
Adaptive POD-DEIM basis construction and its

application to a nonlinear population balance system

Lihong Feng∗ Michael Mangold† Peter Benner ‡

April 4, 2017

Abstract

We propose an adaptive algorithm for constructing reduced-order models of nonlin-

ear systems based on proper orthogonal decomposition (POD) combined with the discrete

empirical interpolation method (DEIM). Using an efficient output error estimation, the re-

duced basis and the DEIM interpolation basis are adaptively adjusted to derive a small, yet

accurate reduced-order model. The adaptive algorithm is further explored for a population

balance system of a crystallization process. Simulation results show that much smaller and

reliable reduced-order models can be adaptively obtained using the algorithm with ignor-

able extra computational load as compared with the standard POD-DEIM method.

Introduction

Distributed systems with spatial and property coordinates, such as the model of a crystallizer,

are widely researched in chemical engineering. Simulation of the high fidelity models derived

from, e.g., finite element or finite volume discretization, is very time consuming, because of

∗Lihong Feng is with Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Ger-

many. feng@mpi-magdeburg.mpg.de
†Michael Mangold is with Technische Hochschule Bingen, Berlinstrae 109, 55411 Bingen, Germany.

m.mangold@th-bingen.de
‡Peter Benner is with Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Ger-

many. benner@mpi-magdeburg.mpg.de

1

the high system order (degrees of freedom) and complexity. For the purpose of optimization,

predictive control, and other design tasks, surrogate models with much smaller size are often

necessary to meet the computational demands, such as limited memory, etc.

Model order reduction (MOR) has become very popular in accelerating simulation of large-

scale systems. Using model order reduction, a small-scale, yet accurate model, is derived and

is used as surrogate of the large-scale system. Fast simulation can be achieved by only sim-

ulating the surrogate reduced-order model. So far, there are many MOR methods proposed,

among which proper orthogonal decomposition (POD)1–5 is one of the most robust and widely

used methods for model order reduction of nonlinear dynamical systems. Furthermore, POD

has already been applied to population balance systems in crystallization or granulation pro-

cesses6–8 and the use of data-based POD for the construction of empirical eigenfunctions for

model order reduction has been examined in a variety of distributed parameter processes, both

transport-reaction processes modeled by parabolic PDEs and particulate processes described

by population balance equations.9–11 In contrast to the POD method, methods of moments are

widely used12 for a condensed description of the system’s dependence on internal coordinates;

in this case, the reduced model does not preserve the full information on the particles property

distributions, but only on some of their moments.

When POD is applied to nonlinear systems, usually it is combined with interpolation tech-

niques, such as the empirical interpolation method (EIM),13 or the discrete empirical interpola-

tion method (DEIM),14 to get a reduced-order model (ROM) with reduced nonlinear complexity.

The ROM is derived by computing the POD basis from the singular value decomposition of the

snapshot matrix of the solution trajectories. The (D)EIM method is realized by computing an

interpolation basis from the snapshots of the nonlinear function of the original full-order model

(FOM). Both, the POD basis dimension, and the interpolation basis dimension are usually de-

termined empirically by looking at the decay of the singular values of the snapshot matrices.

Usually, the dimension of the reduced basis and of the interpolation basis are taken conserva-

tively large to make sure that the ROM meets the accuracy requirements.

In this work, instead of using empirical observation, we propose to integrate an efficient

2

error estimation15 into an adaptive scheme to formulate an automatic way of updating both bases

iteratively, and to avoid including redundant basis vectors, once the error estimation is below

a tolerance. Similar work on properly matching the reduced basis with the interpolation basis

has been proposed in,16 where the reduced basis method combined with the EIM is employed to

obtain parametric ROMs for parameter-dependent systems. The approach from16 updates both

the reduced basis and the interpolation basis simultaneously using the snapshots corresponding

to the parameters at which the FOM is worst approximated by the ROM. The adaption was

done by trivially adding a single new member to the basis at every iteration. Our proposed

method adjusts the dimension of the basis in a different but more efficient way, by which the

number of new basis vectors to be added, is adaptively adjusted. It is currently applicable to

non-parametric systems, but could be extended to parametric systems. A method of adapting the

DEIM basis is proposed in,17 where the number of the DEIM basis vectors is updated online to

better approximate the nonlinear function when it is evaluated at a state which causes big error

of the DEIM interpolation. The method considers adapting only the DEIM basis, rather than

both the reduced basis and the DEIM basis. A further difference is that the proposed adaptivity

scheme is completed in the offline phase, while the method in17 adapts the DEIM basis in the

online phase. The proposed adaptivity method is more suitable when the nonlinear part of the

system is included in a low dimensional subspace, and the offline computed interpolation can

already approximate it very well, whereas the method in17 is more suitable when the nonlinear

behavior of the system is very complex and offline interpolation becomes inaccurate without

online updating.

Furthermore, various adaptive MOR methods have been proposed. The fully adaptive

method in18 adaptively chooses the expansion points and the moments of the transfer function

for linear non-parametric systems, see also the references there. There are also online adaptive

methods, such as the work in,19, 20 where the reduced-order matrices are constructed online by

interpolation, using the offline computed reduced matrices. In this paper, the proposed method

addresses a different adaptivity problem, where adaptive adjustment of both the reduced basis

and the DEIM basis is the focus of this work.

3

As mentioned above, we use the error estimation from15 to automatically construct the basis.

It has been tested to be reliable in,8 yet without being further utilized to automatically construct

the ROM. Motivated by the robustness of the error estimation shown in,8 we successfully exploit

the error estimation in bases and ROM construction for the population balance model.

Developing efficient error estimation (bounds) has been an active topic in MOR. Robust

error bounds exist for the balanced truncation method,21–23 moment-matching,24 as well as the

reduced basis method,25–29 which, nevertheless, are only valid for linear systems, or special

(quadratic, cubic) nonlinear systems.26, 27 Error estimation for general nonlinear systems is

considered, e.g. in,15, 16, 30–32 where the error estimation from16, 30 estimates the error of the state

vector. For many applications, the output response rather than the state vector is of importance,

and proper error estimation for the output error is preferred. In,15, 32 output error estimators are

proposed, and the one from15 has been shown to be most efficient. The output error estimation

in15 is proposed for general parametric nonlinear systems. In this paper, we have simplified the

expression of the error estimation and adapted it to non-parametric nonlinear systems.

Compared with the standard POD-DEIM method, the main contributions of this paper can

be summarized as follows. An algorithm is proposed to make the standard POD-DEIM method

automatic. An error estimator is successfully applied, so that the ROM derived by POD-DEIM

is guaranteed to be reliable.

The paper can be divided into two main parts. The methodological part reviews the POD

and DEIM method, and proposes the adaptive POD-DEIM algorithm based on an a posteriori

error estimation. The second part addresses application of the adaptive POD-DEIM algorithm

to a population balance system of a crystallization process. The experimental results are shown

afterwards. Conclusions are given in the end.

