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Abstract	

We	 humans	 are	 capable	 of	 solving	 challenging	 planning	 problems,	 but	 the	 range	 of	 adaptive	
strategies	 that	 we	 use	 to	 address	 them	 are	 not	 yet	 fully	 characterized.	 Here,	 we	 designed	 a	
series	 of	 problem-solving	 tasks	 that	 require	 planning	 at	 different	 depths.	 After	 systematically	
comparing	 the	 performance	 of	 participants	 and	 AI	 planners,	 we	 found	 that	 when	 facing	
manageable	 problems	 that	 require	 planning	 to	 a	 certain	 number	 of	 subgoals	 (from	 1	 to	 6),	
participants	make	an	adaptive	use	of	their	cognitive	resources	–	namely,	they	tend	to	select	an	
initial	 plan	 having	 the	minimum	 required	 depth,	 rather	 than	 selecting	 the	 same	 depth	 for	 all	
problems.	When	facing	more	challenging	problems	that	require	planning	up	to	7	or	8	subgoals,	
participants	tend	to	select	a	simpler	(greedy)	strategy	wherein	plans	consider	only	the	next	1	or	
2	subgoals.	Furthermore,	we	found	a	strong	similarity	between	how	different	participants	solve	
the	 same	problems.	These	 results	 support	 the	 view	of	problem	solving	 as	 a	bounded	 rational	
process,	which	adapts	costly	cognitive	resources	to	task	demands.	

	

Keywords:	planning;	problem	solving;	cognitive	search;	bounded	rationality		

 

 

Significance	statement	

Problem-solving	 usually	 requires	 planning	 ahead	 for	 several	 steps.	 While	 previous	 studies	
assessed	that	we	can	plan	multiple	steps	ahead	during	problem	solving,	it	is	unclear	whether	we	
use	 planning	 resources	 parsimoniously,	 given	 their	 significant	 cognitive	 costs.	 Theories	 of	
bounded	 rationality	 suggest	 that	 rather	 than	 always	 operating	 at	 our	maximum	 capacity,	 we	
should	adapt	planning	depth	to	task	demands.	Alternatively,	each	of	us	could	have	a	preferred	
"planning	 depth"	 and	 use	 the	 same	 depth,	 regardless	 of	 the	 problem.	 By	 comparing	 the	
behaviour	 of	 human	 and	 AI	 planners	 during	 problem	 solving,	 we	 found	 that	 people	 adapt	
planning	 depth	 to	 problem	 complexity;	 but	 resort	 to	 simpler	 strategies	when	 the	 problem	 is	
very	 hard.	 Our	 study	 reveals	 a	 flexible	 use	 of	 bounded	 cognitive	 resources	 during	 problem	
solving.	
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Introduction	

Since	 the	 early	 days	 of	 cognitive	 science,	 researchers	 have	 asked	 how	 we	 solve	 challenging	
problems	that	engage	planning	abilities,	such	as	the	Tower	of	Hanoi	and	Traveling	Salesman	as	
well	as	popular	games	such	as	chess	or	go	(Newell	&	Simon,	1972;	Shallice,	1982;	Wiener	et	al.,	
2009).	Most	 cognitive	 theories	 assume	 that	 planning	 requires	 a	 form	 of	 cognitive	 tree	 search	
over	an	internal	model	or	mental	map	of	the	task	(Craik,	1943;	Daw	&	Dayan,	2014;	Hunt	et	al.,	
2021;	 Kolling	 et	 al.,	 2012;	 Tolman,	 1948).	 Following	 this	 view,	 several	 planning	 studies	 in	
humans	 and	 other	 animals	 used	 tree-like	 tasks,	 but	mostly	 focused	 on	 simple	 (e.g.,	 two-step)	
problems	which	 could	 be	 searched	 exhaustively	 (Akam	et	 al.,	 2015;	Daw	 et	 al.,	 2011;	Hasz	&	
Redish,	2018;	Miller	et	al.,	2017).	It	is	still	unclear	how	we	solve	more	complex	problems,	which	
–	given	our	limited	resources	–	defy	exhaustive	search.	

From	a	normative	perspective,	planning	with	limited	resources	could	be	described	as	a	bounded	
rational	 processes,	 which	 balances	 the	 accuracy	 of	 the	 solution	 and	 the	 cognitive	 resources	
invested,	e.g.,	memory	and	time	(Bhui	et	al.,	2021;	Lieder	&	Griffiths,	2020;	Simon,	1957).	One	
way	to	lower	cognitive	resources	is	using	heuristics	to	alleviate	the	burden	of	exhaustive	search	
(Geffner	&	Bonet,	2013;	Russell	&	Norvig,	1995).	For	example,	it	has	been	proposed	that	people	
use	 a	 pruning	 heuristic	 during	 mental	 search:	 if	 they	 encounter	 a	 tree	 node	 that	 seems	
unpromising,	they	discard	the	whole	branch	of	the	tree	(Huys	et	al.,	2012,	2015;	Van	Opheusden	
et	al.,	2017).	Other	heuristics	consist	of	sampling	only	a	few	promising	routes,	or	many	routes	
but	only	up	 to	 a	 certain	depth	 (Keramati	 et	 al.,	 2016;	Pezzulo	 et	 al.,	 2013).	 Furthermore,	 it	 is	
possible	 to	 alleviate	 the	 burden	 of	 planning	 by	 using	 a	 hierarchical	 approach	 to	 split	 the	
problem	into	more	manageable	subproblems	(Balaguer	et	al.,	2016;	Donnarumma	et	al.,	2016;	
Ribas-Fernandes	et	al.,	2011;	Solway	&	Botvinick,	2012;	Tomov	et	al.,	2020)	or	by	interleaving	
planning	and	execution;	for	example,	plan	until	a	certain	subgoal,	then	revise	and	complete	the	
plan	along	the	way,	as	one	moves	toward	the	chosen	subgoal	(Geffner	&	Bonet,	2013;	Russell	&	
Norvig,	1995).	Despite	this	progress,	we	still	have	incomplete	knowledge	of	the	(approximate)	
planning	methods	that	humans	and	other	animals	might	adopt	during	problem	solving,	as	well	
as	their	neuronal	underpinning	(Mattar	&	Lengyel,	2022;	Miller	&	Venditto,	2021;	Pezzulo	et	al.,	
2019). 

