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Abstract. The construction of reduced-order models for parametrized partial
differential systems using proper orthogonal decomposition (POD) is based on

the information of the so-called snapshots. These provide the spatial distribu-
tion of the nonlinear system at discrete parameter and/or time instances. In
this work a strategy is used, where the POD reduced-order model is improved
by choosing additional snapshot locations in an optimal way; see Kunisch and

Volkwein (ESAIM: M2AN, 44:509-529, 2010). These optimal snapshot loca-
tions influences the POD basis functions and therefore the POD reduced-order
model. This strategy is used to build up a POD basis on a parameter set in
an adaptive way. The approach is illustrated by the construction of the POD

reduced-order model for the complex-valued Helmholtz equation.

1. Introduction. Proper orthogonal decomposition (POD) is one of the most pop-
ular techniques for model reduction of nonlinear system. It was first used for signal
analysis and pattern recognition, consequently in the context of dynamical systems
and parametrized partial differential equations, and more recently, also for optimal
control and inverse problems; see, e.g., [8, 13, 16, 20].

Let us consider the parametrized system

F (y(µ);µ) = 0, µ ∈Mad, (1.1)

in a Banach space B, where y(µ) denotes the state associated with the parameter
µ and Mad stands for the set of admissible parameters. The parameter µ can be
a coefficient (function) vector (in the case of elliptic systems) or the time variable
(in the case of dynamical systems). The snapshot version of POD assumes the
availability of the states yj = y(µj) ∈ H, 1 ≤ j ≤ n, solving 1.1 for µ = µj , where
H denotes a separable Hilbert space. Then the POD basis {ψi}

ℓ
i=1 of rank ℓ ≥ 1 is
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given by the solution to the minimization problem

min
ψ1,...,ψℓ∈H

n∑

j=1

αj

∥
∥
∥yj −

ℓ∑

i=1

〈yj , ψi〉H ψi

∥
∥
∥

2

H

subject to (s.t.) 〈ψi, ψj〉H = δij for 1 ≤ i, j ≤ ℓ,

(1.2)

where the αj ’s denote non-negative weights and δij stands for the Kronecker symbol,
i.e., δij = 0 for i 6= j and δii = 1. Then, the solution y(µ) to 1.1 is approximated
by a Galerkin ansatz of the form

yℓ(µ) =

ℓ∑

i=1

yℓi (µ)ψi

with the µ-dependent coefficients yℓi (µ), which have to be determined. After a
Galerkin projection model 1.1 is replaced by a reduced-order model of the form

F ℓ(yℓ(µ);µ) = 0, µ ∈Mad. (1.3)

From 1.2 it does not follow directly that the error
n∑

j=1

αj ‖y(µj)− y
ℓ(µj)‖

2

H
(1.4)

decays if the number ℓ of POD functions is increased. For that reason an a-priori
analysis has to be carried out; see [14, 12] for certain parabolic or elliptic problems.
In this paper we continue the results in [15]. We do not want to increase ℓ, but we
determine additional parameters {µ̃j}

n

j=1, the optimal snapshot locations in such a

way that the new POD basis {ψ̃i}
ℓ
i=1 solving

min
ψ̃1,...,ψ̃ℓ∈H

n∑

j=1

αj

∥
∥
∥yj −

ℓ∑

i=1

〈yj , ψ̃i〉H ψ̃i

∥
∥
∥

2

H

+

n∑

j=1

α̃j

∥
∥
∥ỹj −

ℓ∑

i=1

〈ỹj , ψ̃i〉H ψ̃i

∥
∥
∥

2

H

s.t. 〈ψ̃i, ψ̃j〉H = δij for 1 ≤ i, j ≤ ℓ,

(1.5)

leads to a reduced-order solution yℓ(µ), so that 1.4 is as small as possible. This
approach is called optimal snapshot location strategy. In 1.5 the α̃j ’s are again
appropriate non-negative weights and ỹj = y(µ̃j) are the snapshots associated with
the new snapshot locations.

Let us briefly mention some related issues of interest. In [4, 6] the situation
of missing snapshot data is investigated and gappy POD is introduced for their
reconstruction. An important alternative to POD model reduction is given by
reduced-basis approximations; we refer to [19] and references given there. In [7]
a reduced model is constructed for a parameter dependent family of large scale
problems by an iterative procedure that adds new basis variables on the basis of
a greedy algorithm. Utilizing the structure in which the parameters enter into
the system this can be achieved in a computationally efficient manner. From an a-
posteriori analysis it follows that the error 1.4 can be bounded by a chosen tolerance
on a discrete subset of Mad. In our approach, no a-priori discretization of the set
Mad is necessary. In the thesis [3] a model reduction is sought of a class for a family
of models corresponding to different operating stages.

In this paper we continue our work [15], where the approach of choosing optimal
snapshot location is introduced and illustrated for an linear parabolic problem. In
contrast to [15] we consider a nonlinear elliptic system. More, precisely, we study
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the Helmholtz equation on a frequency band, where the frequency matches the
parameter µ in the parametrized system 1.1. Let us refer to our work [9, 22, 24],
where we consider impedance identification problems for the Helmholtz equation
on a frequency band. In [22, 24] these identification problems are solved by a
POD reduced-order approach. Here, we utilize the optimal snapshots locations to
build up a POD basis in a successive way. Suppose that the parameter set Mad is
decomposed as follows:

Mad =

m⋃

i=1

M
(i)
ad , M

(i)
ad 6= ∅ for i = 1, . . . ,m and M

(i)
ad ∩M

(j)
ad = ∅ for i 6= j.

Suppose that we have computed a POD basis {ψ
(1)
i }

ℓ(1)

i=1 of rank ℓ(1) ≥ 1 utilizing

solutions {y(µ
(1)
j )}nj=1 to 1.1 with parameters µ

(1)
1 , . . . , µ(n) ∈ M

(1)
ad . To derive a

accurate reduced-order model 1.3 for parameters µ ∈ M
(2)
ad we modify our POD

basis as follows:

• Set ℓ2 = ℓ1 +∆ℓ with ∆ℓ ≥ 0;

• Compute a new POD basis {ψ
(2)
i }

ℓ(2)

i=1 by optimal snapshot location, i.e.,

we add n ≥ 1 snapshots {y(µ
(2)
j )}nj=1 associated with optimal parameters

µ
(2)
1 , . . . , µ

(2)
n ∈M

(2)
ad , which are determined by the optimal snapshot location

strategy;

• Derive the reduced-order model 1.3 utilizing the POD basis {ψ
(2)
i }

ℓ2
i=1.

Then, we proceed in an iterative way and generate a reduced-order model 1.3, which
is reliable on the whole parameter set Mad. Let us mention that this adaptive strat-
egy can also be used for dynamical systems, in particular for parabolic equations
with a strong convection term. Here we refer the reader to the recent work [1],
where the POD basis is changed for advection-diffusion problems.

The paper is organized in the following manner: In Section 2 we review the
Helmholtz equation on a frequency band and introduce the finite-element model.
The POD reduced-order model is derived in Section 3, where we also present an
a-priori error estimate for the difference between the finite element and the POD
reduced-order solution. In Section 4 we discuss the minimization problem to deter-
mine the optimal snapshot locations, which are in our application optimal frequency
locations in the frequency band. Numerical experiments are carried out in Section 5.
Some of the proofs are given in the Appendix.

Notation. Throughout the paper we write ℜe(z) and ℑm(z) for the real and imag-
inary part, respectively, for z ∈ C. Moreover, z̄ stands for the complex conjugate
of z.

2. The Helmholtz equation as the large-scale model. To illustrate the pro-
posed adaptive POD basis computation we study the complex-valued Helmholtz
equation as a specific application. In an analogous manner we can proceed for
other parametrized elliptic or for dynamical systems.

2.1. The Helmholtz equation. Let Ω ⊂ Rd, d ∈ {2, 3}, be an open and bounded
domain with Lipschitz-continuous boundary Γ = ∂Ω. The domain Ω represents the
interior of the car vehicle. We write x = (x1, . . . , xd) for an element in Ω. Recall
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that the Lebesgue space H = L2(Ω;C) is defined as

H =
{

ϕ : Ω→ C
∣
∣
∣ϕ is measurable and

∫

Ω

|ϕ(x)|2 dx <∞

}

.

It is well-known that H is a Hilbert space endowed with the inner product

〈ϕ, ψ̄〉H =

∫

Ω

ϕ(x)ψ(x) dx for ϕ,ψ ∈ H

and the induced norm ‖ϕ‖H = 〈ϕ, ϕ̄〉
1/2
H for ϕ ∈ H. Note that we use standard

inner product in L2(Ω) = L2(Ω;R) and we explicitly denote conjugates for clarity.
The Hilbert space V = H1(Ω;C) is supplied with the inner product

〈ϕ, ψ̄〉V = 〈ϕ, ψ̄〉H +
d∑

i=1

〈
∂ϕ

∂xi
,
∂ψ̄

∂xi

〉

H

for ϕ,ψ ∈ V

and its induced norm ‖ϕ‖V = 〈ϕ, ϕ̄〉
1/2
V for ϕ ∈ V . Recall that

〈ψ, ϕ̄〉V = 〈ψ̄, ϕ〉V = 〈ϕ̄, ψ〉V for all ψ,ϕ ∈ V,

〈α(ψ + φ), ϕ̄〉V = α
(
〈ψ, ϕ̄〉V + 〈φ, ϕ̄〉V

)
for all ψ, φ, ϕ ∈ V and α ∈ C

which implies that

〈ψ, α(φ+ ϕ)〉V = ᾱ
(
〈ψ, ϕ̄〉V + 〈φ, ϕ̄〉V

)
for all ψ, φ, ϕ ∈ V and α ∈ C.