POD and DEIM

The proper orthogonal decomposition (POD) method is a widely used approach for model order

reduction of linear and nonlinear dynamical systems.2–5, 7, 8

4

Given a nonlinear system as below

E
dx(t)
dt

= Ax(t) + f(x(t)),

y(t) = CTx(t),
(1)

where E ∈ R
N×N , f : RN 7→ R

N , B ∈ R
N×mI , C ∈ R

N×mO , and x(t) ∈ R
N is the state

vector, y ∈ R
mO is the output. The key component of POD is the singular value decomposition

(SVD) of a snapshot matrix (defined in Algorithm 1). In the following, the SVD is first intro-

duced, and the optimality property of the POD basis is presented, then the POD algorithm is

presented in Algorithm 1.

MOR via POD

POD basis For any matrix X ∈ R
M×N , there exist Ũ = (ũ1, . . . , ũM) ∈ R

M×M and Ṽ =

(ṽ1, . . . , ṽN) ∈ R
N×N , s.t.

X = ŨΣṼ T , or ŨTXṼ =

D 0

0 0

 := Σ ∈ R

M×N . (2)

Here, D = diag(σ1, . . . , σdX), with σ1 ≥ . . . ≥ σdX > 0. The matrices Ũ , Ṽ are orthogonal

matrices, i.e. ŨT Ũ = IM, and Ṽ T Ṽ = IN . IM ∈ R
M×M and IN ∈ R

N×N are identity

matrices of proper dimensions.

For lX ∈ {1, . . . , dX}, the vectors ũi, i = 1, . . . , lX , define the POD basis of rank lX . The

POD basis {ũi}
lX
i=1 is optimal, among all rank lX orthogonal approximations of the columns of

X ,33 i.e.

{ũi}
lX
i=1 = arg min

u1,...,ulX
∈RM

N∑

j=1

εj, s.t.〈ui,uj〉RM = δij, 1 ≤ i, j ≤ lX . (3)

Here, εj = ‖xj −
∑lX

i=1〈xj,ui〉RMui‖
2
RM , and xj is the jth column of X .

5

Algorithm 1 POD algorithm

Input: A sufficiently small SVD tolerance, e.g., ǫsvd = 10−10. Discrete time points t1, . . . , tm
in the interesting time interval.

Output: The projection matrix V .

1: Numerically solve the original nonlinear system (1) to get the solutions x(ti) at m time

instances ti, i = 1, . . . ,m, which are called snapshots and form the snapshot matrix:

X = (x(t1), . . . ,x(tm)).

2: Get the projection matrix V of rank r from the SVD of X:

X = ŨΣṼ T , V = (ũ1, . . . , ũr),

with r satisfying
dX∑

i=r+1

σi

dX∑

i=1

σi

< ǫsvd. (5)

Here Σ is defined as in (2).

ROM construction The POD method uses the POD basis of the snapshot matrix to construct

the projection matrix V ∈ R
N×r for model order reduction. The reduced order model (ROM)

is obtained via Galerkin projection onto the subspace spanned by the columns of V , and can be

written as

V TEV
dz(t)
dt

= V TAV z(t) + V T f(V z(t)),

ŷ = CTV z(t),
(4)

where the state vector x of the original system (1) is approximated by x(t) ≈ V z(t). Algo-

rithm 1 presents the implementation details. In Algorithm 1, r is the rank of V , it is also the

order of the ROM, as well as the dimension of the reduced basis, which is given by the columns

of V . A standard way of determining r is by observing the ratio defined in (5). When simulating

the ROM (4), one needs to compute a vector f(V z(t)) of full dimensionN . It is the main com-

putational load when simulating the ROM. In the next subsection, a method14 for interpolating

the nonlinear function f(x(t)) is reviewed, which was proposed to reduce the computational

complexity of f(V z(t)).

6

DEIM: reducing the complexity of the nonlinear part

The DEIM method proposed in14 tries to interpolate the nonlinear function using the POD basis

of the snapshot matrix F of the nonlinear function. The matrix F = (f(x(t1)), . . . , f(x(tm)))

can be obtained from the snapshots of the solution vector, x(t1), . . . ,x(tm). Using the POD

basis Uf ∈ R
n×l of F , one may approximate the nonlinear function f(x(t)) by

f(x(t)) ≈ Ufc(t).

By assuming that the approximation Ufc(t) interpolates f(x(t)) at l entries, i.e.,

P T f(x(t)) = P TUfc(t),

where P = [e℘1
, . . . , e℘l

] is an index matrix consisting of unit vectors e℘i
, i = 1, . . . , l. The

indices ℘i select the locations of interpolation.

Suppose that P TUf ∈ R
l×l is nonsingular, then

c(t) = (P TUf)
−1P T f(x(t)),

so that f(x(t)) is approximated as

f(x(t)) ≈ Uf (P
TUf)

−1P T f(x(t)). (6)

Assume that f(x(t)) is contained in a low dimensional subspace, then we usually have l ≪ N ,

and the interpolant Uf (P
TUf)

−1P T f(x(t)) can be computed much cheaper than f(x(t)). More

specifically, Uf (P
TUf)

−1 can be precomputed independent of the time t, and furthermore, the

inverse of the small matrix P TUf is easy to compute. As for P T f(x(t)), instead of computing

all the entries of f(x(t)), only those entries corresponding to the indices ℘i, i = 1, . . . , l, need

to be computed. The implementation details are presented in Algorithm 2.

Remark 1 When applying the interpolation (6), the matrix P needs not be explicitly applied,

7

Algorithm 2 DEIM algorithm14

Input: A sufficiently small SVD tolerance, e.g., ǫsvd = 10−10. The snapshot matrix F =
(f(x(t1)), . . . , f(x(tm))).

Output: The DEIM basis Uf and the indices ℘1, . . . , ℘l.

1: Take the first l POD basis vectors of F as the DEIM basis: [uF
1 , . . . ,u

F
l] ∈ R

N×l, such that

l satisfies
d∑

i=l+1

σi

d∑

i=1

σi

< ǫsvd,

where σi, i = 1, . . . , d are the nonzero singular values of F .

2: ℘1 = arg max
j∈{1,...,N}

|uF
1j|, where uF

1 = (uF
11, . . . , u

F
1N)T .

3: Uf ← uF
1 , P ← e℘1

.

4: for i = 2 to l do

5: Solve (P TUf)α = P TuF
i for α = (α1, . . . , αi−1)

T .

6: ξi = uF
i − Ufα,

7: ℘i = arg max
j∈{1,...,N}

|ξij|. Here ξi = (ξi1, . . . , ξiN)T .

8: Uf ← [Uf ,u
F
i], P ← [P, e℘i

].
9: end for

instead, only the indices ℘i, i = 1, . . . , l, are applied to the matrix Uf or the nonlinear vec-

tor f(x(t)). It implicates that P TUf simply consists of the rows of Uf , corresponding to those

indices ℘i, and P T f(x(t)) is a shortened vector composed of the few entries of f(x(t)) corre-

sponding to the indices ℘i.