Another	stream	of	research	explored	the	limitations	(e.g.,	the	maximum	depth)	of	our	planning	
abilities.	 Various	 studies	 have	 shown	 that	 with	 sufficient	 time,	 people	 are	 able	 to	 find	 near-
optimal	 solutions	 to	 challenging	 problems,	 such	 as	 the	 Traveling	 Salesman,	 which	 requires	
finding	the	shortest	possible	closed	path	that	connects	a	fixed	number	of	“cities”	(MacGregor	&	
Ormerod,	 1996;	 Vickers	 et	 al.,	 2001).	 Other	 studies	 have	 tried	 to	 quantify	 planning	 depth	 in	
chess	(Chase	&	Simon,	1973;	De	Groot,	1946)	and	other	games,	see	(van	Opheusden	&	Ma,	2019)	
for	 a	 recent	 review.	 Classical	 studies	 reported	 that	 top	 chess	 players	 can	 plan	 ahead	 (on	
average)	a	relatively	small	number	of	moves,	between	3.6	and	5.4	and	their	maximum	planning	
depth	is	between	6.8	and	9.1	moves	(De	Groot,	1946;	Gobet,	1998;	Saariluoma,	1995);	but	see	
(Campitelli	&	Gobet,	2004)	 for	evidence	 that	grand	masters	can	plan	ahead	 (on	average)	13.8	
moves.		

It	 is	 clear	 then	 that	 planning	 –	 especially	when	done	 at	 greater	 depths	 –	 requires	 engaging	 a	
significant	amount	of	cognitive	resources.	However,	the	idea	that	planning	is	a	bounded	rational	
process	that	balances	accuracy	and	cognitive	complexity	suggests	the	untested	hypothesis	that	
people	can	flexibly	adapt	their	planning	depth	to	the	demands	of	the	problem.	In	other	words,	
rather	 than	 using	 a	 fixed	 planning	 depth	 for	 all	 problems,	 people	 might	 use	 the	 minimum	
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planning	 depth	 necessary	 to	 find	 a	 solution	 –	 hence	 showing	 an	 adaptive	 use	 of	 cognitive	
resources	(Anderson,	1990).		

To	 test	 this	 hypothesis,	 we	 asked	 participants	 to	 solve	 a	 series	 of	 planning	 problems	 that	
required	 finding	a	path	 to	 connect	all	 the	 “gems”	 in	a	grid,	without	passing	 through	 the	 same	
node	 twice	 (though	 “backtracking”	 to	 un-select	 nodes	 was	 allowed).	 Participants	 solved	 the	
problems	by	“navigating”	with	a	 finger	 in	a	grid	 that	was	 fully	visible	on	 their	mobile	phones.	
They	 had	 60	 seconds	 to	 solve	 each	 problem	 and	 earned	more	 points	 if	 they	 solved	 it	 faster.	
Figure	 1	 shows	 an	 example	 problem,	 which	 requires	 finding	 a	 path	 from	 the	 home	 location	
(yellow	 node)	 through	 all	 the	 gems	 (red	 nodes).	 The	 six	 panels	 show	 six	 representative	
timesteps	 of	 the	 solution,	 with	 the	 azure	 line	 indicating	 the	 path	 taken	 (visible	 to	 the	
participant)	and	 the	small	 red	dots	 showing	 the	actual	 finger	positions	at	different	 times	 (not	
visible	 to	 participants).	 In	 the	 example	 illustrated	 in	 Figure	 1,	 the	 participants	 see	 on	 their	
mobile	phone	 the	configuration	shown	 in	Panel	A.	They	 first	 select	an	 incorrect	path	 towards	
the	two	gems	to	the	right	(Panel	B),	then	they	backtrack	to	the	home	location	(Panels	C-D)	and	
finally	 select	 a	 correct	 path	 that	 connects	 all	 the	 gems	 (Panels	 E-F)	 –	 therefore	 solving	 the	
problem.	

	

Figure	1.	An	example	problem	in	 the	experiment.	The	problem	requires	 finding	a	path	 in	 the	
grid	 that	 starts	 from	 the	 home	 location	 (yellow	 node)	 and	 collects	 all	 the	 “gems”	 (red	 nodes),	
without	passing	through	the	same	node	twice.	Participants	solved	the	problem	by	navigating	with	
their	finger	on	the	(fully	visible)	grid,	on	their	mobile	phones.	The	figure	shows	six	time	steps	of	the	
solution,	with	the	azure	path	indicating	the	path	taken	by	one	of	the	participants,	the	azure	dots	
the	actual	 finger	 trajectory	(sampled	at	60Hz)	and	the	small	 red	dot	 the	current	 finger	position.	
Note	that	solving	this	particular	problem	requires	planning	5	gems	in	advance.	See	the	main	text	
for	explanation.		
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Crucially,	we	designed	problems	that	require	different	planning	depths	to	be	solved,	from	1	to	8.	
Some	problems	could	be	solved	using	a	“greedy”	strategy	to	always	move	to	the	closest	gem	(i.e.,	
planning	depth	1),	whereas	other	problems	required	optimizing	the	plan	through	the	next	2	to	8	
gems.	 For	 example,	 the	 problem	 shown	 in	 Figure	 1	 requires	 a	 planning	 depth	 of	 5.	 In	 other	
words,	 finding	 the	 correct	 path	 (Figure	 1F)	 requires	 planning	 5	 gems	 in	 advance	 and	 any	
optimal	(shortest)	path	to	a	lower	number	of	gems	(from	1	to	4)	makes	the	solution	impossible.	

