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Abstract- Mathematical model of exhaust temperature 
control in micro gas turbine is introduced. To obtain better 
performance, a self-adaptive PID control is applied to the 
exhaust temperature control. The parameters of PID control 
are tuned by back propagation (BP) neural networks. In the 
tuning process, the plant’s predictive output is used to modify 
the weights of neural networks. The plant’s output is also 
predicted by BP neural networks and it is nonlinear prediction 
which improves the predictive accuracy. The effectiveness and 
efficiency of the proposed control strategy is demonstrated by 
applying it to the exhaust temperature control. The simulations 
show that the dynamic responses of the exhaust control system 
can be effectively improved and the anti-disturbance of the 
proposed controller is better than that of the PID controller. 

Index Terms – Back propagation neural network, PID 
control, self-tuning, exhaust temperature control, micro gas 
turbine. 

I.  INTRODUCTION 

In recent years, a growing awareness for the 
environmental impact of energy consumption and power 
generation is noticed. Forced by the Kyoto agreement, many 
countries raise their efforts to cut greenhouse gas emissions. 
As a result, some countries have enacted some 
documentaries to reduce greenhouse gas emissions. The 
China government’s goal is to reduce 95 million tons of 
greenhouse gas emissions by 2010. As cogeneration is a 
technique to produce heat and power in such a way that less 
primary energy is needed, it will, in most cases, provide a 
reduction of greenhouse gas emissions. Therefore, 
now-a-day cogeneration gains more and more interest [1], 
resulting in new governmental regulations and a renewed 
research interest into the potential of micro turbines with new 
technologies [2, 3].  

Micro-turbines have generally evolved from automotive or 
aerospace small turbine applications, or from efforts to make 
industrial turbines smaller, and tend to fall in the 5 to 500 kW 
size range [4]. They are an important part of the evolving 
distributed power generation picture, which includes stand 
alone generation, combined cycle applications with fuel cells 
and combined heat and power applications. The benefits of 
combining the thermal and electrical outputs of a generating 
system are widely recognized. Micro-turbines offer a 

number of potential advantages compared to other 
technologies for small-scale power generation [5]. For 
example, compact size and low-weight per unit power 
leading to reduced civil engineering costs, a small number of 
moving parts, lower noise, multi-fuel capabilities as well as 
opportunities for lower emissions (in the Combined Heat 
Power (CHP) context). In addition, gas turbines enjoy certain 
merits relative to diesel engines in the context of 
micro-power generation. They have high-grade waste heat, 
low maintenance cost, low vibration level and short delivery 
time. Extracting the exhaust energy that would otherwise be 
wasted increases the total system efficiency far beyond that 
of fossil-fuelled utility power plants. This implies less 
greenhouse gas emissions than using conventional energy 
conversion technologies. Since micro turbines are already 
extremely clean burning, other exhaust emissions are 
reduced as well as in [6].  

The micro gas turbine control system is vital to the 
performance and the energy saving. Some researchers have 
studied the control of gas turbine [7-15]. In past research, 
most researchers have paid attention to the speed control. 
Especially, the intelligent control, fuzzy control, network 
control, etc, has been applied to the speed control of micro 
gas turbine [12-14]. However, the exhaust temperature 
control usually adopts the simple PI control [7-15]. The 
intelligent control algorithm applied to exhaust temperature 
is few. Pan Lei designed a neural network robustness 
controller to the exhaust temperature control [15]. 

 In this paper, micro gas turbine, used in CHP system, 
requires good mobile tracking performance according to the 
heat recovery system. So we have made further design of 
self-adaptive PID controller with back propagation (BP) 
neural network self-tuning for exhaust temperature control. 
The BP neural network has applied to many industrial fields 
[16-19]. Here the self-adaptive BP neural network PID 
control algorithm is applied to the exhaust temperature 
control. The improved PID control is simulated and 
analyzed. 