Here and below, to distinguish the basis for interpolation from the basis for the solution

vector x(t), we call Uf (the column vectors of Uf) the DEIM basis, and V (the column vectors

of V) the reduced basis. When POD is combined with DEIM, the ROM of the original nonlinear

system (1) is in the form of

V TEV
dz(t)
dt

= V TAV z(t) + V TUf (P
TUf)

−1P T f(V z(t)),

ŷ(t) = CTV z(t).
(7)

When simulating the ROM, computing the term V TUf (P
TUf)

−1P T f(V z(t)) is much cheaper

than computing the term V T f(V z(t)) in (4), since V TUf (P
TUf)

−1 can be computed once for

all the time instances, and evaluating a short vector P T f(V z(t)) ∈ R
l is much faster than

evaluating the long vector f(V z(t)) ∈ R
N . Therefore, the ROM (7) obtained by POD-DEIM,

8

is usually considered as the ROM of the original system.

Adaptive reduced basis and DEIM basis construction

From Algorithm 1 and Algorithm 2, we see that the dimensions of the reduced basis V and the

DEIM basis Uf are determined by the tolerance ǫsvd which is set to be very small in general, in

order to guarantee the accuracy of the final ROM. On the one hand, a conservatively small ǫsvd

may produce a big ROM together with a big number of DEIM basis vectors, making the ROM

simulation not as efficient as expected. On the other hand, although a loose (bigger) tolerance

constructs a more compact ROM, it loses reliability (accuracy not guaranteed) if used without

error estimation.

An efficient output error estimation for general projection based model order reduction

methods was proposed in,15 and has been applied to various linear and nonlinear systems.8, 15

We propose to use the error estimation to check the error of the ROM produced by POD-DEIM.

Based on the error estimation, we develop an algorithm for adaptively modifying the number r

and l of the reduced basis and the DEIM basis, respectively. The idea is that starting from a set

of r POD and l DEIM modes with small values r, l, we keep updating the values of both, using

an adaptivity criterion. The ROM is updated accordingly, and its error is checked by the error

estimation. The adaptive process continues until the ROM meets the error tolerance ǫ, indicated

by the error estimation. Since the adaptivity criterion depends on the error estimation, we first

introduce the error estimation, and show its application to the ROM (7). The adaptive algorithm

is presented afterwards.

Output error estimation for POD-DEIM

The output error estimation in15 was developed for general nonlinear parametric systems, with

the system matrices E, A, as well as the nonlinear vector f(x(t)) being parametrized, and it is

applicable to general projection based model order reduction methods. Here, we characterize

the error estimation in Theorem 1 for the specified nonlinear system (1) with no parameters.

9

As presented in,15 the approximate solution to the dual system is obtained by reducing the

dual system. Here, we generalize the approximate solution to any possible solution which

approximately solves the dual system, and is not necessarily obtained from the reduced dual

system.

In the following, we assume that the original system (1) has only a single output, i.e. C ∈

R
N is a vector, and the output y is simply a scalar. There exists a direct extension to multiple-

output systems.15

Assume that the original system and the ROM are numerically solved by the same time

discretization scheme with fixed time step for simplicity: ∆t̃ = t̃k+1 − t̃k, ∀k = 0, . . . , K,

though the error estimation was described for varying time steps in.15 The original system (1)

is then temporally discretized as

Mxk+1 = Dxk + f(xk),

yk+1 = CTxk+1,
(8)

and the ROM (7) is discretized as

V TMV zk+1 = V TDV zk + V TUf (P
TUf)

−1P T f(V zk),

yk+1 = CTV zk+1.
(9)

Assume further that x̂du is an approximate solution to the dual system,

MTxdu = −C. (10)

The residual caused by x̂k+1 := V zk+1 is defined as

rk+1 := Dx̂k + f(x̂k)−M x̂k+1,

and the residual caused by x̂du is defined as

rdu = −C −MT x̂du.

10

The two residuals are involved in constructing the final error estimation, which measures the

error of the ROM at each time step t̃k, k = 1, . . . , K. Theorem 1 gives the error bound of the

ROM obtained by POD-DEIM.

Theorem 1 Given the nonlinear system (8) and the ROM (9) constructed by POD-DEIM, as-

sume that M is nonsingular, then the output error at time step t̃k+1 is bounded by

|yk+1 − ŷk+1| ≤ Φk+1‖rk+1‖2, k = 0, . . . , K − 1,

where Φk+1 := Sk+1(‖M
−1‖2‖r

du‖2 + ‖x̂
du‖2), and Sk+1 is a scaling variable defined as

Sk+1 =
‖r̃k+1‖2
‖rk+1‖2

,

where r̃k+1 = Dxk + f(xk)−M x̂k+1 = M(xk+1 − x̂k+1).

Theorem 1 is a direct result from Theorem 4.1 in.15

Efficiently computing the error bound

To enable efficient computation of the error bound, we need to address the following issues.

• Notice that Sk+1 involves computing r̃k+1, for which the snapshots of f(xk), and the true

solution vector xk at time instances t̃k must be computed. To avoid computing the true

solution vector, we can simply use the snapshots from the reduced basis construction in

Algorithm 1. Usually, the time instances t̃k are different from ti, i = 1, . . . ,m, for the

snapshot construction (see Algorithm 1), and the number K is larger than m. However,

we can use the average value of Si over ti to approximate Sk at t̃k, i.e.

Sk ≈ S :=

m∑

i=1

r̃(ti)

m∑

i=1

r(ti)
.

Since r̃(ti) can be obtained for free from the snapshots x(ti) during the reduced basis

construction, no extra computation involving solving the original large system is incurred.

11

As a result, a simplified output error estimation is given as

|yk+1 − ŷk+1| . Φ̄k+1‖rk+1‖2, k = 0, . . . , K − 1,

where Φ̄k+1 := S(‖M−1‖2‖r
du‖2 + ‖x̂

du‖2).

• To compute the residual rk+1 in the error estimation, we need to evaluate f(x̂k+1), which

involves evaluation in the original large dimensional space R
N . To speed up the evalua-

tion, we can replace f(x) with the DEIM interpolation I(f(x)) := Uf (P
TUf)

−1P T f(x),

and the error estimation needs to be modified accordingly. To this end, we define a resid-

ual involving the DEIM interpolation,

rDEIM
k+1 := Dx̂k + I(f(x̂))−M x̂k+1.

