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It is now widely recognized that the cerebral cortex of adult

human and non-human mammals is capable of widespread

functional and structural plasticity. During the learning

of new skills, cortical regions associated with sensorimo-

tor function of the body parts most utilized for the skilled

task come to be represented over larger cortical territo-

ries. More recent studies have shown that functional and

structural changes take place in the cerebral cortex after

injury, such as occurs after stroke or trauma. These two

modulators of cortical function, sensorimotor learning and

cortical injury, interact. Thus, after cortical injury, the

structure and function of undamaged parts of the brain

are remodeled during recovery, shaped by the sensorimo-

tor experiences of the individual in the weeks to months

following injury. These recent neuroscientific findings sug-

gest that new rehabilitative interventions, both physio-

therapeutic and pharmacotherapeutic, may have benefit

via modulation of neuroplastic mechanisms.
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 INTRODUCTION

Over the past decade, progress in two research fields has fostered

a new, evidence-based paradigm in neurobiology and rehabilita-

tion. First, neuroscientific studies demonstrating functional plas-

ticity in the cerebral cortex, initially developed in the 1980s in

animal models, have matured to the point that some of the under-

lying anatomic, physiologic, and biochemical mechanisms are

now becoming clear. In turn, this has allowed the generation of

specific hypotheses regarding potential treatment approaches.

Second, an abundance of neuroimaging data from human stroke

populations has provided evidence that animal results can be gen-

eralized to humans. Additionally, alterations in cortical function

that take place in the chronic period after stroke are likely to be

quite widespread, and not simply confined to the peri-infarct re-

gions.

As a result, scientists and clinicians alike have begun to con-

sider seriously the development of treatment strategies that are

initiated long after stroke has occurred. The challenge of acute

treatment after stroke to preserve vulnerable tissue is still criti-

cal. However, the concept that cortical functions can be restored

long after stroke survivors have reached a plateau in their recov-

ery has given hope to clinicians and scientists alike that signifi-

cant improvement in motor function can be achieved even when

acute neuroprotection is not feasible.

SKILL-DEPENDENT PLASTICITY IN

UNINJURED MOTOR CORTEX

The past decade has brought an increasingly refined understand-

ing of the neural bases for functional plasticity in the cerebral

cortex. A large number of studies in human and animal models

have demonstrated that the cerebral cortex is modifiable by vari-

ous behavioral manipulations or peripheral nerve pathology (1).

After motor skill learning in normal animals, the topography of

representations in motor cortex is altered. Movements that are

used in the newly learned task are represented over larger corti-

cal territories (2–5).

It now appears that repetitive motor activity alone is not suffi-

cient to produce representational plasticity in cortical motor maps.

When monkeys were trained to retrieve food pellets from a very

small well, requiring skilled use of the digits, progressive incre-

ments in motor performance were seen over a period of about 10

days. Monkeys trained to retrieve pellets from a larger food well

displayed accurate performance from the beginning of training;

that is, no additional skill was required. In the two groups, the

total number of finger flexions was matched. Comparisons bet-

ween pretraining and posttraining maps of cortical movement

representations revealed no task-related changes in the cortical

area devoted to the hand in the large well group. Movement spe-

cific changes in the small well group were large and consistent,

and corresponded to the actual movement kinematics of the task.

It would appear that repetitive motor activity alone does not pro-

duce functional reorganization of cortical maps. Instead, motor

skill acquisition, or motor learning, is a prerequisite factor in driv-

ing representational plasticity in motor cortex (6). Consistent with

these results, it was recently shown that the development of skilled

forelimb movements, but not increased forelimb strength, was

associated with a reorganization of forelimb movement repre-

sentations within rat motor cortex (7).

In another recent study examining the concordance between

neurophysiologic and synaptic changes induced by skill learn-

ing, it was found that in comparison to rats in a motor activity

control group, rats trained on a skilled reaching task exhibited an
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areal expansion of wrist and digit movement representations

within the motor cortex. No expansion of hindlimb representa-

tions was seen. This functional reorganization was restricted to

the caudal forelimb area, as no differences in the topography of

movement representations were observed within the rostral fore-

limb area. Paralleling the physiological changes, trained animals

also had significantly more synapses per neuron than controls

within layer V of the caudal forelimb area. No differences in the

number of synapses per neuron were found in either the rostral

forelimb or hindlimb areas. This study provides support for the

co-occurrence of functional and structural plasticity within the

same cortical regions and provides strong evidence that synapse

formation may play a role in supporting learning-dependent

changes in cortical function (8). While exercise can alter the thick-

ness of motor cortex (9), it is unclear what elements are respon-

sible. Based on studies in the cerebellum, it is likely that at least

some of the volumetric increase with motor activity is due to an-

giogenesis (10, 11).