This	design	allows	us	to	study	the	planning	depth	that	participants	use	to	solve	each	problem,	
by	 systematically	 comparing	 their	 behavior	 with	 the	 behavior	 of	 8	 AI	 planners,	 which	 use	
planning	depths	from	1	to	8.	We	focused	only	on	the	paths	chosen	by	participants	before	their	
first	backtracks,	as	these	could	be	used	as	a	proxy	for	the	subjects’	initial	planning	depth.	

If	people	always	use	the	same	planning	depth	(e.g.,	depth	3)	to	solve	all	the	problems,	then	their	
behavior	should	always	match	the	same	AI	planner	(e.g.,	the	one	at	depth	3)	across	all	problems.	
If	 instead	 people	 recruit	 resources	 according	 to	 task	 demands,	 they	will	 adapt	 their	 planning	
depth	 to	 the	minimum	 depth	 required	 to	 solve	 the	 problem,	 and	 then	 their	 behavior	 should	
match	 a	 different	 planner	 for	 each	 set	 of	 problems;	 namely,	 the	 planner	 that	 uses	 the	 (set-
specific)	minimum	depth.	

To	preview	our	results,	we	found	that	people	tend	to	use	the	minimum	depth	required	to	find	
the	 solution,	 when	 the	 depth	 is	 between	 1	 and	 6.	 In	 contrast,	 people	 address	 problems	 that	
require	greater	planning	depth	(7	or	8)	by	using	a	much	lower	depth	–	usually	1.	Furthermore,	
we	 found	 that	 the	 above	 results	 are	 not	 an	 artifact	 of	 averaging	 across	multiple	 participants;	
rather,	 for	each	particular	problem,	most	participants	 tend	 to	select	 the	same	planning	depth.	
These	results	indicate	that	people	flexibly	adapt	their	planning	depth	–	or	how	much	they	look	
ahead	 –	 to	 task	 demands,	 unless	 the	 problem	 is	 too	 hard,	 in	 which	 case	 planning	 costs	 are	
minimized.	

	

Methods	

	

Data	Collection	

The	 experiment	 was	 conducted	 with	 the	 support	 of	 ThinkAhead,	 an	 Android	 application	
developed	to	study	navigational	planning	and	problem	solving1.	We	recruited	160	participants	
online	 and	 all	 gave	 informed	 consent	 to	 our	 procedures	which	were	 approved	 by	 the	 Ethical	
Committee	 of	 the	 National	 Research	 Council.	 In	 the	 analysis,	 we	 consider	 the	 65	 players	 (42	
male,	age	=	34	+-	11	years;	19	female,	age	=	35	+-	10;	4	participants	who	preferred	not	to	specify	
their	gender,	age	=	34	+-	10	years)	who	tried	at	least	80	of	the	90	problems	of	the	experiment.		

	

Experiment	design	

The	 experiment	 comprised	 90	 problems,	 each	 requiring	 participants	 to	 collect	 all	 the	 “gems”	
(i.e.,	 colored	dots)	 in	a	grid,	without	passing	 through	 the	same	node	 twice,	 in	60	seconds;	 see	
Figure	 1	 for	 an	 example	 problem.	 Participants	 were	 instructed	 that	 they	 would	 earn	 points	

                                                
1 https://play.google.com/store/apps/details?id=com.GraphGame.Conan 
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proportional	 to	 the	 time	 left	 to	 solve	 the	 problems	 and	 that	 the	 points	 were	 doubled	 in	
problems	where	 the	gems	were	 red	 (which	happened	 in	half	 of	 the	 trials)	 compared	 to	 those	
where	the	gems	were	blue	(in	the	other	half	of	the	trials).	As	soon	as	the	problem	was	shown	to	
the	participants,	the	time	countdown	started.	If	the	participants	did	not	solve	a	problem	within	
the	deadline,	 it	 counted	 as	 a	 failure;	 participants	were	 allowed	 to	 either	 complete	 it	 (without	
getting	any	points)	or	to	skip	it	and	pass	to	the	next	one.	

We	generated	a	range	of	problems	that	required	different	planning	depths,	from	1	to	8	(see	the	
next	section	for	the	exact	definition	of	planning	depth).	The	problem	grids	were	all	unique	and	
were	generated	with	an	average	level	of	connectivity	of	.75	+-	.2,	which	we	found	in	a	pilot	study	
to	afford	a	good	range	of	planning	solutions.		

Before	 the	 experiment,	 participants	 performed	 a	 short	 practice	 session,	 in	which	 they	 had	 to	
solve	4	problems,	whose	results	were	not	analysed.	The	90	problems	were	divided	into	3	blocks	
(henceforth,	 “levels”),	 with	 30	 problems	 for	 each	 level.	 We	 varied	 planning	 demands	 both	
between	 and	 within	 levels;	 see	 Supplementary	 Figure	 S1	 and	 Supplementary	 Table	 S1	 for	
details.	 To	 vary	 planning	 demands	 between	 levels,	 the	 3	 levels	 were	 characterized	 by	
increasingly	 large	maps	and	more	gems	to	be	collected,	making	the	higher-level	problems	(on	
average)	more	challenging.	To	vary	planning	demands	within	levels,	we	divided	each	level	into	
3	 sublevels,	 of	 10	 problems	 each.	 The	 3	 sublevels	 comprised	 problems	 that	 could	 be	 solved	
using	planning	depth	1,	2-3,	or	4-8,	respectively.	