II. MATHEMATICAL MODEL OF EXHAUST TEMPERATURE 
CONTROL 

A thorough introduction to gas turbine theory is provided 
in the book of Cohen et al. [20]. There also exists a large 

978-1-4244-1718-6/08/$25.00 ©2008 IEEE Pg 532



literature on the modeling of gas turbines. Model complexity 
varies according to the intended application. Detailed first 
principles modeling based upon fundamental mass, 
momentum and energy balances is reported by Fawke et al. 
[21] and Shobeiri [22]. These models describe the spatially 
distributed nature of the gas flow dynamics by dividing the 
gas turbine into a number of sections. Throughout each 
section, the thermodynamic state is assumed to be constant 
with respect to location, but varying with respect to time. 
Mathematically, the full partial differential equations model 
description is reduced to a set of ordinary differential 
equations, which facilitate easier application within a 
computer simulation program.  

Instead of applying the fundamental conservation 
equations, as described above, another modeling approach is 
to characterize the gas turbine performance by utilizing real 
steady state engine performance data, as in [23]. It is 
assumed that the transient thermodynamic and flow 
processes are characterized by a continuous progression 
along the steady state performance curves. This is known as 
the quasi-static assumption. The dynamics of the gas turbine, 
e.g. combustion delay, motor inertia, fuel pump lag etc., are 
then represented as lumped quantities, separate from the 
steady state performance curves. Very simple models result 
if it is further assumed that the gas turbine is operated at all 
times close to rated speed [24]. 

The single shaft micro gas turbine is shown in Fig.1. In the 
CHP system, there are compressor, combustor, turbine, 
generator and the heat recovery system, etc. The micro gas 
turbine operates as follows: 

Air at atmospheric pressure enters the gas turbine at the 
compressor inlet. After the compression of air to achieve the 
most favorable conditions for combustion, fuel gas (natural 
gas) is mixed with the air in the combustor, combustion takes 
place and the hot exhaust gases are expanded through the 
turbine to produce mechanical power, which is used to 
generate electricity. The exhaust is sent to the heat recovery 
system or boiler, etc.  

 
Fig.1 Micro Gas Turbine Structure  

The control systems of micro gas turbine include mainly 
the speed and accelerated speed control, air and fuel control, 
and exhaust temperature control.   

The aim of temperature control system is to limit the gas 
turbine inlet temperature to avoid too high inlet temperature 
to damage the turbine lamina. Due to too high temperature, it 
is difficult to measure. Additionally the exhaust temperature 
can reflect the inlet temperature. When the inlet temperature 
rises, the exhaust temperature will also rise. The exhaust 
temperature will decrease with the decrease of inlet 
temperature. So the temperature control system of micro gas 

turbine does not directly control the gas turbine inlet 
temperature while it directly regulates exhaust temperature 
to maintain the inlet temperature. Fig.2 shows the control 
scheme for exhaust temperature TE.  C is the controller and 
the other parameters is as same as [10, 11].  

 
Fig.2 Exhaust Temperature Control  

The exhaust temperature reference TER is fed to the exhaust 
temperature control. The measured exhaust temperature TEM 
is different to the actual exhaust temperature TE due to the 
radiation shield and thermocouple lags, which is shown in 
Fig.2. 

The measured exhaust temperature TEM is compared with 
the limit value TER and the error acts on the temperature 
controller. Normally TEM is less than TER causing the 
temperature controller to be at the MAX limit (about 1.1 per 
unit) as [10]. 

The output of temperature controller will regulate the fuel 
flow into the combustor so that the exhaust temperature is 
controlled. The fuel system is implement part and is shown 
in Fig.2.   

The fuel supply system consists in two series-wound 
valves. The first valve is and regulates the gas’s pressure that 
bases on the speed. The second valve is fuel control valve 
and regulates the fuel flow. The transfer functions are 
respectively: 

( ) aG S
bs c

=
+

   (1) 

1( )
1f

G S
t s

=
+

   (2) 

The fuel signal will regulate and change the exhaust 
temperature through the combustor time delay ECR, and the 
turbine and exhaust system transport delay ETD.  