For more details on Lebesgue and Sobolev spaces we refer the reader, e.g., to [5].
Next we introduce the Helmholtz equation on the frequency band

F = [fa, fb] ⊂
{
f ∈ R | f > 0} =: R+.

For given frequency f ∈ F the complex-valued sound pressure p = p(f) solves the
Helmholtz equation

−∆p(f)− k2fp(f) = s(f) in Ω,



̺◦ωf

∂p

∂n
(f) = 0 on ΓN ( Γ = ∂Ω,



̺◦ωf

∂p

∂n
(f) = Afp(f) on ΓR = Γ \ ΓN,

(2.6)

where s = s(f) : Ω → C stands for the f -dependent source term modelling the
excitation at the point x◦ ∈ Ω at the frequency f , the parameter Af ∈ C denotes
the f -dependent admittance. Notice that Zf = 1/Af stands for the f -dependent
impedance. Furthermore,  is the imaginary unit, n denotes the outward normal
vector and the constants in 2.6 are

c = 343.799
m

s
, kf =

2πf

c
, ̺◦ = 1.19985

kg

m3
, ωf = 2πf = ckf , (2.7)

i.e., both the wave number kf and the angular frequency ωf depend on f . In
Figure 2.1 we plot the impedance and admittance values for the damping material
Melamin 50mm in the frequency range from 200 to 500Hz. Integration by parts
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Figure 2.1. Impedance Zf = 1/Af (in Pa
m/s ) and admittance Af

(in m/s
Pa ) values for Melamin 50mm in the frequency range from

200 to 500Hz.

and using the boundary condition on ΓR yield

〈−∆p, ϕ̄〉H =

∫

Ω

−∆pϕ̄ dx = −

∫

ΓR

∂p

∂n
ϕ̄ ds+

∫

Ω

∇p · ∇ϕ̄ dx

= −
1



∫

ΓR

̺◦ωfAfp ϕ̄ ds+

∫

Ω

∇p · ∇ϕ̄ dx

=

∫

Ω

∇p · ∇ϕ̄ dx+ ̺◦ωfAf

∫

ΓR

pϕ̄ds

for every ϕ ∈ V , where we have assumed that −∆p ∈ H. This motivates the next
definition.

Definition 2.1. For given f > 0 the function p(f) is called a weak solution to 2.6
provided p(f) ∈ V holds and p satisfies

B(p, ϕ̄; f) =

∫

Ω

s(f)ϕ̄ dx for all ϕ ∈ V, (2.8)

where the f -dependent bilinear form B(· , · ; f) : V × V → C is defined as

B(p, ϕ̄; f) =

∫

Ω

∇p · ∇ϕ̄− k2fpϕ̄dx+ ̺◦ωfAf

∫

ΓR

pϕ̄ds (2.9)

for p, ϕ ∈ V .

The existence of a weak solution to 2.6 follows from the Fredholm alternative;
see, e.g., [5, pp. 640-644]. For more details we refer to [22, Theorem 2.2].

Theorem 2.2. One of the following statements hold: either






for each s(f) ∈ H there exists a unique weak solution p(f) to






−∆p− k2fp = s(f) in Ω,


̺◦ωf

∂p
∂n = 0 on ΓN,


̺◦ωf

∂p
∂n = Afp on ΓR

(2.10)

or else
{

there exists a weak solution ψ 6= 0 to

−∆ψ = k2fψ in Ω, 
̺◦ωf

∂ψ
∂n = 0 on ΓN,


̺◦ωf

∂ψ
∂n = Afψ on ΓR.

(2.11)



6 O. LASS AND S. VOLKWEIN

Remark 2.3. From the theory of compact operators and the Fredholm alternative
it follows that case 2.11 appears only for a countable set of wave numbers kf . This
f -dependent set of countable wave numbers is denoted by Σf . Then, for all σ ∈ Σf
the problem

−∆ψ = σ2ψ in Ω,


̺◦ωf

∂ψ

∂n
= 0 on ΓN,



̺◦ωf

∂ψ

∂n
= Afψ on ΓR

has a weak solution ψ 6= 0.

From [22, Corollaries 3.4 and 2.5] we infer the following result.

Corollary 2.4. Suppose that kf 6∈ Σf holds for any f ∈ F. Then, 2.10 has a

unique solution p(f) ∈ V ∩ C(Ω;C) for every source term s(f) ∈ H satisfying

‖p(f)‖V + ‖p(f)‖C(Ω;C) ≤ Kf ,

where the constant Kf > 0 depends on f . In particular, Kf blows up if kf ap-
proaches an element in Σf .

Let us define the f -dependent bounded linear operator Af : V → V ′ by

Afϕ = B(ϕ, · ; f) for ϕ ∈ V. (2.12)

By Corollary 2.4 the operator Af is continuously invertible for any f ∈ F. Moreover,
let the frequency dependent functional Sf ∈ V

′ be introduced by

〈Sf , ϕ̄〉V ′,V = 〈s(f), ϕ̄〉H for ϕ ∈ V.

Then we can write 2.6 as the following operator equation

Afp(f) = S(f) in V ′ for almost all f ∈ F. (2.13)

Notice that the dual operator A⋆f : V → V ′ of Af satisfying

〈A⋆fϕ, ψ̄〉V ′,V
= 〈Afψ, ϕ̄〉V ′,V for all ϕ,ψ ∈ V

is given by

〈A⋆fϕ, ψ̄〉V ′,V
= 〈Afψ, ϕ̄〉V ′,V

=

∫

Ω

∇ϕ · ∇ψ̄ − k2fϕψ̄ dx− ̺◦ωf Āf

∫

ΓR

ϕψ̄ ds
(2.14)

for ϕ,ψ ∈ V . Next we consider the mapping F ∋ f 7→ p(f) ∈ V . For that purpose
we make use of the following assumption.

Assumption 1. For given A ∈ C(F;C) and s ∈ C(F;H) there exists a δ =
δ(A, s) > 0 such that inff∈F infσ∈Σf

|kf − σ| ≥ δ holds.

Remark 2.5. Let A ∈ C(F;C) and s ∈ C(F;H). As before we write Af ∈ C for
the function f 7→ Af . With Assumption 1 holding 2.6 is uniquely solvable for any
f ∈ F and the constant K in Corollary 2.4 can be chosen to be independent of f .
Hence, there exists a constant K > 0 satisfying

max
f∈F

(

‖p(f)‖V + ‖p(f)‖C(Ω;C)

)

≤ K,

where K is independent of f .



ADAPTIVE POD BASIS COMPUTATION FOR PARAMETRIZED SYSTEMS 7

To determine optimal snapshot location we have to linearize the Helmholtz equa-
tion with respect to the frequency. For this purpose we suppose that s ∈ H1(F;H)
and A ∈ H1(F;C). Then, s ∈ C(F;H) and A ∈ C(F;C) holds. Notice that

Ȧf : V → V ′ and Ṡf ∈ V
′ are given by

Ȧfϕ = ̺◦
(
ωf Ȧf + ω̇fAf

)
〈ϕ, · 〉L2(ΓR;C) − 2kf k̇f 〈ϕ, · 〉H ∈ V

′,

〈Ṡf , ϕ̄〉V ′,V = 〈ṡ(f), ϕ̄〉H

for ϕ ∈ V . Clearly, Ȧf and Ṡf are bounded and linear operators for all f ∈ F.
We differentiate 2.13 with respect to f . By ṗ(f) we denote the derivative of p with
respect to f . It follows for almost all f ∈ F

Af ṗ(f) = Ṡf − Ȧfp(f) in V ′ for almost all f ∈ F. (2.15)

The proof of the next result is discussed in [22, Corollary 2.8].

Corollary 2.6. Let Assumption 1 be satisfied. Suppose that A ∈ H1(F;C) and
q ∈ H1(F;H). Then, p ∈ H1(F;C(Ω;C)∩V ). In particular, there exists a constant
K > 0 (independent of f) such that

max
f∈F

(

‖ṗ(f)‖V + ‖ṗ(f)‖C(Ω;C)

)

≤ K.

2.2. The finite element model. Suppose that ϕ1, . . . , ϕN ∈ H1(Ω;R) denote
linearly independent finite element functions. We set

V N =

{

zN =

N∑

i=1

zNi ϕi ∈ V
∣
∣
∣ zNi ∈ C for i = 1, . . . , N

}

⊂ V.

A finite element solution to 2.8 is given as follows: pN ∈ V N satisfies

B(pN , ϕN ; f) = 〈Sf , ϕ
N 〉V ′,V for all ϕN ∈ V N . (2.16)

Inserting the expression pN =
∑N
j=1 pjϕj into 2.16 and choosing ϕN = ϕi for

1 ≤ i ≤ N we arrive at

N∑

j=1

B(ϕj , ϕi; f)pj = 〈Sf , ϕi〉V ′,V for all 1 ≤ i ≤ N.

Thus, 2.16 can be represented by the linear system

Bfp = sf ∈ CN , (2.17)

where we set the matrix Bf as

Bf =
((
B(ϕj , ϕi; f)

))

1≤i,j≤N
=

((
〈Afϕj , ϕi〉V ′,V

))

1≤i,j≤N

and the two vectors p, sf by

p =
(
pi
)

1≤i≤N
, sf =

(
〈Sf , ϕi〉V ′,V

)

1≤i≤N
=

(
〈s(f), ϕi〉H

)

1≤i≤N
.