AI	planners	and	assessment	of	the	minimum	planning	depth	required	for	each	problem	

We	designed	8	AI	planners	that	use	a	depth-first	search	strategy	over	all	the	simple	paths	that	
start	from	the	current	position	and	reach	n	gems,	with	n	being	the	planning	depth	(from	1	to	8)	
and	 the	 only	 parameter	 of	 the	 class	 of	 algorithm	 (Geffner	 &	 Bonet,	 2013;	 Russell	 &	 Norvig,	
1995).	For	example,	a	“greedy”	planner	with	n	=	1	will	 look	for	all	the	simple	paths	(i.e.,	paths	
that	do	not	pass	twice	on	the	same	node)	that	reach	one	and	only	one	gem.	A	planner	with	n	=	2	
will	 look	 for	 all	 the	 simple	paths	 crossing	only	2	 gems,	 and	 so	on.	After	 the	 computation,	 the	
shortest	path	is	selected.	If	there	are	many	shortest	paths	the	choice	will	be	uniformly	random	
among	them.	From	the	new	position	(i.e.,	the	end	of	the	last	selected	path),	and	with	the	nodes	
from	 the	 chosen	paths	being	 removed	 to	 comply	with	 task	 rules,	 the	 computation	of	 the	next	
(partial)	paths	is	repeated,	until	there	are	no	more	gems	to	collect,	or	the	planner	has	reached	a	
dead-end.	 The	 planners	 cannot	 backtrack,	 so	 once	 a	 dead-end	 is	 reached,	 the	 simulated	 trial	
ends.	Note	that	since	there	might	be	various	paths	to	choose	among,	multiple	runs	of	the	same	
agent	on	the	same	problem	might	have	different	outputs.	See	the	Supplementary	Materials	for	
the	pseudocode	of	the	AI	planning	algorithms.	

We	used	the	AI	planners	to	assess	the	minimum	planning	depth	required	to	solve	each	problem.	
For	this,	we	classified	each	problem	according	to	the	minimum	value	of	n	 for	which	a	solution	
could	be	found,	from	1	to	8;	for	example,	problems	of	depth	5	can	only	be	solved	by	AI	planners	
at	depth	5	to	8,	but	not	by	AI	planners	at	depth	1	to	4.	This	permits	us	to	group	the	problems	
into	8	sets,	with	the	index	denoting	the	(minimum)	planning	depth	required	to	solve	them.		

	

Similarity	between	participants	and	AI	planners,	for	each	of	the	8	problem	sets	

The	 comparison	 of	 the	 behavior	 of	 human	 participants	 and	 AI	 planners	 was	 performed	 by	
calculating	 the	 similarity	 between	 the	 depth	 of	 their	 plans,	 in	 each	 of	 the	 8	 problem	 sets	
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requiring	minimum	planning	depth	 from	1	 to	8.	For	 this,	we	compared	 the	distribution	of	 the	
number	of	gems	collected	by	the	whole	group	of	participants	for	any	given	problem	before	the	
first	backtrack,	and	the	distributions	of	the	number	of	gems	collected	by	200	instances	of	each	
of	the	8	AI	planners	(note	that	multiple	instances	of	each	planner	are	necessary	to	cover	the	full	
spectrum	of	 possible	 solutions	 at	 a	 given	depth	with	 equal	 distance).	Then,	we	 computed	 the	
Kullback–Leibler	(KL)	divergences	of	the	human	distributions	with	respect	to	the	distributions	
of	each	of	the	8	AI	planners.	We	selected	the	minimum	among	the	KL	divergences	to	determine	
the	most	similar	AI	planner,	for	each	of	the	90	problems.		

	

Stereotypy	of	planning	depth	across	participants	on	each	problem	

Furthermore,	we	devised	a	measure	of	 stereotypy	of	 the	planning	depth	 that	 the	participants	
select	to	solve	the	same	problems.	A	high	stereotypy	indicates	a	strong	similarity	between	how	
different	 participants	 solve	 the	 same	 problems.	 Conversely,	 a	 low	 stereotypy	 indicates	 that	
participants	solve	the	same	problems	in	different	ways.	To	calculate	stereotypy,	we	first	needed	
to	assess	the	similarity	between	participants	and	AI	planners,	at	the	level	of	single	participants,	
rather	than	at	the	group	level	as	above.	For	this,	we	compared	the	number	of	gems	collected	by	
each	participant	 in	 a	 given	 trial,	 before	 the	 first	 backtrack,	with	 the	average	 number	 of	 gems	
collected	 from	 200	 instances	 of	 each	 AI	 planner.	 We	 picked	 the	 AI	 planner	 whose	 average	
number	of	gems	was	the	closest	to	that	of	the	participant	as	the	most	similar	planner.	Note	that	
while	this	measure	of	similarity	 is	 less	precise	than	the	group-level	measure	used	above	(as	 it	
does	not	use	the	full	distribution	of	the	solutions	generated	by	participants	and	AI	planners),	it	
has	the	advantage	that	it	can	be	used	at	the	individual	level.	Then,	to	estimate	the	variability	of	
planning	 depth	 on	 each	 problem,	we	 computed	 the	mode	 of	 the	most	 similar	 AI	 planner	 and	
then	estimated	the	proportion	of	participants	who	chose	their	planning	depth	according	to	the	
mode.	 Finally,	 we	 averaged	 this	 number	 across	 the	 8	 sets	 of	 problems	 sharing	 the	 same	
minimum	planning	depth.	

	

Results	

Below	we	report	the	results	of	the	comparison	of	human	participants	and	AI	planners,	using	the	
two	measures	of	similarity	and	variability	described	in	the	Methods,	to	characterize	behaviour	
before	the	first	backtrack.	Note	that	in	the	analyses	reported	in	the	main	text,	we	aggregate	the	
results	 across	 the	 three	 levels	 and	 for	 red	and	blue	gems,	because	we	did	not	 find	 significant	
differences	 between	 them	 (see	 Supplementary	 Figures	 S2	 and	 S3	 for	 the	 results	 of	 separate	
analyses).	See	also	the	Supplementary	Materials	for	additional	analyses	of	participants'	success	
probability	 (i.e.,	 the	 probability	 that	 they	 solved	 the	 problems	 before	 the	 deadline	 of	 60	
seconds),	problem	completion	time	(i.e.,	the	average	time	they	needed	to	complete	the	problem,	
in	seconds)	and	total	number	of	backtracks	that	executed	during	the	experiment.	