Then we have

rk+1 = Dx̂k + f(x̂k)−M x̂k+1

= Dx̂k + I(f(x̂k))−M x̂k+1 + f(x̂k)− I(f(x̂k))

= rDEIM
k+1 + f(x̂k)− I(f(x̂k))

︸ ︷︷ ︸

:=eDEIM
k

,

so that

‖rk+1‖2 ≤ ‖r
DEIM
k+1 ‖2 + ‖e

DEIM
k ‖2. (11)

The final error estimation by considering the above DEIM interpolation for f(x) in rk+1

is given as

|yk+1 − ŷk+1| . ∆k+1 := Φ̄k+1‖r
DEIM
k+1 ‖2 + Φ̄k+1‖e

DEIM
k ‖2, k = 0, . . . , K − 1. (12)

Remark 2 According to the analysis in,31 eDEIM
k can be computed by

eDEIM
k = Π2(I − Π)f(x̂k),

12

where

Π := Uf (P
TUf)

−1P T ,

with Uf = (uF
1 , . . . ,u

F
l) ∈ R

N×l and P ∈ R
N×l being the current DEIM basis and index matrix

computed from Algorithm 2. For this estimation to be effectively computed, it was assumed that

l∗(≥ l) DEIM basis vectors of f(x) can exactly represent f(x), i.e.

f(xk) = U∗
f
((P ∗)TUf)

−1(P ∗)T f(xk),

where U∗
f
= (uF

1 , . . . ,u
F
l∗), and P ∗ is the corresponding index matrix. Then Π2 is defined based

on U∗
f

and P ∗:

Π2 := (I − Π)U ′((P ′)T (I − Π)U ′)−1(P ′)T ,

where U ′ = U(:, l+1 : l∗), and P ′ = P ∗(:, l+1 : l∗) such that U∗
f
= [Uf , U

′], and P ∗ = [P, P ′].

Here and below, Q(:, l1 : l2) is the MATLAB notation for a part of any matrix Q, meaning the

matrix consisting of the l1th column till the l2th column of Q.

It can be seen that the DEIM error is updated upon the update of the current DEIM basis Uf .

In the next subsection, the DEIM error estimation ‖eDEIM
k ‖2 will be used to adaptively update

the DEIM basis Uf .

Adaptive POD-DEIM algorithm

As discussed above, the number r of the reduced basis vectors computed in Algorithm 1 and the

number l of the DEIM basis vectors computed in Algorithm 2 are usually selected according to

an empirically given SVD tolerance ǫsvd, which has no direct relation to the error of the ROM.

The fact is that the reduced basis V and the DEIM basis Uf are implicitly related and differ-

ent combinations of the two bases result in different ROMs with different size r and different

accuracy.

We will show that the error estimation ∆k+1 (12) can aid us to develop a heuristic adaptive

POD-DEIM algorithm which iteratively updates the dimension of the reduced basis r, and the

dimension of the DEIM basis l, and finally constructs more compact ROMs meeting different

13

accuracy requirements automatically.

From the structure of the error estimation in (12), we see that it is composed of two parts,

i.e.

∆k+1 = ∆POD
k+1 +∆DEIM

k ,

where ∆POD
k+1 = Φ̄k+1‖r

DEIM
k+1 ‖2 and ∆DEIM

k = Φ̄k+1‖e
DEIM
k ‖2. The average output error over all

the time instances can be evaluated via the average error estimation, i.e.

1

K

K−1∑

k=0

|yk+1 − ŷk+1|

︸ ︷︷ ︸

ε̄y

.
1

K

K−1∑

k=0

∆POD
k+1

︸ ︷︷ ︸

∆̄POD

+
1

K

K−1∑

k=0

∆DEIM
k

︸ ︷︷ ︸

∆̄DEIM

. (13)

Here, ε̄y represents the average output error. The variable ∆̄POD estimates the average error of

the reduced basis approximation and determines the dimension r, whereas the variable ∆̄DEIM

estimates the average error of the DEIM interpolation, and determines the dimension l. In

general, ∆̄POD or ∆̄DEIM decays while the dimension of the respective basis increases.

Given a user defined error tolerance of the ROM, ǫ, we define the two error ratios,

pr :=
∆̄POD

ǫ
,

and

pl :=
∆̄DEIM

ǫ
.

The magnitude of each basis increment then depends on the logarithm of each ratio. The bigger

the ratio, the more basis vectors should be added accordingly, in order to increase the accuracy

of the corresponding basis approximation. Algorithm 3 describes the process of adaptively

adjusting the basis dimensions r and l, where the output error of the ROM is estimated by the

error estimator

∆̄ := ∆̄POD + ∆̄DEIM. (14)

Remark 3 The input of Algorithm 3 actually needs to be obtained from implementing Algo-

14

Algorithm 3 Adaptive POD-DEIM algorithm

Input: offline computation: Given a sufficiently small SVD tolerance, e.g., ǫsvd = 10−10,

implement Algorithm 1 to get the reduced basis V ∗ ∈ R
n×r∗ , and implement Algorithm 2

to get the DEIM basis (uF
1 , . . . ,u

F
l∗) ∈ R

n×l∗ and the index matrix P ∗. Assume that the

corresponding DEIM interpolation is exact, so that the DEIM error introduced in Remark 2

can be used to compute the error estimation ∆̄.

Set initial values of r and l: r = r0 < r∗ and l = l0 < l∗, and a user defined tolerance ǫ for

the error of the final ROM.

Output: The final ROM constructed based on the final updated r, l.

1: Form the reduced basis by taking r columns from V ∗: V = V ∗(:, 1 : r), and form the

DEIM basis by taking the first l basis vectors from (uF
1 , . . . ,u

F
l∗), i.e. Uf = (uF

1 , . . . ,u
F
l).

Form the corresponding index matrix P : P = P ∗(:, 1 : l). Formulate the ROM in (7) using

V , Uf and P .

2: Solve the ROM following (9) and compute the error estimation ∆̄ = ∆̄POD + ∆̄DEIM.

3: while ∆̄ ≥ ǫ do

4: Calculate pr =
∆̄POD

ǫ
,

5: calculate pl =
∆̄DEIM

ǫ
.

6: δr = 1 + ⌊log10(pr)⌋,
7: δl = 1 + ⌊log10(pl)⌋.
8: r = r + δr, if δr > 0,
9: l = l + δl, if δl > 0.

10: Update V = V ∗(:, 1 : r), Uf = (uF
1 , . . . ,u

F
l), and P = P ∗(:, 1 : l). Formulate the ROM

in (7).

11: Solve the ROM following (9) and compute the error estimation ∆̄ = ∆̄POD + ∆̄DEIM.

12: end while

rithm 1 and Algorithm 2 once, respectively. The algorithm can be divided into offline and

online stages w.r.t. the adaptivity process, where the adaptive process (Step 3-14) is the online

stage, and the process of input data collection is the offline stage which is exactly the process

of the standard POD-DEIM method. Therefore, the online adaptive stage does not involve any

additional snapshot computations, and only introduces small amount of extra computation, as

compared to the standard POD-DEIM method. Algorithm 3 could be extended to deal with

parametric systems. In these cases, the POD and DEIM basis should be constructed based on

the snapshots from the sampled parameters in a training set.15, 16 The error estimator used to

validate the ROM, should be an estimator for parametric systems, e.g. the one proposed in.15

Remark 4 In Algorithm 3, we use ∆̄ to estimate the average error of the ROM over all the

time instances. If the average error is below the error tolerance, the algorithm stops updating

l and r, as well as the ROM. As shown in Steps 6-7, after computing the logarithm of the error

15

ratios pr and pl, we take the integer part of them to get natural numbers which are then used

as the values of basis increase δr, δl for each basis increment. δr and δl are automatically set

to 1, in case we get zeros after using the floor function, in order to avoid non-increment. Note

that the algorithm can only get a final ROM with basis dimensions equal or larger than the

initial basis dimensions r0 and l0. When the initial dimensions r0, l0 are too big for a given

tolerance, the proposed algorithm cannot adjust them to derive a smaller ROM. Since the goal

of the algorithm is to derive a ROM with small enough dimension, the initial dimensions r0, l0

should be set to rather small values.