Introducing the f -independent matrices

S =

((∫

Ω

∇ϕj · ∇ϕi dx

))

1≤i,j≤N

, M =

((∫

Ω

ϕjϕi dx

))

1≤i,j≤N

,

Q =

((

̺◦

∫

ΓR

ϕjϕi ds

))

1≤i,j≤N
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the matrix Bf has the form Bf = S− k2fM+ ωfAfQ. If Assumption 1 holds true,
the matrix Bf is regular for any f ∈ F by Remark 2.5. Thus, 2.17 is uniquely
solvable. Consequently, 2.16 has a unique finite element solution pN for any f ∈ F.

3. POD Galerkin scheme for the Helmholtz equation. In this section we re-
call briefly the POD method and explain the reduced-order model for the Helmholtz
equation.

3.1. The POD method. Let F = [fa, fb] ⊂ R+ be a given frequency band satisfy-
ing Assumption 1. Then, there exists a unique finite element solution pN (f) ∈ V N

to 2.16 and p(f) = (pi(f))1≤i≤N to 2.17. Suppose that

fa ≤ f1 < f2 < . . . < fn ≤ fb

is a frequency grid in F. We set pNfj = pN (fj) and pfj = p(fj) for 1 ≤ j ≤ n. Let us

define the subspace V = span {pf1 , . . . , pfn} ⊂ RN with dN = dimV ≤ min(n,N).
We define the following weighted inner product in CN :

〈u, v̄〉W = u⊤Wv̄ =

N∑

i=1

N∑

j=1

uiWij v̄j , u = (ui)1≤i≤N , v = (vi
)

1≤i≤N
∈ CN

with W = S +M ∈ RN×N . Throughout, the symbol “⊤” stands for transpose of a

vector or matrix. Moreover, we set |u|W = 〈u, ū〉
1/2
W . Notice that W⊤ = W holds

and W = ((〈ϕj , ϕi〉V ))1≤i,j≤N .

Remark 3.1. For uN =
∑N
i=1 uiϕi, v

N =
∑N
j=1 vjϕj ∈ V

N we have

〈uN , v̄N 〉V =
N∑

i=1

N∑

j=1

uiv̄j 〈ϕi, ϕj〉V =
N∑

i=1

N∑

j=1

uiWjiv̄j =
N∑

i=1

N∑

j=1

uiWij v̄j = 〈u, v̄〉W

for vectors u = (ui)1≤i≤N and v = (vi)1≤i≤N in CN . Moreover, ‖uN‖V = |u|W
is satisfied. Thus, the V -topology in the finite element space corresponds to the
W-topology in the coefficient space CN . For W = M the H-topology in V N is
equivalent to the W-topology in CN .

For an arbitrary ℓ ∈ {1, . . . , dN} we consider the minimization problem

min
u1,...,uℓ∈CN

n∑

j=1

αj

∣
∣
∣pfj −

ℓ∑

i=1

〈pfj , ūi〉W ui

∣
∣
∣

2

W

s.t. 〈ui, ūj〉W = δij for 1 ≤ i, j ≤ ℓ,

(Pℓ)

where {αj}
n
j=1 are nonnegative weights, δij stands for the Kronecker symbol, i.e.,

δii = 1 and δij = 0 for j 6= i. A solution to Pℓ is called a POD basis of rank ℓ.
The solution to Pℓ is given by singular value decomposition. Let us define the

linear and bounded operator R : CN → CN by

Ru =
n∑

j=1

αj 〈u, p̄fj 〉W pfj =
n∑

j=1

αj 〈p̄fj , u〉W pfj for u ∈ CN .
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Moreover, R is symmetric and non-negative. In fact, we obtain

〈Ru, v̄〉W =
n∑

j=1

αj 〈u, p̄fj 〉W〈pfj , v̄〉W =

〈

u,
n∑

j=1

αj 〈pfj , v̄〉W p̄fj

〉

W

=

〈

u,

n∑

j=1

αj 〈v, p̄fj 〉W pfj

〉

W

= 〈u,Rv〉W for all u, v ∈ CN

(3.1)

and

〈Ru, ū〉W =

n∑

j=1

αj 〈u, p̄fj 〉W〈ū, pfj 〉W =

n∑

j=1

αj
∣
∣〈u, p̄fj 〉W

∣
∣
2
≥ 0 for all u ∈ CN .

Is is proved in [10, 23], for instance, that the solution to (Pℓ) is given by the
symmetric eigenvalue problem

Rui = λiui for i = 1, . . . , ℓ,

where λ1 ≥ λ2 ≥ . . . ≥ λℓ > 0 denote the largest eigenvalues of the operator R.

3.2. The reduced-order model for the Helmholtz equation. Suppose that
we have computed a POD basis {ui}

ℓ
i=1 of rank ℓ. Then, we define the matrix

Ψ =
(
u1

∣
∣ . . .

∣
∣ uℓ

)
∈ CN×ℓ

which has rank ℓ. We can associate with each columns of Ψ a finite element function
as follows:

ψj : Ω→ C, ψj(x) =

N∑

i=1

Ψijϕi(x) for 1 ≤ j ≤ ℓ.

We conclude from 〈ui, ūj〉W = δij that

〈ψi, ψ̄j〉V = 〈ui, ūj〉W = δij for 1 ≤ i, j ≤ ℓ.

Thus, the functions {ψi}
ℓ
i=1 are linearly independent in V . We introduce the ℓ-

dimensional subspace V ℓ = span {ψ1, . . . , ψℓ} of V
N and consider – instead of 2.16

– the following POD Galerkin scheme for 2.6: pℓ ∈ V ℓ solves

B(pℓ, ψ̄; f) =

∫

Ω

s(f)ψ̄ dx for all ψ ∈ V ℓ. (3.2)

From pℓ ∈ V ℓ we infer the representation pℓ =
∑ℓ
j=1 ηjψj . Thus, 3.2 is equivalent

to the linear equation system

ℓ∑

j=1

B(ψj , ψ̄i; f)ηj = 〈Sf , ψ̄i〉V ′,V for 1 ≤ i ≤ ℓ. (3.3)

Defining the matrix

Bℓf =
((
B(ψj , ψ̄i; f)

))

1≤i,j≤ℓ
=

((
〈Afψj , ψ̄i〉V ′,V

))

1≤i,j≤ℓ

and the two vectors

η =
(
ηi
)

1≤i≤ℓ
, sℓf =

(
〈Sf , ψ̄i〉V ′,V

)

1≤i≤ℓ
=

(
〈s(f), ψ̄i〉H

)

1≤i≤ℓ

we can write 3.3 in the form

Bℓfη = sℓf ∈ Cℓ. (3.4)
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If ℓ ≪ N holds, 3.4 is a reduced-order or low-dimensional model for 2.17. Notice
that Bℓf and sℓf can be computed from the finite element representation by utilizing
the above defined matrix Ψ as a projection matrix:

Bℓf = Ψ̄⊤BfΨ = Ψ̄⊤
(
S− k2fM+ ωfAfQ

)
Ψ, sℓf = Ψ̄⊤sf .

If Assumption 1 is satisfied, the matrix Bf is regular for all f ∈ F. Then, Bℓf is

also regular for all f ∈ F. Thus, 3.4 possesses a unique solution pℓ = (pℓi)1≤i≤ℓ.

Moreover, pℓ =
∑ℓ
i=1 p

ℓ
iψi is the unique solution to 3.2.

The error between a solutions to 2.16 and to 3.2 can be bounded by an a-priori
estimates. For that reason we need the next assumption.

Assumption 2. For f ∈ F let Σℓf denote the set of singular values σ so that

Bℓfu = σ2Mu

has a solution u ∈ CN \ {0}. Then there exists a δ > 0 independent of ℓ and N
such that inf

f∈F

inf
σ∈Σℓ

f

|kf − σ| ≥ δ hold.

The following results follows from [22, Proposition 4.1].

Proposition 3.2. With Assumption 2 holding there is a constant C > 0 indepen-
dent of ℓ and N satisfying

n∑

j=1

αj ‖p
N (fj)− p

ℓ(fj)‖
2

V ≤ C
dN∑

i=ℓ+1

λi.

4. Optimal snapshot location. Suppose that Assumption 1 holds. The POD
basis {ui}

ℓ
i=1 of rank ℓ is determined from knowledge of the solution {pfj}

n
j=1 at

discrete frequencies fj ∈ F. We distinguish here between a predefined set chosen
on a uniform distributed frequency band and additional frequencies which will be
determined in an optimal way [15].

4.1. The optimal control problem. Let n be the number of fixed chosen fre-
quencies {fj}

n
j=1 with associated solutions pfj = p(fj) ∈ CN to 2.17. The snapshots

at new frequencies fk ∈ F, 1 ≤ k ≤ n, are denoted as pfk = p(fk). We set

V = span
{
pf1 , . . . , pfn , pf1 , . . . , pfn

}
⊂ CN

with dN = dimV ≤ min(n + n, N). Let ℓ ∈ {1, . . . , dN} be the number of chosen
POD basis functions. Throughout we denote by f the vector (f1, . . . , fn) ∈ Rn – for
simplicity – and define the bounded linear symmetric operator

R(f)u =

n∑

j=1

〈u, p̄fj 〉W pfj +

n∑

k=1

〈u, p̄fk〉W pfk for u ∈ CN .