The exhaust temperature generally relates to the speed, N, 
fuel, Wf, inlet vane, v , ambient temperature, Tia, and can be 
shown as  

( , , , )E f iaT f N W v T=    (3) 
 

Here the function is simplified as [15] and is expressed to:  
E fT a b W′ ′= +    (4) 

III.  ADAPTIVE PID CONTROLLER 
The controller in Fig. 2 adopts the adaptive PID control, 

whose parameters are tuned adaptively through BP neural 
network. The control system is shown in Fig.3, where BP 
NN C is to tune the PID controller parameters and BP NN P 
is to predict the plant’s output. 
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Fig 3 Adaptive PID control system with BP neural network self-tuning  

A    Neural Network PID Controller 
The control system with neural network PID controller is 

constructed as in Fig.3. The discrete PID controller could be 
written in a discrete form: 

20

0

( ) ( 1) [ ( ) ( ) ( )]d
P

i

T T
u k u k K e k e k e k

T T
= − + + ∆ + ∆  

2( 1) ( ) ( ) ( )P I Du k K e k K e k K e k= − + ∆ + + ∆  (5) 
where: 

0 0
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/ , /
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( ) ( ) ( 1)
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I p i D p dK K T T K K T T

e k r k y k
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e k e k e k e k

= =

= −
∆ = − −
∆ = − − + −

 

 
where PK , IK , DK  are respectively the proportional, integral 
and derivative gains of the PID controller which should be 
tuned and optimized. Ti is the integration time, Td is the 
derivative time of the PID controller, and T0 is the sampling 
time. 

Equation (5) can be recomposed as follows:  
( ) ( ( 1), , , , ( ), ( 1), ( 2)).P I Du k f u k K K K e k e k e k= − − −    (6) 

 
where [ ]f ⋅  is a nonlinear function that is concerned 
with PK , IK  and DK . The best control rule can be discovered 
by the training and learning of BP neural network.  

The BP NN C in Fig.3 can be used to adjust the gains of 
PID controller adaptively by using the BP method with 
measurement data of u(k), y(k), and r(k). The BP network is a 
multilayered network which consists of an input layer, an 
output layer, and several hidden layers of nonlinear 
processing elements. In this paper, the three layers BP NN is 
used as Fig. 3, which has M input neurons, Q hidden neurons 
and three output neurons. The input neurons can be the state 
of system, for example the input or output of different times, 
which should be normalized as [25] if the network needs. The 
output of BP NN C, respectively, is the three tuned 
parameters of PID controller. Because the three 
parameters PK , IK  and DK  can’t be negative, the activation 

function of output layer’s neurons is Sigmoid function that is 
not negative and the activation function of hidden layer’s 
neurons is Sigmoid function that is symmetry of positive and 
negative. 

In Fig. 3 the output of input layer’s neurons of BP neural 
network can be expressed as follows:  

(1)

(1)

, 0,1,..., 1,

1.
j k j

M

o x j M

o
−= = −

≡
   (7) 

 
where (1)

jo is the output of j-th neuron in input layer, the 
number of input layer’s neurons M lies on the complex degree 
of the control system. In the equations, the superscript 
symbols (1), (2) and (3) are, respectively, the input layer, 
hidden layer and output layer. 

The input and output of hidden layer can be expressed:  
(2) (2) (1)

0

(2) (2)

(2)

( ) ( ),

( ) [ ( )], 0,1,..., 1,

( ) 1.

M

i ij j
j

i i

Q

net k w o k

o k f net k i Q

o k

=

=

= = −

≡

∑
  (8) 

 
where (2)

inet  is the input of i-th neuron in hidden layer, (2)
ijw is 

the weights of hidden layer, (2)
iMw is the valve value; [ ]f ⋅ is the 

activation function that is [ ] tanh( )f x⋅ =  
The input and output of output layer can be expressed:   

(3) (3) (2)

0

(3) (3)

(3)
0

(3)
1
(3)
2

( ) ( ),

( ) [ ( )], 0,1,2,

( ) ( ),

( ) ( ),

( ) ( ).