Remark 5 Algorithm 3 is an abstract version of the adaptive scheme including the key idea

of adaptivity. The robustness of the algorithm may depend on the problem under considera-

tion. Furthermore, to make the algorithm practically efficient, specific issues might be dealt

with for the particular model considered. For example, we have refined Algorithm 3 to obtain

Algorithm 4 in the next section, which has taken the stability issue into consideration.

Adaptive POD-DEIM applied to a population balance model

As an application example for the proposed adaptive algorithm, we use a model of a continuous

crystallization process for the separation of enantiomers. We first introduce the model and then

present Algorithm 4 which is a more specialized version of Algorithm 3 for the population

balance model, by adding more details concerning specific issues, such as stability of the ROM.

Population balance model of a crystallization process for enantiomer sepa-

ration

Enantiomers are a class of molecules that appear in two variants, which have the same sum for-

mula and consist of the same molecular groups, but with an opposite orientation in space, like

mirror images of each other or like right and left hand. Due to identical physical and chemical

properties of the two enantiomers, standard separation techniques like distillation are not appli-

cable, but more advanced approaches like adsorption, membrane separation, or crystallization

16

are needed.34, 35 A continuous crystallization process for enantiomer separation was recently

investigated experimentally in.36 In this contribution, a simplified scheme of the process in36 is

considered, a model for which was presented in.8

The key element of the crystallization process shown in Figure 1 is a fluidized bed crystal-

lizer with a conical shape and a varying cross-sectional area A(x). The liquid feed contains a

racemic mixture of both enantiomers. It enters the crystallizer at the bottom. The crystallizer is

operated in the metastable region, i.e. seeding crystals may grow, but nucleation of new crystals

is suppressed. When seeding the crystallizer initially with crystals of the desired enantiomer,

only these crystals grow selectively and a separation of the enantiomers is achieved. Small

crystals tend to move upwards with the fluid flow. Fines escape through the top of the crystal-

lizer. This removes nuclei of the undesired enantiomer from the crystallizer and increases the

stability of the process. Large crystals sink to the bottom of the crystallizer. They are sent to

a fragmentation device like a mill or an ultrasonic attenuator and are recycled as small seeding

crystals into the process.

The crystal growth and transportation process are modeled using a population balance ap-

proach, i.e. the properties of a particle population consisting of an infinite number of individuals

are simulated. For details of the model, the reader is referred to.8 Only the main model equa-

tions are summarized in this contribution. The particle phase is described by a number size

density n(x, L, t) denoting the number of particles with size L per volume at time t at a point

x in space. A mass balance of the particle phase leads to the following population balance

17

equation:

A(x)
∂n

∂t

∣
∣
∣
∣
x,L,t

= −
∂

∂x
(A(x) vP (x, L, t) n(x, L, t))

+D
∂

∂x

(

A(x)
∂n

∂x

∣
∣
∣
∣
x,L,t

)

−A(x) G
∂n

∂L

∣
∣
∣
∣
x,L,t

+V̇fr

nfr(L)

∫ ∞

0

n(x, l, t) l3 dl
∫ ∞

0

nfr(l) l
3 dl

− n(x, L, t)

δ̂(x− xfr)

(15)

(0 < x < H, 0 < L, t > 0)

The first term on the right-hand side of (15) describes the advective transport of particles with

velocity vP (x, L, t), which depends nonlinearly on the number size density n(x, L, t)(see8 for

details)

The second term on the right-hand side of the population balance equation (15) stands for

particle transport by dispersion with dispersion coefficient D. The third term is due to crystal

growth. The fourth term describes the effect of the fragmenter on the crystal population. V̇fr is

the volume flow to and from the fragmenter.

The system output y is considered as the total volume fraction of particles as a physically

meaningful quantity, i.e.

y(t) =

∫ H

0

∫ ∞

0

π

6
L3 n(x, L, t) dL A(x) dx

∫ H

0

A(x) dx

=

∫ H

0

q3(x, L, t)A(x) dx

∫ H

0

A(x) dx

. (16)

18

Model order reduction for the population balance model

Spatial discretization of the population balance model (15) together with the boundary condi-

tions, and the output equation (16) lead to a large-scale system

dn(t)
dt

= An(t) + f(n(t)),

y(t) = CTn(t),
(17)

where n(t) ∈ R
N is the number size density n(x, L, t) discretized in the one-dimensional space

x, and in the particle size L (see8 for details). In the following, the system (17) is also called the

crystallizer model for simplicity, and is referred to as the full order model (FOM) as compared

to the ROM. A ∈ R
N×N is the system matrix corresponding to the discretized linear part

in (15), and f(n(t)) ∈ R
N is the nonlinear term. For discretization of the space coordinate x,

an equidistant grid with 230 grid points is used; the discretization of the property coordinate L

is done on a logarithmically distributed grid with 80 grid points. This results in a total number

of N = 230× 80 = 18400 degrees of freedom.

To obtain a steady behavior of the system (17), numerical simulation needs to be done in

the time interval [0, 10000]s (seconds), which is usually time consuming. In,8 the standard POD

method was used to get the ROM of the original large system (17),

dn(t)
dt

= V TAV n(t) + V T f(V z(t)),

ŷ(t) = CTV z(t).
(18)

In addition, an empirical interpolation method (EIM)13 was employed to reduce the complexity

of the nonlinear term V T f(V z(t)), and as a result the final ROM is

dn(t)
dt

= V TAV n(t) + V TΘβ(t),

ŷ(t) = CTV z(t),
(19)

where β(t) is the vector of interpolation coefficients, Θ = (ξ1, . . . , ξl) represents the interpo-

lation basis, and is slightly different from the DEIM basis. In particular, the EIM basis is iter-

19

atively constructed simultaneously with the interpolation coefficients from the nonlinear snap-

shots; whereas the DEIM basis vectors are just the POD basis vectors of the nonlinear snapshot

matrix F . The corresponding interpolation coefficients are then constructed iteratively from the

DEIM basis. The error estimation proposed in15 was applied in8 to verify the reliability of the

reduced order model.

In this work, we apply the error estimation to the proposed adaptive POD-DEIM algorithm,

and aim at automatically constructing a reliable ROM of (17) by adaptively adjusting the re-

duced basis dimension and the DEIM basis dimension.