	

Participants’	 initial	 planning	 depth	 is	 adaptive	 and	 matches	 task	 demands,	 unless	 the	
problem	is	too	hard.	

We	 first	 assessed	 the	 similarity	 between	 the	 initial	 plans	 of	 participants	 and	AI	 planners,	 for	
each	of	the	8	problem	sets.	The	results	of	this	analysis	are	shown	in	Figure	2.	The	8	rows	group	
the	 problems	 according	 to	 the	minimum	planning	 depth	 required	 to	 solve	 them,	 from	 1	 to	 8	
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(e.g.,	the	first	row	indicates	the	problems	that	could	be	solved	by	a	planner	at	depth	1).	For	each	
row,	 the	 figure	 shows	 the	 probability	 distribution	 over	 the	 AI	 planners	 that	 best	 match	
participants’	 behavior,	 in	 the	 row-specific	 set	 of	 problems.	 The	 element	 identified	 by	 the	 i-th	
row	and	j-th	column	of	the	matrix	represents	the	probability	(computed	as	a	frequency)	that	for	
a	problem	that	required	a	minimum	planning	depth	equal	to	i	the	most	similar	depth	to	humans	
was	 equal	 to	 j.	 For	 example,	 consider	 that	 in	 the	 fifth	 row,	 most	 of	 the	 probability	 mass	 is	
concentrated	on	the	fifth	column.	This	indicates	that	in	most	problems	requiring	planning	depth	
5,	 the	 behavior	 of	 AI	 planners	 with	 depth	 5	 provides	 the	 best	 match	 with	 the	 participants’	
behavior.	

	

	

Figure	2.	Comparison	of	the	initial	planning	depth	of	participants	and	AI	planners.	The	row	index	
indicates	 the	minimum	planning	depth	(from	1	 to	8)	required	 to	 solve	each	set	of	problems.	The	
columns	indicate	the	planning	depth	selected	by	the	participants.	For	each	row,	the	figure	shows	
the	probability	distribution	over	the	AI	planners	that	are	most	similar	to	the	human	participants,	
in	the	row-specific	set	of	problems	–	with	the	cells	having	the	highest	probabilities	indicating	the	
best	matching.	 For	 problems	 1	 to	 6,	much	 of	 the	 probability	mass	 is	 on	 the	 diagonal	 or	 slightly	
above	 it,	 indicating	 that	 participants	 tended	 to	 select	 the	minimum	 planning	 depth	 required	 to	
solve	 these	 problems,	 or	 a	 slightly	 greater	 depth.	 Rather,	 for	 problems	 7	 and	 8,	 much	 of	 the	
probability	mass	is	on	the	first	column,	indicating	that	participants	tended	to	use	a	greedy	strategy	
to	plan	at	depth	1	to	solve	these	problems.		

	

Our	results	indicate	that	in	the	6	simpler	sets	of	problems	(rows	1	to	6),	most	of	the	probability	
mass	 lies	 on	 the	 diagonal,	 or	 slightly	 above	 it.	 This	 implies	 that	 in	 these	 problems,	 the	
participants	 tend	to	select	an	 initial	plan	at	 the	minimum	required	depth,	or	a	slightly	greater	
depth.	In	the	two	more	challenging	sets	of	problems	(rows	7	and	8),	however,	participants	are	
best	 aligned	 with	 greedy	 planners	 that	 use	 depth	 1.	 We	 obtained	 similar	 results	 when	 we	
analysed	the	problems	separately	for	the	3	levels	of	the	experiment	(Supplementary	Figure	S2),	
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separately	 for	 red	or	blue	 gems	 (Supplementary	Figure	 S3),	 and	when	we	grouped	 them	 into	
classes	 reflecting	 their	 minimum	 required	 depth	 and	 maximum	 number	 of	 gems	
(Supplementary	Figures	S4	and	S5).	These	control	analyses	 indicate	that	our	main	findings	do	
not	depend	on	map	size	(which	varies	across	levels	and	class	groups)	or	incentives	(which	are	
different	for	red	and	blue	gems).	

	

Strong	similarity	between	how	different	participants	solve	the	same	problems	

We	next	assessed	 the	stereotypy	of	participants’	 initial	planning	depth,	 in	 the	8	problem	sets.	
The	 results	 of	 the	 analysis	 are	 shown	 in	 Figure	 3.	 There	 is	 a	 decreasing	 linear	 trend	 of	 the	
behavioral	 stereotypy	 as	 the	 planning	 depth	 increases	 (orange	 line),	 which	 was	 estimated	
through	 Pearson	 test	 (coefficient:	 -0.94,	 p-value	 =	 3*10^-4).	 The	 figure	 shows	 that	 the	
proportion	 of	 problems	 that	 satisfy	 the	 behavior	 stereotypy	 criterion	 (blue	 dot-dash	 line)	 is	
very	 high	 and	 beyond	 chance	 level	 (black	 dot-dash	 line),	 across	 all	 problem	 sets.	Indeed,	 the	
slope	 of	 participants'	 stereotypy	 (m	 =	 -3.5*10^-2,	 std	 =	 4.9*10^-3)	 was	 significantly	 smaller	
than	 the	 slope	 of	 the	 random	 case	 (m	 =	 -6,4*10^-3,	 Z-test	 =	 -4,89,	 p-value	 <10^-5).	 We	
confirmed	this	statement	by	evaluating	the	statistical	significance	of	the	interaction	between	the	
depth	 and	 the	 group	 (Participants	 vs.	Random	case)	with	 an	ANOVA	 test	 (F	=	2.98,	 p-value	=	
5.8*10^-3).	