Q

l li i
i

l l

P

I

D

net k w o k

o k g net k l

K k o k

K k o k

K k o k

=

=

= =

=

=

=

∑

   (9) 

where (3)
liw is the weights of output layer, (3)

lQw is the valve 

value, (3)
lQ lw θ= [ ]g ⋅  is the activation function and 

[ ] [1 tanh( )] 2g x⋅ = + . 
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By using the BP algorithm based on gradient method, to 
minimize the performance index function J which can be 
expressed as following:  

2 21 1[ ( 1) ( 1)] ( 1).
2 2

J r k y k e k= + − + = +   (10) 
 

where J is to modify the weights by the fastest descend 
mean, which is searched and tuned toward the negative 
gradient and added on a inertia coefficient to make faster 
constringency, and:  

(3) (3)
(3)( 1) ( ).li li
li

Jw k m a w k
w
∂∆ + = − + ∆

∂
  (11) 

 
where m  stands for the velocity of learning, a  is 

smoothing coefficient.  
(3) (3)

(3) (3) (3) (3)

( ) ( )( 1) ( ) .
( 1) ( ) ( ) ( )

l l

li l l li

o k net kJ J y k u k
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∂ ∂∂ ∂ ∂ + ∂=
∂ + ∂∂ ∂ ∂ ∂

(12) 

 
In (12) ( 1)

( )
y k

u k
∂ +

∂
 is not known so that it can be replaced 

by
ˆ( 1)

( )
y k

u k
∂ +

∂
, which can be calculated in the nonlinear model 

or least-squares method. Here 
ˆ( 1)

( )
y k

u k
∂ +

∂
is predicted in neural 

network. 
 In (5) the difference of u(k) to PK , IK , DK  can be 

expressed as following:  

(3)
0

(3)
1

(3)
2

( ) ( ) ( 1),
( )

( ) ( ),
( )

( ) ( ) 2 ( 1) ( 2).
( )

u k e k e k
o k
u k e k

o k
u k e k e k e k

o k

∂ = − −
∂
∂ =

∂
∂ = − − + −

∂

  (13) 

 
So, the weights of output layer in BP neural network are 

updated as following:  
(3) (3) (2) (3)

(3) (3)
(3)

( 1) ( ) ( ),
ˆ( 1) ( )( 1) [ ( )],

( ) ( )
0,1,2.

li l i li

l l
l

w k m o k a k
y k u ke k g net k

u k o k
l

δ ω

δ
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∂ ∂
=
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According as the mean like above, the weights of hidden 

layers are updated as following: 
 

(3) (2) (1) (2)
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where 

 2

[ ] ( )[1 ( )],
[ ] [1 ( )] 2.

g g x g x
f f x

′ ⋅ = −
′ ⋅ = −

 (16) 

B    Prediction 
The controlled object is supposed to a nonlinear system that 

is single input and single output system as following:  
 ( ) [ ( 1), ( 2),..., ( ),yy k f y k y k y k n= − − −  

 ( 1), ( 2),..., ( )]uu k u k u k n− − −                (17) 
 

where ( )y k  and ( )u k  are the output and input on the k 
time, yn and un  are the order of { }y  and { }u , [ ]f ⋅  is the 
nonlinear function. 

To calculate the prediction of ˆ( 1)y k + , there is a three 
layers BP neural network model (BP NN P in Fig.3) as the 
prediction model which has 1y un n+ +  input neurons, Q 
hidden neurons and one output neuron. For the sake of 
prediction of nonlinear system easily, the activation function 
of output layer is linear function and the activation function of 
hidden layer’s neurons is still Sigmoid function. 

The prediction calculation of BP neural network model: let 
the input and output of the plant { ( )}y k  and { ( )}u k  be the 
neural network model’s input, and the input layer:  

(1)

(1)

( ) 0 1
( )

( ) 1

( ) 1.
y u

y
j

y y y u
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y k j j n
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  (18) 

 
The input and output of hidden layer can be expressed:  
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where (2)

ijw  is the weights of hidden layer, (2)
y uin nw +  is the valve 

value and (2)
y uin n iω θ+ = , [ ]f ⋅  is the activation function and 

[ ] tanh( )f x⋅ = . 
And the output of output layer can be expressed as 

following:  
 (3) (2)

0

ˆ( 1) ( ).
Q

i i
i

y k w o k
=

+ =∑                                 (20)  

 
where (3)

iw  is the weights of output layer, (3)
Qw  is the valve 

value and (3)
0Qw θ= , and the output neuron is linear neuron. 