Implementing adaptive POD-DEIM

When applying Algorithm 3 to the crystallizer model (17), we need to add more details to the

algorithm by taking, e.g., stability of the ROM into consideration. For the crystallizer model,

we have observed that for certain combinations of (r, l), the ROM becomes unstable. In such

situations, (r, l) needs to be adjusted accordingly to avoid instability. Furthermore, we find that

the dimension of the DEIM basis should be sufficiently bigger than the reduced basis dimension

to guarantee stability 1 and to avoid producing ROMs which are stiff, or hard to solve. Based

on the above observations, we further refine Algorithm 3, and derive Algorithm 4, which is

especially suitable for the crystallizer model. In Algorithm 4, the values of δ̃r (Step 11) and δ̃l

(Step 20) are heuristically determined. For this model, we find that δ̃r = 4 is big enough to

guarantee stability of the ROM, and δ̃l = 2 is sufficient to avoid constructing stiff ROMs.

Applying Algorithm 4 requires first implementing Algorithm 1 and Algorithm 2. For im-

plementation of Algorithm 1, we need to take a proper number of snapshots at proper time

instances ti, i = 1, . . . ,m. Figure 2 plots the output y(t) of the crystallizer model (17) in the

time interval [0, 10000]s. The times T1, T2, . . . denote the time points where the output y(t)

has a local minimum. The output approaches a stable periodic orbit, i.e. the waveforms in the

periods [Ti, Ti+1], i = 1, . . . , 4 are quite similar. This motivates us to:

1For example, when elements of the solution vector become infinite (==Inf in MATLAB), we find that the

ROM is unstable. For this example, we use the function ode45 in MATLAB to solve the ROMs at each iteration.

The temporal time steps are automatically determined by the MATLAB function.

20

Algorithm 4 Adaptive POD-DEIM algorithm for the Crystallizer model

Input: Same as for Algorithm 3.

Output: The final ROM constructed based on the final updated r, l.

1: Form the reduced basis by taking r columns from V ∗: V = V ∗(:, 1 : r), and form the

DEIM basis by taking the first l vectors from (uF
1 , . . . ,u

F
l∗), i.e. Uf = (uF

1 , . . . ,u
F
l). Form

the index matrix P : P = P ∗(:, 1 : l). Formulate the ROM in (7) using V , Uf and P .

2: Solve the ROM following (9) and compute the error estimation ∆̄ := ∆̄POD + ∆̄DEIM.

3: while ∆̄ ≥ ǫ do

4: Calculate pr =
∆̄POD

ǫ
,

5: calculate pl =
∆̄DEIM

ǫ
.

6: δr = 1 + ⌊log10(pr)⌋,
7: δl = 1 + ⌊log10(pl)⌋.
8: r = r + δr, if δr > 0,
9: l = l + δl, if δl > 0.

10: if ROM is unstable then

11: if l − r > δ̃r then

12: r = r + 1,

13: else

14: r = r + 1,

15: l = r + δ̃r + 1.

16: end if

17: end if

18: if l ≤ r then

19: l = r + δl, if δl > 1,
20: l = r + δ̃l, if δl ≤ 1.
21: end if

22: Update V = V ∗(:, 1 : r), Uf = (uF
1 , . . . ,u

F
l), and P = P ∗(:, 1 : l). Formulate the ROM

in (7).

23: Solve the ROM following (9) and compute the error estimation ∆̄ := ∆̄POD + ∆̄DEIM.

24: end while

• use only one of them plus the transient stage in the time interval [0, T1] to generate the

snapshots for transient-periodic simulation,

• use only one of the periods, namely [T1, T2], to generate snapshots for only stable periodic

simulation.

In this way, the offline computational time is significantly reduced. We will show in the simu-

lation results that the ROM constructed by using only the snapshots in the time interval [0, T2]

reproduces the waveform of the original output in the whole time interval [0, T5], and the ROM

constructed by using only the snapshot in [T1, T2] is able to catch the periodic behavior in the

time interval [T1, T5]. The snapshots are taken every ∆t = 10 seconds from [0, T2] or [T1, T2],

21

e.g., the snapshot matrix X = (n(t1), . . . ,n(tm)), t1 = 0, ∆t = ti+1 − ti, tm = T2.

Simulation results

In this section we present the results of the adaptive scheme presented in Algorithm 4. We show

the results of the transient-periodic simulation in the first subsection. If one is interested in

only the periodic behavior of the system, it is sufficient that the ROM is able to reproduce the

output in the periodic stage, regardless of the transient behavior. The results of the ROM for the

stable periodic orbit are shown in the second subsection. All the simulation results are done in

MATLAB R© version R2013b, on a Laptop with Intel(R) core(TM) i7-5500U CPU @2.40GHz,

8.00GB RAM.

Simulation of the transient behavior

Figure 3(a) displays singular values of the snapshot matrix X taken from the time interval

[0, T2]. Given a prescribed tolerance for the SVD, e.g., ǫsvd = 10−10, it can be easily checked

that r∗ = 61 makes
dX∑

i=r∗+1

σi

dX∑

i=1

σi

< ǫsvd = 10−10.

Therefore, we take r∗ = 61 reduced basis vectors for the input data of Algorithm 4. The singular

values of the snapshot matrix F = (f(n(t1)), . . . , f(n(tm))) are in Figure 3(b). Similarly,

l∗ = 66 results in
d∑

i=l∗+1

σF
i

d∑

i=1

σF
i

< ǫsvd = 10−10,

where σF
i are the singular values of F . Therefore, we take l∗ = 66 DEIM basis vectors, and

the corresponding index matrix P ∗ computed by Algorithm 2, to constitute the input data of

Algorithm 4.

Consequently, without adaptively choosing the bases dimensions, the ROM Σr∗l∗ derived

22

by the standard POD-DEIM method would be of order r∗ = 61 with DEIM basis dimension

l∗ = 66. The output error of the ROM is ∆̄ = 3.97 · 10−4 estimated by the error estimator

∆̄ defined in (14). In Table 1, we list different ROMs constructed by Algorithm 4, with the

initial value r0 = 3, l0 = 6, according to different tolerances. In Table 2, we change the initial

bases dimensions to r0 = 7, l0 = 7, and derive another group of ROMs. In Tables 1-3, the

“Runtime” is the computational time of adaptively constructing the ROM, including the ROM

simulation time. In the last column, the ROM simulation time appears as the percentage out of

the corresponding runtime. Tables 1-2 show that the adaptive process is robust, and independent

of the initial choices r0, l0. The output error estimation ∆̄ always tightly bounds the true error

ε̄y as defined in (13), showing its efficiency and reliability.

We see that the reduced basis and the DEIM basis of the ROMs constructed by Algorithm 3

are all taken from the bases of the ROM with bases dimensions r∗ and l∗, defined here as Σr∗l∗ .

Therefore the accuracy of the ROMs may not be higher than the ROM Σr∗l∗ . Since the output

error of Σr∗l∗ is O(10−4), the smallest error tolerance we take in the two tables is 1 · 10−3.

Furthermore, the adaptive algorithm computes ROMs which are more compact than Σr∗l∗ , but

with similar accuracy.