As described in Section 3.1, the POD basis of rank ℓ is given by the solution to the
eigenvalue problem

R(f)ui = λiui, 1 ≤ i ≤ ℓ, (4.1)

where the eigenvalues are ordered and for the simplicity of the presentation are
supposed to be simple:

λ1 > λ2 > . . . > λℓ > 0.

Thus it follows that 〈ui, ūj〉W = 0 for 1 ≤ i ≤ ℓ with i 6= j and we assume that

|ui|W = 1 for 1 ≤ i ≤ ℓ. (4.2)
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Next we formulate the optimization problem. For that purpose we define the
Hilbert spaces

X = H1(F;Cℓ)× Rn ×
(
CN

)ℓ
× Rℓ, Y = L2(F;C)×

(
CN

)ℓ
× Rℓ

endowed with their natural product topology and with

(
CN

)ℓ
= CN × . . .× CN

︸ ︷︷ ︸

ℓ-times

.

Throughout we denote by x = (η, f, u, λ) an element in X, where η = (ηi)1≤i≤ℓ,
f = (fi)1≤i≤n, u = (ui)1≤i≤ℓ and λ = (λi)1≤i≤ℓ hold. Furthermore, ξ = (q, µ, φ)
stands for an element in Y with q = (qi)1≤i≤ℓ, µ = (µi)1≤i≤ℓ and φ = (φi)1≤i≤ℓ.

To quantify the difference between the solution pN (f) =
∑ℓ
i=1 pi(f)ϕi to 2.16

and the solution pℓ(f) =
∑ℓ
i=1 ηi(f)ψi to 3.2 we introduce the cost functional

J : X→ R by

J(x) =
β

2

∫

F

‖pN (f)− pℓ(f)‖
2

V df (4.3)

for p(f) = (pi(f))1≤i≤N and x = (η, f, ψ, λ) ∈ X, where β > 0 is a scaling parameter.
It follows from the a-priori estimate of Proposition 3.2 that the cost J decreases
provided we increase the number ℓ of POD basis functions in the Galerkin scheme.
For the optimal snapshot location we fix the number ℓ and add additional snapshots
pfk , 1 ≤ k ≤ n, in an optimal way so that the cost J is minimized. From

ψj(x) =

N∑

i=1

Ψijϕi(x) =

N∑

i=1

(
uj
)

i
ϕi and pℓ(f) =

ℓ∑

j=1

ηj(f)ψj(x)

we infer that

(
pN (f)− pℓ(f)

)
(x) =

N∑

i=1

(

p(f)−
ℓ∑

j=1

ηj(f)uj

)

i

ϕi(x)

=

N∑

i=1

(
p(f)−Ψη(f)

)

i
ϕi(x) =

N∑

i=1

(
p(f)− pℓ(f)

)

i
ϕi(x),

where (uj)i denotes the i-th component of the vector uj and we set pℓ(f) = Ψη(f).
Thus,

J(x) =
β

2

∫

F

‖pN (f)− pℓ(f)‖
2

V df =
β

2

∫

F

∣
∣p(f)− pℓ(f)

∣
∣
2

W
df

holds. We write the equality constraints as an operator equation. Therefore, we
define the nonlinear mapping e = (e1, e2, e3) : X→ Y by

e1(x) = Bℓfp
ℓ(f)− sℓf ∈ H

1(F;Cℓ), e2(x) =






(R(f)− λ1)u1
...

(R(f)− λℓ)uℓ




 ∈

(
CN

)ℓ
,

e3(x) =






1− |u1|
2
W

...
1− |uℓ|

2
W




 ∈ Rℓ
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for x = (η, f, ψ, λ) ∈ X. To write the inequality constraints fa ≤ fj ≤ fb, 1 ≤ j ≤ n,
in a compact form, let g = (g1, g2) : X→ R2n be defined as

g1(x) =






fa − f1
...

fa − fn




 ∈ Rn and g2(x) =






f1 − fb
...

fn − fb




 ∈ Rn.

Now we can express the minimization problem as

min J(x) s.t. x ∈ Xad, (P)

where the feasible set for P is given by

Xad =
{
x ∈ X | e(x) = 0 in Y and g(x) ≤ 0 in R2n

}
.

Summarizing, in addition to given frequencies {fj}
n
j=1 we determine further n snap-

shot locations {fk}
n

k=1 in an optimal manner by solving P so that the resulting
reduced-order model is improved.

Theorem 4.1. Let Assumption 1 hold. Then, P has at least one (global) optimal
solution x∗ ∈ Xad.

Proof. The proof follows by similar arguments as in the proof of Proposition 2.2
in [15]. In particular, we can utilize that the linear and bounded operator R(f) is
defined on the finite dimensional space CN .

4.2. First-order necessary optimality conditions. In this section we present
the first-order necessary optimality conditions for P. For the proof we refer the
reader to the appendix.

Theorem 4.2. Suppose that Assumption 1 holds. Let x∗ = (η∗, f∗, u∗, λ∗) ∈ Xad be
a local solution to P. We assume that the eigenvalues {λ∗i }

ℓ
i=1 of R(f∗) are simple.

Then there exists an associated Lagrange multiplier ξ∗ = (q∗, µ∗, φ∗) ∈ Y satisfying
together with x∗ the following system of adjoint equations:

Bℓ,Hf q∗(f) =






〈p(f)− pℓ,∗(f), ū∗1〉W
...

〈p(f)− pℓ,∗(f), ū∗ℓ 〉W




 , f ∈ F, (4.4a)

(
R(f∗)− λ∗i

)
µ∗
i = −

(
G∗
i − 〈G

∗
i , ū

∗
i 〉W u∗i

)
∈ span

{
u∗i

}⊥
1 ≤ i ≤ ℓ, (4.4b)

ℜe
(
〈u∗i , µ̄

∗
i 〉W) = ℜe

(
〈u∗i , µ̄

∗
i 〉W

)
= 0, 1 ≤ i ≤ ℓ, (4.4c)

where pℓ,∗(f) =
∑ℓ
j=1 η

∗
j (f)u

∗
i , qℓ,∗(f) =

∑ℓ
j=1 q

∗
j (f)u

∗
i , Bℓ,Hf = B̄ℓ,⊤f , G∗

i =

W−1ḡ∗i , 1 ≤ i ≤ ℓ and

g∗i =

∫

F

q∗i (f)
(
Bfpℓ,∗(f)− sf

)
+ η∗i (f)

(

BH

f q
ℓ,∗(f)−

β

2
W

(
p(f)− pℓ,∗(f)

)

df

with BH

f = B̄⊤
f . Moreover, the following variational inequality holds for k = 1, . . . , n

2ℜe

( ℓ∑

i=1

(

〈ū∗i , ṗ
∗
fk
〉
W
〈p̄∗

fk
, µ∗
i 〉W + 〈ū∗i , p

∗
fk
〉
W
〈 ˙̄p∗

fk
, µ∗
i 〉W

)(
f − fk

)
)

≥ 0 (4.4d)

for all f ∈ F.

The proof of the first-order optimality condition for P is based on the Wirtinger
calculus approach; see, e.g., [2, 21].
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Remark 4.3. 1) By assumption, all eigenvalues {λ∗i }
ℓ
i=1 of R(f∗) are simple.

Thus, 〈ui, ūj〉W = δij holds for 1 ≤ i, j ≤ ℓ. For i ∈ {1, . . . , ℓ} we decompose
µ∗
i as follows:

µ∗
i = µ∗

i,1 + µ∗
i,2 ∈ span

{
u∗i

}⊥
⊕ span

{
u∗i

}

with µ∗
i,1 = µ∗

i − 〈µ
∗
i , ū

∗
i 〉W u∗i and µ∗

i,2 = 〈µ∗
i , ū

∗
i 〉W u∗i . From

(
R(f∗)− λ∗i

)
µ∗
i =

(
R(f∗)− λ∗i

)
µ∗
i,1

and 4.4b we infer that µ∗
i,2 = 0 holds. Thus,

〈µ∗
i , ū

∗
i 〉W = 0 for i = 1, . . . , ℓ.

2) Note that 4.4b is a problem of the size N . Therefore, we make use of part 1) to

compute an approximation µℓ,∗i for µ∗
i , 1 ≤ i ≤ ℓ, by the following projection:

µ∗
i = µ∗

i − 〈µ
∗
i , ū

∗
i 〉W u∗i ≈

ℓmax∑

j=1,j 6=i

γ∗j u
∗
j =: µℓ,∗i ,

where {u∗i }
ℓmax
i=1 are the eigenvectors of R(f∗) associated with the eigenvalues

λ∗1 > . . . > λ∗ℓmax
> 0 with ℓmax ∈ {ℓ + 1, . . . , dN}. To determine the γj ’s we

insert µℓ,∗i into 4.4b and project 4.4b onto span {u∗j}j∈{1,...,ℓmax}\{i}, i.e.

Ψ̄⊤
i

(
R(f∗)− λ∗i

)
µℓ,∗i = −Ψ̄⊤

i

(
G∗
i − 〈G

∗
i , ū

∗
i 〉W u∗i

)
∈ Cℓmax−1,

where we have set

Ψi =
(
u∗1

∣
∣ . . .

∣
∣ u∗i−1

∣
∣ u∗i+1

∣
∣ . . .

∣
∣ u∗ℓmax

)
∈ CN×(ℓmax−1), i = 1, . . . , ℓ.