Skill learning is also accompanied by increased synaptic den-

sity within layer II/III of motor cortex (12). At least in barrel

cortex of rats, modification of local N-methyl-D-aspartic acid

(NMDA) receptors is necessary for experience-dependent plas-

ticity (13).

Based on physiological recordings from slice preparations in

rats, it now appears that the synaptic strengths in horizontal con-

nections in motor cortex can be modified, forming a putative sub-

strate for altering the topography of cortical motor maps. For ex-

ample, in rat motor cortex, long-term potentiation (LTP) and long-

term depression can be induced in layer II/III horizontal connec-

tions (14–16). More recently, after motor training, rats were found

to display larger amplitude field potentials in the motor cortex

contralateral to the trained forelimb (17, 18). The amount of LTP

that could be induced in layer II/III horizontal connections in the

trained motor cortex was less than in controls. In addition, LTP

induction alters the morphology of layer III pyramidal neurons.

Increased spine density and changes in dendritic morphology are

observed, not unlike those seen after exposure to complex envi-

ronments (19). Interestingly, experimentally induced seizure ac-

tivity in rats (kindling) results in increased synaptic strength and

an enhanced area of polysynaptic field potentials. In addition,

this manipulation results in a doubling of the size of cortical mo-

tor representations (20).

ADAPTIVE PLASTICITY IN INJURED BRAINS:

POTENTIAL NEURAL SUBSTRATES FOR

REHABILITATIVE TREATMENT

If changes in synaptic strength in horizontal connections and

synaptogenesis can underlie functional modifications in motor

cortex of normal animals during motor skill learning, it follows

that these same mechanisms may play a role in recovery after

damage to motor cortex. While most studies of recovery have

been based on large lesions of the motor cortex, involving the

entire primary motor cortex (M1) representation, some studies

have employed relatively small, or focal, lesions to examine

changes in cortical representations in adjacent, undamaged tis-

sue. For example, after focal lesions in the primary somatosen-

sory cortex hand area, monkeys gradually reacquire sensorimo-

tor skill. This recovery is accompanied by reemergence of the

injured fingertip representation (21). A similar phenomenon has

been found after focal lesions in the M1 hand area. Movement

representations are altered in the cortex adjacent to the lesion,

but the details of the topographic reorganization depend on the

type of post-lesion training experienced by the animal. In the ab-

sence of training, spared finger representations undergo a further

reduction in territorial extent. With daily repetitive training after

the injury, spared finger representations are retained, suggesting

a role for the adjacent undamaged cortex in recovery, and a direct

influence of training on cortical plasticity mechanisms (22–24).

Post-infarct training also appears to result in changes in

neuroanatomic structure. A combination of environmental enrich-

ment with daily skilled-reach training in post-ischemic rats re-

sulted in enhanced dendritic arborization within layer V of the

undamaged cortex (25).

M1 is not the only cortical region controlling motor output.

Motor representations can be found in other cortical areas, such

as the premotor cortex, the supplementary motor area, and cingu-

late motor cortex (e.g. 26). Since neurons in these additional motor

areas, like those in M1, send projections to the spinal cord (27), it

is possible that alterations in the structure and function of non-

primary motor areas partially underlie recovery. Recent studies

suggest that the premotor cortex ipsilateral to the injury may play

an important role. A study in monkeys by Liu & Rouiller (28)

provides direct evidence for the role of the premotor cortex in

recovery from lesions in M1. After physiologic identification of

the M1 hand area, lesions were made by injection of ibotenic

acid. Functional recovery occurred over a period of 3–4 months.

Then spared regions of the damaged and intact hemisphere were

transiently inactivated by injection of muscimol. While inactiva-

tion of intact tissue in M1 in either hemisphere had no effect,

inactivation of premotor cortex on the injured hemisphere rein-

stated the deficit in manual dexterity.