Simulation of the periodic orbit

If only the periodic behavior of the output is of interest, then the starting transient stage in

the time interval [0, T1] (Figure 2) needs not be recovered by the ROM, and the corresponding

snapshot matrices XT12
and FT12

are composed of only the snapshots in [T1, T2]. Excluding the

snapshots in [0, T1], we have observed from Figure 4 that the singular value decay of each matrix

becomes much faster. Using the same tolerance for the SVD decomposition, ǫsvd = 10−10, we

obtain r∗ = 38 reduced basis vectors from XT12
, and l∗ = 41 DEIM basis vectors from FT12

.

The ROM constructed by the standard POD-DEIM method with r∗, l∗ has output error of ∆̄ =

5.34 ·10−8, estimated by the error estimator ∆̄. This indicates that it is possible for Algorithm 4

to adaptively construct a ROM meeting an error tolerance as small as ǫ = 1 · 10−7. The ROMs

constructed by Algorithm 4 according to different accuracy requirements ǫ are listed in Table 3.

23

This again demonstrates the efficient performance of the adaptive algorithm under the guidance

of a tight error estimator. In Figure 5, we plot the dimension increments of the reduced basis

and the DEIM basis at each iteration of the adaptive algorithm for different tolerances ǫ. We

see that the increments of both bases are adaptive, and especially, the increment is bigger in the

beginning when the error is larger. It is indicated in Figure 5 that for ǫ = 10−6, 8 iterations are

run to get the final ROM, whereas for ǫ = 10−7, there are only 7 iterations. This explains the

corresponding runtime in Table 3, where ǫ = 10−6 costs more time than ǫ = 10−7.

Computational time comparison

Table 4 lists the ROMs constructed by the standard POD-DEIM method for the transient case

and the periodic case, respectively. The “Sim. time” in the table is the time spent on solving the

ROM. Comparing the simulation time in Table 4 with the runtime in Tables 1-3, we see that the

adaptive algorithm constructs the ROMs without introducing much extra computational time.

The ROM simulation time listed in Tables 1-3 is much less than the ROM simulation time in

Table 4. In many cases, the total runtime of the adaptive algorithm is even less than the ROM

simulation time of the standard method in Table 4. In the last column of Table 4, we show

the ratio between the runtime (Simr,l) of the adaptive algorithm (ǫ = 1 · 10−3) and the runtime

(Simr∗,l∗) of the standard POD-DEIM method. The ratio 0.87 corresponds to the adaptive result

(r = 16, l = 19) in Table 2 and the ratio 0.55 corresponds to the adaptive result (r = 7, l = 10)

in Table 3. Here, ǫ = 1 · 10−3 is the acceptable accuracy of the ROM for this model.

ROM validation over the whole time interval

The ROMs constructed by the adaptive algorithm are based on the snapshots in the time intervals

[0, T2] and [T1, T2], respectively. In Figures 6-7, we plot the outputs (in percentage) of the

ROMs over the extended intervals [0, T5] and [T1, T5], and compare them with the corresponding

outputs of the FOM (17). The actual output error of the ROM is also presented. The ROM in

Figure 6 is of dimension r = 16 presented in Table 1. From Figure 6(b), we see the error of

the ROM over the whole time interval is still below the error tolerance ǫ = 1 · 10−3 (Table 1),

24

showing that the ROM has not introduced extra error due to the extended simulation interval.

The ROM in Figure 7 is of dimension r = 14 as listed in Table 3. Although the error of the

ROM in the time interval [T1, T2] is below the error tolerance ǫ = 1 ·10−5, the overall error is up

to 1.6 · 10−3, see Figure 7(b). This is nevertheless not surprising, since the ROM is constructed

by using only the snapshots in the second subinterval [T1, T2] (see Figure 1). The overall error

is still acceptable for practical applications. In Table 5, we list the simulation time of solving

the FOM and the corresponding two ROMs taken from Table 1 and Table 3, respectively, over

the extended time intervals [0, T5] and [T1, T5], where T5 = 104seconds. When solving the

FOM, around 1100 time integration steps spent in every 10 seconds to get the final accurate

solution. It is obvious that the ROMs not only largely reduce the dimension of the FOMs, but

also significantly speed up the simulation.

Conclusions

We have proposed an algorithm to adaptively adjust the reduced basis dimension and the DEIM

basis dimension, so that a more compact reduced order model can be obtained as compared to

the standard POD-DEIM method. The idea of adaptivity is heuristic but efficient and simple

to implement. The efficiency and reliability of the adaptive algorithm is secured by an error

estimation specified for the POD-DEIM reduced-order model. Application of the algorithm to

a population balance system arising from modelling of a crystallization process is explored. It

is observed that the DEIM basis needs to be larger than the reduced basis to guarantee stability

of the ROM. The adaptive scheme shows robustness in reducing both the complexity and the

simulation time of the model. Extension of the proposed algorithm to parametric systems will

be considered in the future.

Acknowledgments

The second author acknowledges the support by DFG in the framework of SPP 1679.

25

Literature Cited

1. Sirovich L. Turbulence and the dynamics of coherent structures. I - coherent structures.

II - symmetries and transformations. III - dynamics and scaling. Quarterly of Applied

Mathematics. 1987;45(3):561–571, 573–582, 583–590.

2. Kunisch K, Galerkin SV. Galerkin proper orthogonal decomposition methods for a general

equation in fluid dynamics. SIAM Journal on Numerical Analysis. 2002;40:492–515.

3. Astrid P, Weiland S, Willcox K, Backx T. Missing point estimation in models described

by proper orthogonal decomposition. IEEE Transactions on Automatic Control. 2008;

53(10):2237–2251.

4. Willcox K. Unsteady flow sensing and estimation via the gappy proper orthogonal decom-

position. Computers & Fluids. 2006;35(2):208–226.

5. Benner P, Gugercin S, Willcox K. A survey of model reduction methods for parametric

systems. SIAM Review. 2015;57(4):483–531.

6. Krasnyk M, Mangold M, Ganesan S, Tobiska L. Numerical reduction of a crystallizer

model with internal and external coordinates by proper orthogonal decomposition. Chemi-

cal Engineering Science. 2012;70:77–86.

7. Mangold M. Model reduction of a batch drum granulator by proper orthogonal decomposi-

tion. In: Proceedings of 8th IFAC Symposium on Advanced Control of Chemical Processes.

2012; pp. 856–861.

8. Mangold M, Feng L, Khlopov D, Palis S, Benner P, Binev D, Morgenstern AS. Nonlinear

model reduction of a continuous fluidized bed crystallizer. Journal of Computational and

Applied Mathematics. 2015;289:253–266.

9. Baker J, Christofides PD. Finite-Dimensional Approximation and Control of Nonlinear

Parabolic PDE Systems. Int J Contr. 2000;73:439–456.

26

10. Armaou A, Christofides PD. Dynamic Optimization of Dissipative PDE Systems Using

Nonlinear Order Reduction. Chem Eng Sci. 2002;57:5083–5114.

11. Varshney A, Pitchaiah S, Armaou A. Feedback control of dissipative PDE systems using

adaptive model reduction. AIChE Journal. 2009;55:906–918.