4.3. Reduced control problem. Let Assumption 1 be fulfilled. Suppose that
f = (f1, . . . , fn) with fk ∈ F for 1 ≤ k ≤ n. Due to Assumption 1 there exists
unique finite element solutions pN

fk
= pN (fk) for fk ∈ F, 1 ≤ k ≤ n. Thus, we

can determine a POD basis {ψi(f)}
ℓ
i=1 of rank ℓ and corresponding eigenvalues

{λi(f)}
ℓ
i=1 by solving the eigenvalue problem 4.1. We set ψ(f) = (ψi(f))1≤i≤ℓ ∈

(CN )ℓ and λ(f) = (λi(f))1≤i≤ℓ ∈ Rℓ. Utilizing the POD basis we derive the reduced-
order model 3.4 for the Helmholtz equation. By Assumption 1 there exists a unique
η solving 3.4 for every f ∈ F. Since the ψi’s depend on f, the POD coefficient vector
η depends on f as well and we write η(f). Summarizing, the variables η(f), ψ(f)
and λ(f) are uniquely determined for a given vector f of frequencies. Thus, we can
introduce the so-called reduced cost functional by

Ĵ(f) = J(η(f), f, ψ(f), λ(f)) for f =
(
fk
)

1≤k≤n
with fk ∈ F. (4.5)

Then, we consider the reduced problem

min Ĵ(f) s.t.
(
fk
)

1≤k≤n
with fk ∈ F (P̂)

which is equivalent to the original problem. It follows from 4.4d that the gradient
of Ĵ is given by

∇Ĵ(f) = 2ℜe










ℓ∑

i=1

(

〈ψ̄∗
i , ṗ

∗
f1
〉
W
〈p̄∗

f1
, µ∗
i 〉W + 〈ψ̄∗

i , p
∗
f1
〉
W
〈 ˙̄p∗

f1
, µ∗
i 〉W

)

...
ℓ∑

i=1

(

〈ψ̄∗
i , ṗ

∗
fn
〉
W
〈p̄∗

fn
, µ∗
i 〉W + 〈ψ̄∗

i , p
∗
fn
〉
W
〈 ˙̄p∗

fn
, µ∗
i 〉W

)










. (4.6)
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4.4. Adaptive POD basis computation. In this section we introduce the adap-
tive POD basis computation strategy. To start we have a look at the decay of the
normalized singular values. In order to have an efficient reduced order model it is
required that the singular values decrease fast and hence the number of needed POD
basis functions is small. When looking at Figure 4.1 we can see that the normal-
ized singular values do not decrease fast in the beginning. This implies that many

5 10 15 20 25 30 35 40 45 50
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10
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Decay of the Singular Values (Normalized)
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σ (
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Figure 4.1. Decay of the singular values for the frequency range
from 200 to 500Hz.

POD basis functions will be needed to approximate the frequency range from 200
to 500Hz. Here one would need approximately 30 POD basis functions. Since the
variables are complex this means 30 real and 30 imaginary basis functions. Hence
we want to develop a strategy to compute the best possible POD basis with the
fewest snapshots required.

Let us now introduce an adaptive strategy. For this we use the obtained results
from the optimal snapshot locations. The idea is to start with a small frequency
range and extend it iteratively. This can be done a-priori or when it is required by
the application. When extending the frequency range we have to solve either the
optimization problem P or P̂ to add the best possible snapshots.

Algorithm 1 (Adaptive POD basis strategy)

Require: Snapshot frequencies {fi}
n
i=1, ℓ, extension intervals {Ii}

m
i=1;

1: for i = 1 to m do
2: Set initial f0 ∈ Ii (e.g., center of extension interval);

3: f∗ = (f∗j )1≤j≤n ← solution to P̂ with fj ∈ Ii;
4: Add f∗ to the frequencies {fi}

n
i=1

5: Set ℓ = ℓ+∆ℓ;
6: end for
7: return Extended snapshot frequencies {fi}

n+mn

i=1 and ℓ;

5. Numerical experiments. In this section we will present some numerical re-
sults for the adaptive POD approach described in Section 4.4. Let us start with
the problem settings. The acoustic domain Ω ⊂ R2 and the impedance boundary
ΓR = {x = (x1, 0) | 0.5 ≤ x ≤ 1.8} are illustrated in Figure 5.1. We apply a stan-
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Figure 5.1. Left plot: computational domain Ω ⊂ R2 together
with the boundary ΓN (black line) and ΓR (dashed line); Right
plot: experimental design at the Competence Center The Virtuale
Vehicle in Graz (see http://www.vif.tugraz.at).

dard piecewise linear finite element (FE) discretization with 695 degrees of freedom.
Next let us introduce the missing parameters. The right hand side is given as

sf (x) =
1

5
exp

(
π(f − 200)

50

)

exp(−50|x− xq|
2) for x ∈ Ω and f ∈ [200, 500],

where xq = (0.28, 1.21). The parameters c, kf and ωf are already given in 2.7.
Lastly the f -dependent admittance Af are plotted in the right plot of Figure 2.1.

The weights αj in the optimization P̂ are set to one. Further the scaling parameter
β is set to

β =

M∑

j=1

αj ‖p
N (fj)‖

2

V df

with fj = fa + (j − 1)∆f , ∆f = (fb − fa)/M and trapezoidal weights {αj}
n
j=1. All

computations are carried out with complex variables, i.e. the real and imaginary
parts are not separated. The integral over F is computed by using a trapezoidal
rule, where F is discretized equidistant with stepsize one.

The optimization problem is solved by using a quasi-Newton method, since the
second derivative is rather involved. For the convergence analysis of these methods
we refer the reader, e.g., to [18]. The code is written in Matlab utilizing the
Partial Differential Toolbox and the Optimization Toolbox. Hence, for
convenience the routine fmincon is used to carry out the optimization. The options
are chosen as follows

optimset(’Diagnostics’,’on’,’Display’,’iter’,’LargeScale’,’off’, ...

’GradObj’,’on’,’TolFun’,1e-7,’TolX’,1e-4,’MaxIter’,100);

Note that we supply the routine with the analytical gradient 4.6. In the following
we will present numerical results for different scenarios using the adaptive POD
strategy.

Run 1 (One optimal snapshot location for a fixed interval). We consider the fre-
quency range from 300 to 330Hz. Given the snapshots to the frequencies fi = 300+i
for i = 0, . . . , 15. In this test we want to find one additional frequency f to mini-
mize the cost given by 4.3, i.e., we have n = 1. We take ℓ = 4 POD basis functions.
In the left plot of Figure 5.2 (left) the behaviour of the cost function is presented
for three different scenarios. The dash-dotted line represents the case when no
additional snapshot is added, i.e. the snapshots corresponding to the frequencies
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Figure 5.2. Run 1: behaviour of the cost function for three dif-
ferent scenarios (left plot) and the corresponding gradient (∇Ĵ(f))
(right plot).

fi = 300 + i, i = 0, . . . , 15, are used to compute the POD basis of rank ℓ. The
dashed line represents the case that the POD basis of rank ℓ is computed using
snapshots corresponding to fi = 300 + i, i = 0, . . . , 30, i.e. all the frequencies.
The line with stars represents the addition of a single snapshot corresponding to
frequency f ∈ [315, 330]. It can be seen that by adding a single snapshot nearly
the same value for the cost function can be reached compared to adding snapshots
for all the frequencies. In the right plot of Figure 5.2 a comparison of the numer-
ical (NumGrad) and the analytical (Grad) gradient are plotted. In Table 5.2 we
compare the obtained optimal f when using the analytical and numerical gradient
and the performance of the optimization algorithm. It can be seen that for both

Method f∗ Ĵ(f∗) CPU time iterations

Grad 327.44 0.001804 0.95 6
NumGrad 327.53 0.001802 0.62 6

Table 5.2. Run 1: results for adding one additional snapshot by
optimization using the analytical gradient (Grad) and the numeri-
cal approximation of the gradient (NumGrad).

cases similar results are obtained. The optimal frequency f∗ is around 327.5Hz and
the cost function has the approximate value 0.0018. For both types of gradients
the optimization method needs the same number of iterations. The optimization
utilizing both analytical and numerical gradient are comparable. For comparison,
the value of the cost function using the frequencies fi = 300 + i for i = 0, . . . , 30 is
0.0014, which is a very small difference.

Run 2 (Two optimal snapshot locations for a fixed interval). In this experiment
we consider the same settings as in Run 1. The main difference is that we now want
to add not only one new snapshot but two. Hence we will be looking for a tuple f =
(f1, f2) ∈ [316, 330]×[316, 330] to minimize the cost function 4.3. First we again look
at the evaluation of the cost function for all the different combinations for f = (f1, f2).
Figure 5.3 shows the evaluation of the cost function as 3D plot and as contour plot.
It can be seen that the cost function is symmetric, i.e. Ĵ(f1, f2) = Ĵ(f2, f1). Further
in Figure 5.4 a comparison of the analytical and numerical gradient fields is shown.
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Figure 5.3. Run 2: cost function when adding two additional
snapshots (f1, f1) in 3D (left plot) and as contour plot (right plot).

Next we look at the optimal f∗ obtained by the optimization, see Table 5.4. Again
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Figure 5.4. Run 2: analytical (left plot) and numerical (right

plot) gradient ∇Ĵ(f) when adding two additional snapshots f =
(f1, f1).

we observe that using the analytical and numerical gradient deliver very similar
results. The obtained result for the frequencies is around f∗ = (319.85, 328.10) and
the corresponding value of the cost function is at 0.0016. Recall that the value of
the cost function using the whole frequency range is 0.0014 and for adding only
one additional frequency is 0.0018. So there is a small improvement when adding
two frequencies. Comparing the CPU-time needed for the optimization there is no
large difference. As with adding one frequency the optimization utilizing different
gradients are again comparable.
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Method f∗1 f∗2 Ĵ(f∗) CPU time Iterations

Grad 319.86 328.07 0.001610 0.66 5
NumGrad 319.84 328.15 0.001608 0.74 6

Table 5.4. Run 2: results for adding two additional snapshots by
optimization using the analytical gradient (Grad) and the numeri-
cal approximation of the gradient (NumGrad).