Further, it appears that the premotor cortex is physiologically

and anatomically altered by damage to M1. In monkeys, the ven-

tral premotor hand representation expands after damage to the

hand representation in M1. The amount of expansion is propor-

tional to the amount of ischemic damage to M1 (29). Also, such

M1 infarcts result in alterations of axonal projections from ven-

tral premotor cortex. Since the normal target of these axons, M1,

has been damaged, many of these axons terminate in novel corti-

cal regions, including the somatosensory cortex. As M1 normally

forms reciprocal connections with the somatosensory cortex, it is

possible that premotor cortex acts vicariously to assume func-

tions of the damaged M1 (30). Interestingly, recent clinical data

also implicates the premotor cortex in recovery after stroke (31,

32).
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In addition to alterations in axonal trajectories, other widespread

structural changes also occur after injury to motor cortex. In rats,

the homotopic cortex opposite sensorimotor cortex lesions un-

dergoes a two-phase process of use-dependent dendritic over-

growth, followed by elimination of dendrites in layer V (33–35).

At the peak of dendritic overgrowth (day 18 post-injury), synap-

tic density within layer V and spine density on layer V pyramidal

neurons are normal. At a later time point, when dendritic pruning

has already begun to occur (day 30), synaptic density and spine

density are significantly increased. These results suggest that den-

dritic growth precedes synapse formation. In the perilesional zone,

immunocytochemical evidence is also suggestive of dendritic

sprouting and synaptogenesis (36, 37).

Hypotheses regarding putative synaptic mechanisms for func-

tional plasticity after injury are now developing. Small

photothrombotic lesions in somatosensory cortex of rats result in

excitability changes in remote brain areas associated with a

downregulation of GABAA receptors in the perilesional zone, a

phenomenon lasting for weeks (38). Similar events occur after

middle cerebral artery occlusion (39). This dysfunction in the

GABAergic system is associated with facilitation of LTP (40). In

addition, cortical injury results in enhancement of NMDA recep-

tors in the perilesional zone (39). Thus, regulation of both excita-

tory and inhibitory neurotransmitters in the cerebral cortex may

play a critical role in the reorganizational process that occurs sub-

sequent to focal cortical injury.

PROSPECTS FOR NEW REHABILITATIVE

INTERVENTIONS AFTER STROKE IN HUMANS

Since the structure and function of the cerebral cortex are modi-

fiable after injury, putative treatments that attempt to maximize

neuroplasticity are becoming increasingly popular. Paralleling the

behavioral interventions in animal studies, several human stud-

ies have now shown that intensive practice with the impaired limb

(constraint-induced movement therapy, or CI therapy) can result

in further recovery in stroke patients, even though they had pre-

viously reached a plateau (41). Both transcranial magnetic stimu-

lation and functional magnetic resonance imaging studies now

have shown that functional plasticity in motor cortex accompa-

nies recovery associated with CI therapy. Changes include ex-

pansion of the hand representation after training, and increased

activation in the ipsilateral cortex, including the peri-lesional cor-

tex (42, 43).

The extent of functional recovery after brain injury can also be

modulated by use of drugs (44). In addition to the well-known

effects of certain drugs administered acutely after injury that act

as neuroprotective agents, thereby limiting the extent of neuronal

damage (45), others have been found to be effective during the

longer period of recovery, presumably by their effects on specific

neurotransmitter systems. For example, the role of norepinephrine

in recovery from brain injury has been well documented (46).

After cortical injury in rats, administration of amphetamine en-

hances motor recovery, at least in part, by enhancing norepine-

phrine release (47). In addition, amphetamine administration is

associated with neural sprouting and synaptogenesis (37). In hu-

man stroke patients, amphetamine may also result in improve-

ment in motor performance (48, 49). Modulation of neurotrans-

mitter systems after cortical injury is a provocative approach that

has significant potential utility.

Growth factors have also been proposed to enhance neurologic

recovery after cortical injury (50). In rats, nerve growth factor,

basic fibroblast growth factor and osteogenic protein-1 recently

have been found to enhance recovery of sensorimotor function

(51–53). Finally, early investigations of the effects of human mar-

row stromal cells in rats after sensorimotor cortex injury have

been promising. Significant recovery of function was coincident

with increases in brain-derived neurotrophic factor and nerve

growth factor (54). While efficient delivery of these substances

to the central nervous system in humans poses a significant ob-

stacle, it is likely that future recovery strategies will utilize a com-

bination of physical and pharmacotherapeutic approaches.
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