-

TPS) algorithms. In both cases a 32−frame Hanning window was used.  

Figure 4. Dynamic high-speed phase-shifting speckle interferometer showing a Pockels 

cell in the reference beam (P), high voltage driver (D), function generator (G), frame store 

(F), Sun computer (Sun), carbon composite laminate (O), Vacuum chamber (VC), 90:10 

beam splitters (BS), mirrors (M) and lenses (L). Details on the synchronization of the 

system’s electronics are given in Ref. (5). Internal delaminations in the composite material 

are revealed when it is vacuum loaded. 

Figure 5. Phase profile measured from the surface of a carbon-fibre composite panel 

containing a sub-surface delamination, in the presence of mechanical vibration without 
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vibration isolation, using 64-frame Hanning window algorithms. Phase evaluated over kt = 

1 (S-TPS) and over the ridge kr(t) (RS-TPS). 
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Table 1. Unwrapping success rate numerical results. 

 

σφ (rad) kt M=8 M=16 M=32 M=64 

1 0.93 0.40 0.21 0.18 
2π 

kr(t) 1 0.99 0.67 0.15 

1 0.99 0.66 0.29 0.23 
3π/2 

kr(t) 1 0.99 0.87 0.30 

1 1 0.98 0.76 0.46 
π 

kr(t) 1 1 1 0.71 

 

The USR is evaluated for different vibration phase rms amplitudes σφ, using TPS 

algorithms that evaluate the phase over kt = 1 or over the ridge kr(t). In all cases, M-frame 

Hanning sampling windows and a camera framing rate of 1 kHz were used. 
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Table 2. Numerical results of the rms phase change error σ . 

Algorithm Framing Rate (kHz) 

M kt 1 2 4 

1 0.02215 0.02107 0.02077 
8 

kr(t) 0.02022 0.01637 0.01460 

1 0.00351 0.00271 0.00262 
16 

kr(t) 0.00265 0.00170 0.00145 

1 0.00136 0.00036 0.00033 
32 

kr(t) 0.00126 0.00022 0.00020 

1 0.00108 --- --- 
64 

kr(t) 0.00091 --- --- 

 

Values ofσ (rad) obtained with different TPS algorithms based on the M-frame Hanning 

window, that evaluate the phase over kt = 1 or over the ridge kt= kr(t). The values were 

obtained using simulated data with an input phase rms error σφ = π rad. 
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