Run 3 (Adaptive POD basis computation). In this experiment we focus on the suc-
cessive adding of additional frequencies. For this we consider the following settings.
We use an initial frequency range fi = 199 + i ∈ [200, 210] for i = 1, . . . , 11. And
we initially set ℓ = 3. Now we want to construct a POD basis for the frequency
range [200, 300] using the strategy described by Algorithm 1. For this we intro-
duce the extension intervals Ii = [200 + 10i, 200 + 10(i + 1)] for i = 1, . . . ,m with
m = 9. In each interval we will compute an optimal f∗Ii and add it to the frequency
set {f1, . . . , f11, f

∗
I1
, . . . , f∗Ii−1

}. The number of POD basis functions is increased

alternately, i.e. in the intervals with even index we increase ℓ by ∆ℓ = 1 and the
intervals with odd index we do not increase ℓ. Thus, we will utilize ℓ = 8 POD basis
functions for the computation of f∗I9 in the last interval I9. This is realized by the
Matlab command ell=ell+mod(i,2), where i is the index for the intervals. As
the initial guess f0Ii for f∗Ii in each interval we choose the corresponding midpoints.
In Table 5.4 the initial and added snapshot for each interval Ii is shown. Again

Method Grad NumGrad

Interval Ii f∗Ii f∗Ii initial f0Ii
I1 = [210, 220] 218.1510 218.1684 215
I2 = [220, 230] 224.9994 223.9296 225
I3 = [230, 240] 238.2373 238.1699 235
I4 = [240, 250] 246.8142 247.0282 245
I5 = [250, 260] 255.8309 255.5789 255
I6 = [260, 270] 265.8839 265.9337 265
I7 = [270, 280] 270.0000 280.0000 275
I8 = [280, 290] 285.0000 290.0000 285
I9 = [290, 300] 293.7210 293.9376 295

Table 5.4. Run 3: initial and optimal frequency for each interval
obtained by the optimization using the analytical gradient (Grad)
and numerical gradient (NumGrad).

we compare the results when using an analytical gradient to the results obtained
when using a numerical approximation of the gradient. One can observe that the
obtained f in each interval are very similar. In the intervals I7 and I8 a larger
difference can be observed. This is due to different optimization strategies used by
Matlab and an almost constant cost function. To compare the performance of
the adaptive strategy we look at the value of the cost function 4.3 as well as the
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approximation error

Err =

300∑

f=200

‖pN (f)− pℓ(f)‖
2

V =

300∑

f=200

|p(f)− pℓ(f)|
2

W =

300∑

f=200

|p(f)−Ψη(f)|2W.

It is desired that Err is sufficiently small. We define the sets

Fn = {f1, . . . , f11}, F∗ = {f∗I1 , . . . f
∗
I9},

Fall = Fn ∪ {211, 212, . . . , 300}, Finit = {f
0
I1 , . . . , f

0
I9}.

Additionally to adding the optimal snapshots we compare the following scenarios:

1) use snapshots at the frequencies Fn to get a POD basis of rank three,
2) utilize snapshots at the frequencies Fn∪Finit to compute a POD basis of rank

eight,
3) use snapshots at the frequencies Fall to determine a POD basis of rank four,
4) utilize snapshots at the frequencies Fall to compute a POD basis of rank eight.

These scenarios are interesting since from the results it can be seen whether the
adaptive POD strategy is effective. The question is if it is necessary to add addi-
tional snapshots or if adding the center of an extension interval is also sufficient. In
Table 5.4 the results are summarized. It can be seen that the adaptive strategy pro-

Method Grad NumGrad Grad NumGrad

Frequencies ℓ Ĵ(f∗) Err

Fn 3 5.2952 0.1662
Fall 4 2.3517 0.0738
Fn ∪ Finit 8 0.2717 0.0085

Fn ∪ F∗ 8 0.0234 0.0230 0.0007 0.0007

Fall 8 0.0550 0.0017

Table 5.4. Run 3: comparison of the results of different scenarios
for the computation of the POD basis. The choice Fn ∪ F∗ in
the forth row correspond to the adaptive POD basis approach of
Algorithm 1 using the analytical gradient (Grad) and the numerical
approximation of the gradient (NumGrad).

vides the lowest value in the cost function and the lowest approximation error. Even
the approximation error obtained by using Fall is larger. This can be explained by
the fact that by the optimization the optimal snapshots are added. Hence snapshots
are obtained which are not in the set Fall. Not adding any additional snapshot (Fn)
or just adding the centers of the extension intervals (Fn ∪ Finit) lead to significant
larger values for the cost function as well as the approximation error. Further we can
see that using the analytical gradient or the numerical gradient deliver almost the
same values for the cost function and approximation error although some differences
in the optimal frequencies could be observed in Table 5.4. To conclude this numer-
ical experiment we look at the performance of the two approaches in the means
of computational time. When using the analytical gradient the adaptive strategy
needs 33.9 seconds to terminate. Compared to the numerical gradient which needs
12.2 seconds this is longer but the algorithm can not be compared directly since the
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Matlab routine internally use slightly different methods. What can be said is that
the strategy is applicable since the computational efforts are not too large and the
obtained optimal frequencies lead to better snapshots and hence to a better POD
basis. Further this strategy can directly be incorporated with the application. The
extension of the interval can be performed when required and with the strategy it
is guaranteed that the extension is performed in an optimal way.

Appendix.

Proof of Theorem 4.2. The existence of a unique Lagrange multiplier ξ∗ =
(q∗, µ∗, φ∗) ∈ Y follows from a standard constraint qualification; see, e.g., [17]. The
application for the present application is analogous to the proof of Proposition 2.4 in
[15]. Here, we use that, by Assumption 1, both 2.13 and 2.15 are uniquely solvable
for any f ∈ F; see Remark 2.5 and Corollary 2.6.

To derive the first-order optimality condition for P we apply the Wirtinger
calculus approach [2, 21]. For this we introduce the Lagrange functional L :
X× X× Y× Y→ C is defined as:

L(ζ) =
β

2

∫

F

〈

p(f)−
ℓ∑

i=1

ηi(f)ui, p̄(f)−
ℓ∑

j=1

η̄j(f)ūj

〉

W

df

+

∫

F

(
Bℓfη(f)− sℓf

)⊤
q(f) +

(
Bℓfη(f)− sℓf

)⊤
q̃(f) df

+

ℓ∑

i=1

(

〈(R(f)− λi)ūi, µi〉W + 〈(R(f)− λi)ui, µ̃i〉W +
(
1− |ui|

2
W

)
φi

)

for ζ = (z, z̄, ξ, ξ̃), z = (η, f, u, λ) ∈ X and ξ = (q, µ, φ), ξ̃ = (q̃, µ̃, φ) ∈ Y. We
will show that the Lagrange multiplier ξ∗ associated with the optimal solution z∗

satisfies ξ̄∗ = ξ̃∗. Since 1− |ui|
2
W ∈ R holds, we use a standard Lagrange multiplier

for this constraint.
First we compute the derivative of the Lagrangian with respect to η in an arbi-

trary direction ηδ = (ηδ,1, . . . , ηδ,ℓ) ∈ H
1(F;Cℓ). We derive that

Lη(ζ)ηδ =

∫

F

(
(
Bℓfηδ(f)

)⊤
q̃(f)−

β

2

ℓ∑

i=1

ηδ,i(f)
〈

ui, p̄(f)−
ℓ∑

j=1

η̄j(f)ūj

〉

W

)

df.

Setting Bℓ,⊤f = (Bℓf )
⊤ we have

(
Bℓfηδ(f)

)⊤
q̃(f) = ηδ(f)

⊤Bℓ,⊤f q̃(f) =

ℓ∑

i=1

ηδ,i(f)
(
Bℓ,⊤f q̃(f)

)

i

for f ∈ F. Thus, it follows that

Lη(ζ)ηδ =

∫

F

ℓ∑

i=1

ηδ,i(f)

(
(
Bℓ,⊤f q̃(f)

)

i
−
β

2

〈

ui, p̄(f)−
ℓ∑

j=1

η̄j(f)ūj

〉

W

)

df

for all ηδ ∈ H1(F;Cℓ). Therefore, the first-order necessary optimality condition

Lη(ζ
∗)ηδ = 0 in H1(F;Cℓ)′ at ζ∗ = (z∗, z̄∗, ξ∗, ξ̃∗) implies that

Bℓ,⊤f q̃∗(f) =
β

2






〈u∗1, p̄(f)− p̄ℓ,∗(f)〉W
...

〈u∗ℓ , p̄(f)− p̄ℓ,∗(f)〉W




 for f ∈ F, (A.1)
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where we have set p̄ℓ,∗(f) =
∑ℓ
j=1 η̄

∗
j (f)ū

∗
j .