	

Figure	3.	Stereotypy	of	participants’	initial	planning	depth,	in	the	8	problem	sets.	The	figure	shows	
the	mean	stereotypy	across	problems	having	minimum	planning	depth	from	1	to	8.	The	blue	dotted	
bar	shows	the	data	trend,	with	error	bars	indicating	the	standard	error	of	the	mean,	obtained	by	
averaging	 problem	 stereotypy	 in	 each	 problem	 set.	 The	 orange	 line	 indicates	 the	 linear	 fit.	 The	
black	 dashed	 line	 indicates	 chance	 level.	 Note	 that	 since	 the	 number	 of	 possible	 planners	 is	
bounded	 by	 the	 maximum	 number	 or	 gems	 in	 the	 problem,	 the	 expectation	 for	 the	 null	 case	
(random	 across	 the	 possible	 depths)	 varies	 across	 the	 8	 problem	 sets.	 See	 the	 main	 text	 for	
explanation.	
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Figure	 4	 further	 unpacks	 the	 results	 illustrated	 in	 Figure	 3,	 by	 showing	 the	 results	 for	 each	
participant	and	problem.	Each	vertical	block	in	Figure	4	 indexes	one	of	the	8	sets	of	problems	
having	planning	depth	(D)	1	to	8,	each	row	indexes	one	participant	and	the	colors	indicate	the	
depth	of	the	planner	that	best	resembles	the	performance	of	each	participant	in	each	problem	
(white	dots	are	missing	points,	e.g.,	skipped	problems).	The	figure	helps	appreciate	that	many	
participants	tend	to	select	the	same	planning	depth	to	address	the	same	problem,	as	evident	by	
the	numerous	vertical	bands	of	Figure	3.	Notably,	this	happens	also	in	“misleading”	trials,	such	
as	 problems	 10	 and	 23	 in	 the	 first	 column	 of	 Figure	 3,	 which	 were	 addressed	 using	 high	
planning	depths,	despite	its	minimum	depth	was	1.		

	

	

Figure	4.	 Variability	 of	 the	 planning	depth.	 Each	 row	 corresponds	 to	 a	 different	 participant	 (y-
axis)	and	each	column	to	a	specific	problem	(x-axis),	so	each	square	is	a	different	trial.	Problems	
are	grouped	according	to	the	minimum	required	planning	depth	(D,	in	the	figure),	ranging	from	1	
to	8.	The	color	bar,	going	 from	1	 (dark	blue)	 to	8	 (yellow),	assigns	 to	each	 trial	 the	color	of	 the	
most	 similar	 AI	 planner.	 White	 squares	 are	 missing	 or	 discarded	 trials.	 The	 resulting	 vertical	
“bands”	of	 the	 same	colors	 suggest	 the	presence	of	problems	 for	which	 several	participants	used	
the	same	planning	depth	(see	the	main	text	for	explanation).		
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Discussion	

Since	 the	 early	 days	 of	 cognitive	 science,	 researchers	 have	 asked	 how	 we	 solve	 complex	
planning	problems	that	defy	the	exhaustive	evaluation	of	all	possible	choices	(Newell	&	Simon,	
1972).	It	 is	commonly	assumed	that	planning	is	a	form	of	cognitive	tree	search	using	a	mental	
map	 (Craik,	 1943;	Daw	&	Dayan,	2014;	Hunt	 et	 al.,	 2021;	Kolling	 et	 al.,	 2012;	Tolman,	1948).	
However,	 except	 in	 the	 simplest	 cases,	 exhaustive	 search	 is	 infeasible,	 hence	 pointing	 to	
bounded	 forms	of	planning	 that	 adapt	 cognitive	 resources	 to	 task	demands	 (Bhui	 et	 al.,	 2021;	
Lieder	&	Griffiths,	2020;	Simon,	1957).	

In	 this	 study,	 we	 asked	whether	 participants	 adapt	 their	 planning	 resources	 to	 the	 demands	
posed	by	problems	of	different	complexity.	For	 this,	we	asked	participants	 to	solve	a	series	of	
planning	 problems	 that	 required	 finding	 a	 path	 to	 connect	 all	 the	 “gems”	 in	 a	 grid,	 without	
passing	through	the	same	node	twice.	Crucially,	solving	the	problems	required	different	 levels	
of	planning	depth,	which	was	unknown	to	the	participants	but	which	we	could	estimate	with	the	
help	of	AI	planners.	By	systematically	comparing	the	behavior	of	participants	and	AI	planners,	
we	 aimed	 to	 assess	 whether	 participants	 kept	 their	 (initial)	 planning	 depth	 fixed	 across	
problems	of	changed	it	adaptively,	as	a	function	of	problem	complexity.		

The	main	contribution	of	this	study	is	a	demonstration	that	when	facing	relatively	manageable	
problems,	 participants’	 behaviour	 is	 compatible	 with	 a	 flexible	 adaptation	 of	 their	 initial	
planning	depth	to	the	minimum	depth	required	to	solve	the	problem.	 In	contrast,	participants	
tend	to	use	a	simpler,	“greedy”	strategy	to	deal	with	more	challenging	problems,	which	would	
have	required	an	excessive	amount	of	cognitive	resources.	These	results	 therefore	support	an	
adaptive	use	of	cognitive	resources	during	problem	solving	(Anderson,	1990).	Furthermore,	we	
found	a	strong	correlation	between	how	different	participants	solve	 the	same	problem,	which	
permits	 ruling	out	 the	possibility	 that	our	 results	 are	an	artefact	of	 averaging	across	multiple	
participants.	