The backward learning of BP NN P: use the learning 
algorithm of BP to modify the weights and valve value and 
make the target function yJ  minimum: 
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21 ˆ[ ( 1) ( 1)] .
2yJ y k y k= + − +                         (21) 

 
and the weights is modified as following:  

(3) (2) (3)
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where m  is the velocity of learning, a  is smoothing 
coefficient, and both is in the (0,1)  

The derivative of activation function can be expressed:             
 2( ) [1 ( )] / 2.f x f x′ = −                          (23) 
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IV.  SIMULATION 
Adaptive PID controller with BP neural network 

self-tuning and traditional PID controller are both simulated 
to compare. Based on reference [7, 9, 10, 11], the parameters 
in Fig.2 are shown in Table I. 

The parameters of traditional PID controller are optimized 
and got: PK =0.229, IK  =0.005, DK  =7.5. 

TABLE I 
PARAMETERS VALUES 

K3=0.77 K4=0.8 K5=0.2 K6=0.23 

Kf=0 a=1 b=0.05 c=1 

T4=2.5 T3=15 Tf=0.4  

ECR=0.01 ETD=0.1   
 

The neural network PID in the simulation is 6-8-3, the 
velocity of learning 0.25η = , the flatness coefficient 0.01a = , 
and the initial weights is the random number in the 
extent [ 1.0,1.0]− . 

The simulations include the step response and the 
anti-disturbance response. Firstly the step responses are 
simulated. When t=0, the desired input is stepped from 0 to 1 
and when t=50s, the desired input is stepped from1 to 0.5. The 
simulation results are shown in Fig.4 and Fig.5. From them it 
can be seen that the governing time of adaptive PID control is 
shorter than traditional PID control. Due to the self-tune at the 
begin, the overshoot of adaptive PID control is greater than 
traditional PID control, however, there are less overshoot of 
adaptive PID control than traditional PID control when the 
second step is input.  

The parameters of self-adaptive PID controller are shown 
in Fig.6. It is seen that the parameters of PID controller are 
tuned on-line in BP neural network, which is helpful to the 
control system performance. Due to the tune at the begin, the 
step response of adaptive PID control has greater overshoot. 

Secondly the anti-disturbance responses are simulated. In 
Fig.2 a′  increases 0.5 when t=50s. The anti-disturbance 
responses of traditional PID control and adaptive PID control 
are respectively shown in Fig.7 and Fig.8. From the 
simulation results, it can be found that the overshoot are both 
equivalent while the governing time of adaptive PID control 
is shorter than traditional PID control when the disturbance is 
entered into the system at t=50s. Moreover, there is little 
surge in the traditional PID control while the curve of 
adaptive PID control is very stable. Figure 9 shows the 
parameters of self-adaptive PID controller. When the 
disturbance the disturbance is entered into the system, the 
differential gain makes the system’s performance better. 

 
Fig 4 Step response of PID control for exhaust temperature  

 

 
Fig 5 Step response of adaptive PID control for exhaust temperature 

 

 
Fig 6 Adaptive tuning curve of PID parameters in step response simulation 

 

 
Fig 7 Anti-disturbance response of PID control  
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Fig 8 Anti-disturbance response of adaptive PID control  

 

 
Fig 9 Adaptive tuning curve of PID parameters in anti-disturbance simulation 

V.  CONCLUSION 
This study has demonstrated that the adaptive PID control 

system with BP neural network self-tuning can achieve 
favorable tracking performance and anti-disturbance for the 
exhaust temperature control in the micro gas turbine.  

The BP neural network is used to tune the PID parameters 
and to predict the plant output. The traditional PID controller 
has self-adaptive capability through the BP neural network 
learning and training. Therefore, the adaptive PID controller 
in this paper has excellent anti-disturbance and adaptively. 

From the simulation results, it can be seen that the 
overshoot of adaptive PID controller in this paper is greater 
than traditional PID controller while the governing time of 
adaptive PID controller is shooter, which is helpful to the 
safety of micro gas turbine.  
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