Next we turn to the derivative of the Lagrangian with respect to η̄ and derive

Lη̄(ζ)η̃δ =

∫

F

(
B̄ℓf η̃δ(f)

)⊤
q(f)−

β

2

ℓ∑

i=1

η̃δ,i(f)
〈

p(f)−
ℓ∑

j=1

ηj(f)uj , ūi

〉

W
df

for all η̃δ = (η̃δ,1, . . . , η̃δ,ℓ) ∈ H
1(F;Cℓ). Notice that

(
B̄ℓf η̃δ(f)

)⊤
q(f) = η̃δ(f)

⊤B̄ℓ,⊤f q(f) = η̃δ(f)
⊤Bℓ,Hf q(f) =

ℓ∑

i=1

η̃δ,i(f)
(
Bℓ,Hf q(f)

)

i

for f ∈ F. Consequently,

Lη̄(ζ)η̃δ =

∫

F

ℓ∑

i=1

η̃δ,i(f)

(
(
Bℓ,Hf q(f)

)

i
−
β

2

〈

p(f)−
ℓ∑

j=1

ηj(f)uj , ūi

〉

W

)

df

for all η̃δ ∈ H
1(F;Cℓ). Thus, the first-order necessary optimality condition Lη̄(ζ

∗) =
0 in H1(F;Cℓ)′ implies that

Bℓ,Hf q∗(f) =
β

2






〈p(f)− pℓ,∗(f), ū∗1〉W
...

〈p(f)− pℓ,∗(f), ū∗ℓ 〉W




 for f ∈ F (A.2)

with pℓ,∗(f) =
∑ℓ
i=1 η

∗(f)u∗i , which is 4.4a. Combining A.1 and A.2 we infer that

Bℓ,Hf q∗(f) =






〈p(f)− pℓ,∗(f), ū∗1〉W
...

〈p(f)− pℓ,∗(f), ū∗ℓ 〉W




 =






〈u∗1, p̄(f)− p̄ℓ,∗(f)〉W
...

〈u∗ℓ , p̄(f)− p̄ℓ,∗(f)〉
W






= Bℓ,⊤f q̃∗(f) = Bℓ,Hf
¯̃q∗(f) for f ∈ F.

It follows from Assumption 1 and Remark 2.5 that the matrix Bℓf is invertible for
all f ∈ F. Thus we derive that

q̄∗ = q̃∗ in L2(F;Cℓ) (A.3)

holds, i.e., A.1 and A.2 are equivalent. In the sequel we will replace q̃∗ by q̄∗.
Now we consider the derivative of the Lagrangian with respect to f = (f1, . . . , fn).

For 1 ≤ k ≤ n it follows that

∂R

∂fk
(f)u = 〈u, ˙̄pfk〉W pfk + 〈u, p̄fk〉W ṗfk for u ∈ Cℓ,
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where ṗfk solves 2.15 for f = fk. Therefore, we have

Lfk
(ζ)

=

ℓ∑

i=1

(〈

〈ui, ˙̄pfk〉W pfk + 〈ui, p̄fk〉W ṗfk , µi

〉

W
+
〈

〈ui, ˙̄pfk〉W pfk + 〈ui, p̄fk〉W ṗfk , µ̃i

〉

W

)

=

ℓ∑

i=1

(〈

〈ūi, ṗfk〉W p̄fk + 〈ūi, pfk〉W ˙̄pfk , µi

〉

W
+
〈

〈ui, ˙̄pfk〉W pk + 〈ui, p̄fk〉W ṗfk , µ̃i

〉

W

)

=

ℓ∑

i=1

(

〈ūi, ṗfk〉W〈p̄fk , µi〉W + 〈ūi, pfk〉W〈 ˙̄pfk , µi〉W

)

+

ℓ∑

i=1

(

〈ui, ˙̄pfk〉W〈pfk , µ̃i〉W + 〈ui, p̄fk〉W〈ṗfk , µ̃i〉W

)

for 1 ≤ k ≤ n.

From the first-order necessary optimality condition Lfk
(ζ∗)(f− f∗k) ≥ 0 for all f ∈ F

and for 1 ≤ k ≤ n we conclude that

ℓ∑

i=1

(

〈ū∗i , ṗ
∗
fk
〉
W
〈p̄∗

fk
, µ∗
i 〉W + 〈ū∗i , p

∗
fk
〉
W
〈 ˙̄p∗

fk
, µ∗
i 〉W

)

+

ℓ∑

i=1

(

〈u∗i , ˙̄p
∗
fk
〉
W
〈p∗

fk
, µ̃∗
i 〉W + 〈u∗i , p̄

∗
fk
〉
W
〈ṗ∗

fk
, µ̃∗
i 〉W

)(
f − fk

)
≥ 0

(A.4)

for all f ∈ F and 1 ≤ k ≤ n.
Next we compute the derivative of the Lagrangian with respect to λi for 1 ≤ i ≤ ℓ.

Since λi ∈ R holds, we find

Lλi
(ζ) = −〈ūi, µi〉W − 〈ui, µ̃i〉W for 1 ≤ i ≤ ℓ.

Utilizing Lλ(ζ
∗) = 0 we derive

〈ū∗i , µ
∗
i 〉W + 〈u∗i , µ̃

∗
i 〉W = 0 for 1 ≤ i ≤ ℓ. (A.5)

Now we investigate the derivative of the Lagrangian with respect to u ∈ (CN )ℓ.
First we note that

Bℓf,ij = 〈Afψj , ψ̄i〉V ′,V =

N∑

k=1

N∑

l=1

(ūi)k(uj)l 〈Afϕl, ϕ̄k〉V ′,V

=

N∑

k=1

N∑

l=1

(ūi)k(uj)l Bf,kl = ū⊤i Bfuj

and

sℓf,i = 〈Sf , ψ̄i〉V ′,V =

N∑

k=1

ūi 〈Sf , ϕ̄i〉V ′,V = ū⊤i sf

for 1 ≤ i, j ≤ ℓ and f ∈ F. Thus, we find that

(
Bℓfη(f)− sℓf

)⊤
q(f) =

ℓ∑

i=1

( ℓ∑

j=1

ū⊤i Bfujηj(f)− ū⊤i sf

)

qi(f)

=

ℓ∑

i=1

( ℓ∑

j=1

(
u⊤i B̄f ūj η̄j(f)

)
− u⊤i s̄f

)

qi(f)
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and

(
Bℓfη(f)− sℓf

)⊤
q̃(f) =

ℓ∑

i=1

( ℓ∑

j=1

(
ū⊤i Bfujηj(f)

)
− ū⊤i sf

)

q̃i(f)

for f ∈ F. Thus, we have

Lu(ζ)uδ = −

∫

F

β

2

ℓ∑

i=1

ηi(f)

〈

uδ,i, p̄(f)−
ℓ∑

j=1

η̄j(f)ūj

〉

W

df

+

∫

F

ℓ∑

i=1

( ℓ∑

j=1

(
u⊤δ,iB̄f ūj η̄j(f)

)
− u⊤δ,is̄f

)

qi(f) df

+

∫

F

ℓ∑

i=1

ℓ∑

j=1

ū⊤i Bfuδ,jηj(f)q̃i(f) df

+

ℓ∑

i=1

(

〈(R(f)− λi)uδ,i, µ̃i〉W − 〈uδ,i, ūi〉W φi

)

for an arbitrary direction uδ = (uδ,1, . . . , uδ,ℓ) ∈ (CN )ℓ. For f ∈ F we set pℓ(f) =
∑ℓ
j=1 ηj(f)uj ∈ CN and q̃ℓ(f) =

∑ℓ
i=1 q̃i(f)ūi ∈ CN . Then, we have

ℓ∑

i=1

( ℓ∑

j=1

(
u⊤δ,iB̄f ūj η̄j(f)

)
− u⊤δ,is̄f

)

qi(f) =

ℓ∑

i=1

qi(f)u
⊤
δ,i

(
Bfpℓ(f)− sf

)

and
ℓ∑

i=1

ū⊤i Bfuδ,jηj(f)q̃i(f) = ηj(f)q̃
ℓ(f)⊤Bfuδ,j = ηj(f)u

⊤
δ,jB

⊤
f q̃

ℓ(f).

Hence, we derive

Lu(ζ)uδ =
ℓ∑

i=1

∫

F

qi(f)u
⊤
δ,i

(
Bfpℓ(f)− sf

)
df

+
ℓ∑

i=1

∫

F

ηi(f)u
⊤
δ,i

(

B⊤
f q̃

ℓ(f)−
β

2
W

(
p̄(f)− p̄ℓ(f)

)
)

df

+
ℓ∑

i=1

(

〈(R(f)− λi)uδ,i, µ̃i〉W − 〈uδ,i, φiūi〉W

)

for all uδ ∈ (CN )ℓ. Utilizing the first-order necessary optimality condition Lu(ζ
∗) =

0, φ∗i ∈ R for 1 ≤ i ≤ ℓ, BH

f = B̄⊤
f and A.3 we obtain

0 =
ℓ∑

i=1

u⊤δ,i

∫

F

q∗i (f)
(
Bfpℓ,∗(f)− sf

)
df

+
ℓ∑

i=1

u⊤δ,i

∫

F

η∗i (f)

(

BH

f q
ℓ,∗(f)−

β

2
W

(
p(f)− pℓ,∗(f)

)
)

df

+
ℓ∑

i=1

(

〈(R(f∗)− λ∗i )uδ,i, µ̃
∗
i 〉W − 〈uδ,i, φ

∗
i ū

∗
i 〉W

)
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for all uδ ∈ (CN )ℓ, where we have set qℓ,∗(f) =
∑ℓ
i=1 q

∗
i (f)u

∗
i . Analogous to 3.1 we

deduce that

〈R(f)u, v̄〉W = 〈u,R(f)v〉W for all u, v ∈ CN . (A.6)

We define the vectors g∗i ∈ CN , 1 ≤ i ≤ ℓ, by

g∗i =

∫

F

q∗i (f)
(
Bfpℓ,∗(f)− sf

)
df

+

∫

F

η∗i (f)

(

BH

f q
ℓ,∗(f)−

β

2
W

(
p(f)− pℓ,∗(f)

)

df

(A.7)

and set G∗
i = W−1ḡ∗i ∈ CN for 1 ≤ i ≤ ℓ. Using g∗i = WḠ∗

i we deduce

u⊤δ,ig
∗
i = u⊤δ,iWḠ∗

i = 〈uδ,i, Ḡ
∗
i 〉W.