This	 study	 adds	 to	 a	 large	 literature	 showing	 that	 when	 facing	 challenging	 problems	 that	
eschew	 exhaustive	 search,	 people	 adopt	 various	 simplifications.	 For	 example,	 people	 prune	
unpromising	branches	of	the	search	tree	(Huys	et	al.,	2012,	2015)	and	reduce	tree	search	under	
time	 pressure	 (Van	 Opheusden	 et	 al.,	 2017).	 An	 emerging	 idea	 is	 that	 these	 (and	 other)	
simplifications	might	 be	 “rational”,	 in	 the	 sense	 that	 they	 entail	 a	 flexible	 and	 efficient	 use	 of	
limited	resources–	i.e.,	bounded	or	resource-rational	planning	(Callaway	et	al.,	2018,	2022).	For	
example,	 during	 problem	 solving,	 people	 might	 spend	 more	 time	 planning	 ahead	 when	 the	
benefits	of	investing	cognitive	resources	are	greater	(Russek	et	al.,	2022).	

In	keeping	with	this	perspective,	our	study	shows	that	when	participants	address	manageable	
problems,	 they	use	their	cognitive	resources	efficiently,	by	selecting	 initial	plans	that	have	the	
minimum	 required	 depth,	 or	 a	 slightly	 greater	 depth	 (Figure	 1).	 These	 initial	 plans	 therefore	
tend	 to	 use	 the	 appropriate	 depth,	 in	 keeping	with	 previous	 reports	 that	 the	 initial	moves	 of	
participants	 during	 problem	 solving	 are	 usually	 “good	 enough”	 (Klein	 et	 al.,	 1995).	 Note	 also	
that	 there	 is	 a	 slight	 asymmetry	 in	 the	 “matrix”	 shown	 in	 Figure	 1:	 the	 divergence	 from	
minimum	 planning	 depth	 (the	 diagonal)	 is	 usually	 realized	 through	 a	 higher-then-needed	
investment	of	resources.	However,	the	above	pattern	of	results	breaks	down	when	addressing	
the	 two	more	 challenging	 sets	of	problems	–	because	 to	 address	 these	problems,	participants	
often	use	a	much	lower	planning	depth.	Note	that	neither	the	levels	nor	the	economic	incentives	
(i.e.,	the	different	values	of	red	and	blue	gems)	significantly	modulate	planning	depth,	plausibly	
because	the	task	is	challenging	and	participants	might	always	perform	at	ceiling	level.	
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Furthermore,	we	 found	a	strong	similarity	between	how	different	participants	solve	 the	same	
problem.	This	stereotypy	was	partially	unexpected,	given	that	previous	studies	of	navigational	
planning	showed	a	greater	variability	of	strategies	(Krichmar	&	He,	2021;	Lancia	et	al.,	2023).	
However,	please	note	that	our	experiment	required	lower	memory	demands	than	the	previous	
studies,	since	the	participants	could	observe	the	whole	problem	graph.	It	is	possible	that	part	of	
the	 variability	 reported	 in	 the	 previous	 studies	was	 due	 to	 incorrect	map	memorization,	 not	
planning;	but	this	hypothesis	remains	to	be	tested	in	future	studies.	

Taken	together,	these	results	indicate	that	during	problem	solving,	people	make	an	adaptive	use	
of	 their	 cognitive	 resources	 by	 selecting	 the	 appropriate	 level	 of	 planning	 depth	 –	 or	 a	much	
simpler	(and	cheaper)	planning	strategy	if	the	problem	is	too	challenging.	

This	 study	 has	 various	 limitations	 that	 need	 to	 be	 addressed	 in	 future	work.	 First,	 this	 study	
indicates	 that	 participants	 adapt	 their	 initial	 planning	 depth	 to	 task	 demands,	 but	 does	 not	
clarify	 how	 they	 do	 that.	 There	 are	 multiple	 alternative	 strategies	 that	 could	 explain	 our	
findings.	For	example,	before	navigation	begins,	participants	might	use	a	 “gist”	of	 the	maze	 to	
decide	 planning	 depth	 –	 or	 how	much	 cognitive	 resources	 they	would	 need	 to	 invest	 to	 plan	
ahead	–	and	then	use	such	planning	depth	to	find	a	solution	(note	that	selecting	an	appropriate	
planning	 depth	 does	 not	 necessarily	 entail	 solving	 a	 particular	 problem,	 because	 there	 are	
usually	several	alternative	paths	at	the	same	planning	depth).	In	the	planning	literature,	there	is	
a	 key	 distinction	 between	 an	 “encoding”	 phase	 in	 which	 participants	 form	 a	 mental	
representation	of	the	problem	and	the	“planning”	phase,	in	which	they	form	a	plan	based	on	the	
mental	 representation.	 Previous	 results	 suggest	 that	 during	 the	 encoding	 phase,	 participants	
might	form	simplified	mental	representations	of	the	problems,	which	omit	many	details	(Ho	et	
al.,	2022).	It	is	possible	that	this	simplified	(or	gist)	representation	could	be	sufficient	to	guide	
the	 selection	of	an	appropriate	planning	depth,	but	 future	 studies	are	 required	 to	understand	
whether	 and	 how	 this	 is	 possible.	 Alternatively,	 before	 navigation	 begins,	 participants	might	
start	searching	for	a	solution	at	low	planning	depth	and	then	increase	the	depth	progressively,	
until	 they	 find	 a	 (satisficing)	 solution.	 This	 procedure,	 which	 is	 akin	 to	 “iterative	 deepening	
depth-first	search”	 in	AI	 (Korf,	1985)	and	 to	algorithms	 that	start	 from	an	 initial	 “cheap”	plan	
and	 progressively	 refine	 it	 (Lancia	 et	 al.,	 2023;	 Todorov,	 2009),	 would	 impose	 a	 filter	 on	
insufficient	planning	depth,	which	could	result	in	the	over-investing	bias	seen	across	problems	1	
to	6.	In	other	words,	it	could	be	faster	to	recognize	that	your	strategy	is	too	poor	for	the	problem	
rather	than	recognizing	that	you	are	investing	too	much.	However,	when	the	required	planning	
depth	 is	deemed	excessive,	participants	might	give	up	and	rather	select	 the	 least	costly	 initial	
plan	(i.e.,	a	plan	at	low	depth)	–	and	possibly	revise	it	along	the	way.	The	plausibility	of	these	or	
alternative	strategies	for	adapt	planning	depth	remains	to	be	fully	investigated	in	future	studies.		