Thus, φ∗i ∈ R and A.6 imply for all i ∈ {1, . . . , ℓ} that

0 = 〈uδ,i, Ḡ
∗
i 〉W + 〈(R(f∗)− λ∗i )uδ,i, µ̃

∗
i 〉W − 〈uδ,i, φ

∗
i ū

∗
i 〉W

= 〈uδ,i, Ḡ
∗
i 〉W + 〈uδ,i, (R(f∗)− λ∗i )

¯̃µ∗
i 〉W − 〈uδ,i, φ

∗
i ū

∗
i 〉W

)

= 〈uδ,i,G∗
i + (R(f∗)− λ∗i )

¯̃µ∗
i − φ

∗
i u

∗
i 〉W

)

for all uδ,i ∈ CN . Thus, we obtain

(R(f∗)− λ∗i )¯̃µ
∗
i = −G

∗
i + φ∗i u

∗
i in CN for 1 ≤ i ≤ ℓ. (A.8)

Combining A.6, A.8 and using R(f∗)u∗i = λ∗i u
∗
i we find that

φ∗i = φ∗i |u
∗
i |

2
W = 〈φ∗i u

∗
i , ū

∗
i 〉W = 〈(R(f∗)− λ∗i )¯̃µ

∗
i +G∗

i , ū
∗
i 〉W

= 〈(R(f∗)− λ∗i )¯̃µ
∗
i , ū

∗
i 〉W + 〈G∗

i , ū
∗
i 〉W

= 〈 ¯̃µ∗
i , (R(f

∗)− λ∗i )u
∗
i 〉W + 〈G∗

i , ū
∗
i 〉W = 〈G∗

i , ū
∗
i 〉W

(A.9)

for 1 ≤ i ≤ ℓ. Hence, A.8 can be expressed as

(R(f∗)− λ∗i )¯̃µ
∗
i = −

(
G∗
i − 〈G

∗
i , ū

∗
i 〉W u∗i

)
∈ span {u∗i }

⊥ for 1 ≤ i ≤ ℓ. (A.10)

Finally, we compute the derivative of the Lagrangian with respect to ū. We
obtain

Lū(ζ)ũδ = −

∫

F

β

2

ℓ∑

i=1

η̄i(f)

〈

p(f)−
ℓ∑

j=1

ηj(f)ui, ũδ,i

〉

W

df

+

∫

F

ℓ∑

i=1

ℓ∑

j=1

u⊤i B̄f ũδ,j η̄j(f)qi(f) df

+

∫

F

ℓ∑

i=1

( ℓ∑

j=1

ũ⊤δ,iBfujηj(f)− ũ⊤δ,isf

)

q̃i(f) df

+
ℓ∑

i=1

(

〈(R(f)− λi)ũδ,i, µi〉W − 〈ui, ũδ,i〉Wφi
)
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for any direction ũδ = (ũδ,1, . . . , ũδ,ℓ) ∈ (CN )ℓ. Again we set pℓ(f) =
∑ℓ
j=1 ηj(f)uj

and qℓ(f) =
∑ℓ
i=1 qi(f)ui. Then, it follows that

ℓ∑

i=1

u⊤i B̄f ũδ,j η̄j(f)qi(f) =

( ℓ∑

i=1

qi(f)ui

)⊤

B̄f ũδ,j η̄j(f) = qℓ(f)⊤B̄f ũδ,j η̄j(f)

= η̄j(f)
(
B̄⊤
f q

ℓ(f)
)⊤

ũδ,j = η̄j(f)
(
BH

f q
ℓ(f)

)⊤
ũδ,j ,

ℓ∑

j=1

ũ⊤δ,iBfujηj(f)q̃i(f) = ũ⊤δ,iBf

( ℓ∑

j=1

ηj(f)uj

)

q̃i(f) = ũ⊤δ,iBfp
ℓ(f)q̃i(f)

=
(
Bfp

ℓ(f)
)⊤

ũδ,iq̃i(f)

for f ∈ F. Recall that W̄⊤ = W holds. Thus, we find

Lū(ζ)ũδ =
ℓ∑

i=1

ũ⊤δ,i

∫

F

η̄i(f)

(

BH

f q
ℓ(f)−

β

2
W

(
p(f)− pℓ(f)

)
)

df

+
ℓ∑

i=1

ũ⊤δ,i

∫

F

q̃i(f)
((

Bfp
ℓ(f)− sf

))

df

+
ℓ∑

i=1

(

〈(R(f)− λi)ũδ,i, µi〉W − 〈ui, ũδ,i〉Wφi
)

for any direction ũδ ∈ (CN )ℓ. Using A.3, A.6 and A.7 the first-order necessary
optimality condition Lū(ζ

∗) = 0 implies that

0 =

ℓ∑

i=1

(

ũ⊤δ,iḡ
∗
i +

〈
(R(f∗)− λ∗i )

¯̃uδ,i, µ̄∗
i

〉

W
− 〈ũδ,i, φ

∗
i u

∗
i 〉W

)

=

ℓ∑

i=1

(

ũ⊤δ,iWG∗
i + 〈ũδ,i, (R(f

∗)− λ∗i )µ
∗
i − φ

∗
i u

∗
i 〉W

)

=
ℓ∑

i=1

〈ũδ,i, (R(f
∗)− λ∗i )µ

∗
i +G∗

i − φ
∗
i u

∗
i 〉W

for any direction ũδ ∈ (CN )ℓ, where we have used ḡ∗i = WG∗
i . From A.9 we conclude

(R(f∗)− λ∗i )µ
∗
i = −(G

∗
i + 〈G

∗
i , ū

∗
i 〉W u∗i

)
∈ span {u∗i }

⊥ for 1 ≤ i ≤ ℓ. (A.11)

From A.10 and A.11 we obtain that

(R(f∗)− λ∗i )µ
∗
i = (R(f∗)− λ∗i )¯̃µ

∗
i ∈ span {u∗i }

⊥.

Since the linear equation (R(f∗) − λ∗i )µi = ri is uniquely solvable for every right-
hand side ri ∈ span {u∗i }

⊥ we conclude that

µ̃∗
i = µ̄∗

i for 1 ≤ i ≤ ℓ. (A.12)

From A.5 and A.12 we infer that

0 = 〈ū∗i , µ
∗
i 〉W + 〈u∗i , µ̄

∗
i 〉W = 〈ū∗i , µ

∗
i 〉W + 〈ū∗i , µ

∗
i 〉W = 2ℜe

(
〈ū∗i , µ

∗
i 〉W

)

for 1 ≤ i ≤ ℓ, which implies

ℜe
(
〈ū∗i , µ

∗
i 〉W

)
= ℜe

(
〈u∗i , µ̄

∗
i 〉W

)
= 0 for 1 ≤ i ≤ ℓ.
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see 4.4c. Furthermore, A.12 implies that

Lfk
(ζ∗) =

ℓ∑

i=1

(

〈ū∗i , ṗ
∗
k〉W〈p̄

∗
k, µ

∗
i 〉W + 〈ū∗i , p

∗
k〉W〈 ˙̄p

∗
k, µ

∗
i 〉W

)

+

ℓ∑

i=1

(

〈u∗i , ˙̄p
∗
k〉W〈p

∗
k, µ̄

∗
i 〉W + 〈u∗i , p̄

∗
k〉W〈ṗ

∗
k, µ̄

∗
i 〉W

)

= 2ℜe

( ℓ∑

i=1

(

〈ū∗i , ṗ
∗
k〉W〈p̄

∗
k, µ

∗
i 〉W + 〈ū∗i , p

∗
k〉W〈 ˙̄p

∗
k, µ

∗
i 〉W

))

= 2ℜe

( ℓ∑

i=1

(

〈u∗i , ˙̄p
∗
k〉W〈p

∗
k, µ̄

∗
i 〉W + 〈u∗i , p̄

∗
k〉W〈ṗ

∗
k, µ̄

∗
i 〉W

))

for 1 ≤ k ≤ n,

which implies 4.4d.

Remark A.1. Let us mention that the first-order necessary optimality conditions
can also be derived by considering the following Lagrange functional L̃ : X×Y→ R

defined as:

L̃(θ) =
β

2

∫

F

〈

p(f)−
ℓ∑

i=1

ηi(f)ui, p̄(f)−
ℓ∑

j=1

η̄j(f)ūj

〉

W

df

+ 2ℜe

(∫

F

(
Bℓfη(f)− sℓf

)⊤
q(f) df +

ℓ∑

i=1

〈(R(f)− λi)ūi, µi〉W

)

+

ℓ∑

i=1

(
1− |ui|

2
W

)
φi

for θ = (z, ξ), z = (η, f, u, λ) ∈ X and ξ = (q, µ, φ) ∈ Y.
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