A	related	limitation	is	that	this	study	does	not	disambiguate	the	“algorithm”	used	by	the	brain	to	
solve	 the	 problems.	 When	 establishing	 a	 similarity	 between	 the	 AI	 planners	 and	 human	
participants,	we	are	not	necessarily	claiming	that	human	participants	use	depth-first	planning,	
but	 only	 that	 they	 appear	 to	 adapt	 their	 planning	 depth	 across	 problems	 –	 regardless	 of	
mechanism	(e.g.,	a	different	planner	for	each	problem,	“iterative	deepening	depth-first	search”,	
or	other	methods).	Having	said	this,	our	specific	setting,	 in	which	the	problem	maps	are	novel	
and	fully	visible,	epitomizes	the	use	of	model-based	planners	(Daw	&	Dayan,	2014;	Dickinson	&	
Balleine,	1994;	Dolan	&	Dayan,	2013;	Friston	et	al.,	2016;	Parr	et	al.,	2022).	While	 in	principle	
the	 problems	 considered	 in	 this	 experiment	 could	 be	 solved	 using	model-free	 and	 successor	
representation	algorithms	that	dispense	from	planning	(Dayan,	1993;	Gershman,	2018;	Sutton	
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&	Barto,	 1998),	 these	 are	unlikely	 candidates,	 since	 they	would	 require	 an	 extensive	 learning	
phase,	 whereas	 in	 our	 experiment	 the	 participants	 never	 see	 the	 same	 map	 twice.	 Future	
studies	might	compare	more	directly	various	planning	(or	even	non-planning)	methods.	Apart	
for	those	discussed	above,	another	relevant	class	of	algorithms	is	Monte	Carlo	planning.	These	
algorithms	 offer	 an	 approximate	 solution	 to	 the	 problem	 of	 sampling	 in	 large	 or	 continuous	
state	spaces	(Silver	&	Veness,	2010)	and	have	been	linked	to	human	cognitive	search	(Jensen	et	
al.,	 2023;	Mattar	&	Lengyel,	 2022;	Pezzulo	 et	 al.,	 2019),	 but	would	behave	 similarly	 to	depth-
first	planners	in	our	(relatively	small	scale)	problems.	Another	possibility	is	using	hierarchical	
planners,	which	split	 large	problems	into	smaller,	more	manageable	ones	(Donnarumma	et	al.,	
2016;	Solway	et	al.,	2014;	Tomov	et	al.,	2020).	Given	that	the	focus	of	this	paper	is	on	the	first	
plans	 that	 people	 form,	 not	 on	 their	 entire	 plans,	 the	 use	 of	 hierarchical	 planners	 seems	 less	
compelling;	but	future	studies	could	use	hierarchical	planners	to	extend	the	results	of	this	study	
to	the	entire	plan	selected	by	participants.		

This	 leads	 us	 to	 another	 limitation	 of	 this	 study:	 the	 fact	 that	 it	 only	 focuses	 on	 the	 initial	
planning	phase.	Focusing	on	the	first	part	of	the	plan	is	meaningful,	since	previous	research	has	
established	that	the	initial	moves	of	participants	during	problem	solving	are	revelatory	of	their	
strategy	(Klein	et	al.,	1995).	Furthermore,	from	a	methodological	perspective,	considering	only	
the	first	part	of	the	plan	drastically	simplifies	the	assessment	of	planning	depth,	since	it	does	not	
require	making	particular	assumptions	about	the	algorithm	used	to	decide	(for	example)	when	
to	backtrack	or	whether	 to	 change	plan	or	plan	depth	along	 the	way,	 as	 some	AI	planners	do	
(Weld,	 1994).	 We	 hope	 to	 address	 these	 ongoing	 changes-in-planning	 dynamics	 in	 future	
studies. 

Finally,	 another	 limitation	 of	 the	 study	 is	 that	 by	 restricting	 our	 analysis	 to	 participants	who	
downloaded	the	game	and	completed	at	least	80	problems,	we	could	have	selected	those	having	
sufficient	 skill	 and/or	 engagement	 levels.	 Previous	 studies	 with	 a	 much	 larger	 pool	 of	
participants	 reported	 significant	 individual	 differences	 in	 navigation	 ability	 (Coutrot	 et	 al.,	
2022),	 suggesting	 that	weaker	navigators	might	not	 show	the	same	adaptive	use	of	 resources	
that	 we	 report	 here.	 Therefore,	 the	 possible	 differences	 in	 adaptive	 planning	 depth	 between	
good	and	weak	navigators	remains	to	be	tested	in	future	studies.		
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Software	note	

Giovanni	Pezzulo	devised	the	ThinkAhead	App	concept.	The	App	has	been	implemented	in	Unity	
by	Antonella	Maselli	on	a	general-purpose	architecture	 for	maps	navigation	games	previously	
implemented	by	Massimiliano	 Schembri.	Marco	D’Alessandro	 and	 Jeremy	Gordon	 contributed	
with	 setting	 the	 online	 communication	 with	 a	 dedicated	 database	 used	 to	 store	 users’	
progresses	and	solutions.	Gian	Luca	Lancia	edited	the	video	tutorial.	Mattia	Eluchans	prepared	
the	list	of	problems	shown	to	participants	for	the	current	study.	
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