12. Marchisio DL, Fox RO. Solution of population balance equations using the direct quadra-

ture method of moments. Journal of Aerosol Science. 2005;36(1):43–73.

13. Barrault M, Maday Y, Nguyen NC, Patera AT. An ‘empirical interpolation’ method: ap-

plication to efficient reduced-basis discretization of partial differential equations. Comptes

Rendus Mathematique Academie des Sciences Paris. 2004;339(9):667–672.

14. Chaturantabut S, Sorensen DC. Nonlinear model reduction via discrete empirical interpo-

lation. SIAM Journal on Scientific Computing. 2010;32(5):2737–2764.

15. Zhang Y, Feng L, Li S, Benner P. An efficient output error bound for model order reduc-

tion of parametrized evolution equations. SIAM Journal on Scientific Computing. 2015;

37(6):B910–B936.

16. Drohmann M, Haasdonk B, Ohlberger M. Reduced basis approximation for nonlinear

parametrized evolution equations based on empirical operator interpolation. SIAM Journal

on Scientific Computing. 2012;34:937–969.

17. Peherstorfer B, Willcox K. Online adaptive model reduction for nonlinear systems via

low-rank updates. SIAM Journal on Scientific Computing. 2015;37(4):A2123–A2150.

18. Feng L, Korvink JG, Benner P. A fully adaptive scheme for model order reduction based

on moment-matching. IEEE Transactions on Components, Packaging and Manufacturing

Technology. 2015;5(12):1872–1884.

19. Degroote J, Vierendeels J, Willcox K. Interpolation among reduced-order matrices to obtain

parameterized models for design, optimization and probabilistic analysis. International

Journal for Numerical Methods in Fluids. 2010;63:207–230.

27

20. Panzer H, Mohring J, Eid R, Lohmann B. Parametric model order reduction by matrix

interpolation. Automatisierungstechnik. 2010;58:475–484.

21. Moore BC. Principal component analysis in linear systems: controllability, observability,

and model reduction. IEEE Transactions on Automatic Control. 1981;26:17–32.

22. Baur U, Benner P, Feng L. Model Order Reduction for Linear and Nonlinear Systems: A

System-Theoretic Perspective. Archives of Computational Methods in Engineering. 2014;

21(4):331–358.

23. Benner P. System-theoretic methods for model reduction of large-scale systems: simu-

lation, control, and inverse problems. In: MATHMOD 2009, 6th Vienna International

Conference on Mathematical Modelling, ARGESIM Report, vol. 35. 2009; pp. 126–145.

24. Feng L, Antoulas AC, Benner P. Some a posteriori error bounds for model order reduc-

tion of parametrized linear systems. Max Planck Institute Preprint, MPIMD 15-17. 2015;

Available from http://www.mpi-magdeburg.mpg.de/preprints/.

25. Grepl MA, Patera AT. A posteriori error bounds for reduced-basis approximations of

parametrized parabolic partial differential equations. ESAIM: M2AN Mathematial Mod-

elling and Numerical Analysis. 2005;39(1):157–181.

26. Veroy K, Prud’homme C, Rovas D, Patera AT. A posteriori error bounds for reduced-basis

approximation of parametrized noncoercive and nonlinear elliptic partial differential equa-

tions. In: AIAA conference papers: 16th AIAA Computational Fluid Dynamics Conference.

2003; pp. 2003–3847.

27. Veroy K, Patera AT. Certified real-time solution of the parametrized steady incompressible

Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. International

Journal for Numerical Methods in Fluids. 2005;47(8):773–788.

28. Rozza G, Huynh DBP, Patera AT. Reduced basis approximation and a posteriori error

estimation for affinely parametrized elliptic coercive partial differential equations. Archives

of Computational Methods in Engineering. 2008;15:229–275.

28

29. Rozza G, Huynh DBP, Manzoni A. Reduced basis approximation and a posteriori error esti-

mation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants.

Numerische Mathematik. 2013;125(1):115–152.

30. Grepl MA, Maday Y, Nguyen NC, Patera AT. Efficient reduced-basis treatment of nonaffine

and nonlinear partial differential equations. ESAIM: M2AN Mathematial Modelling and

Numerical Analysis. 2007;41(3):575–605.

31. Wirtz D, Sorensen DC, Haasdonk B. A posteriori error estimation for DEIM reduced

nonlinear dynamical systems. SIAM Journal on Scientific Computing. 2014;36(2):A311–

A338.

32. Zhang Y, Feng L, Li S, Benner P. Accelerating PDE constrained optimization by the re-

duced basis method: application to batch chromatography. International Journal for Nu-

merical Methods in Engineering. 2015;104:983–1007.

33. Volkwein S. Model reduction using proper orthogonal decomposition. Tech. rep. 2010.

34. Alvarez A, Myerson A. Continuous plug flow crystallization of pharmaceutical compounds.

Crystal Growth & Design. 2010;10:2219–2228.

35. Lorenz H, Seidel-Morgenstern A. Processes to separate enantiomers. Angewandte Chemie

International Edition. 2014;53(5):1218–1250.

36. Binev D, Seidel-Morgenstern A, Lorenz H. Continuous separation of isomers in fluidized

bed crystallizers. Crystal Growth & Design. 2016;16(3):1409–1419.

29

product

outlet

feed

tank

attenuator

ultrasonic

mill /

fines

x
H

0

xfr

Figure 1: Process scheme for the continuous separation of enantiomers by preferential crystal-

lization.

30

Figure 2: Output in percentage: total volume fraction of the solid phase y(t) in (16).

31

(a) (b)

Figure 3: Singular value decay of X and F , respectively.

32

Figure 4: Singular value decay of XT12
and FT12

, respectively.

33

Figure 5: Adaptive adjustment of r and l for different error tolerances ǫ.

34

(a) (b)

Figure 6: Output comparison over the whole interval [0, T5].

35

(a) (b)

Figure 7: Output comparison over the periodic interval [T1, T5].

36

Table 1: ROMs adaptively obtained for different tolerances ǫ, r0 = 3, l0 = 6, [T0, T2].
ǫ (r, l) ∆̄ ε̄y Runtime(s) ROM sim. time(%)

1 · 10−1 (6, 11) 0.0278 0.0023 149.05 29

1 · 10−2 (12, 14) 7.4 · 10−3 5.55 · 10−4 450.78 10

1 · 10−3 (16, 19) 7.54 · 10−4 5.39 · 10−5 478.72 10

37

Table 2: ROMs adaptively obtained for different tolerances ǫ, r0 = 7, l0 = 7, [T0, T2].
ǫ (r, l) ∆̄ ε̄y Runtime(s) ROM sim. time(%)

1 · 10−1 (8, 13) 0.0218 0.0018 71.82 60

1 · 10−2 (12, 14) 0.0074 5.55 · 10−4 315.40 14

1 · 10−3 (16, 19) 7.54 · 10−4 5.39 · 10−5 416.88 11

38

Table 3: ROMs adaptively obtained for different tolerances ǫ, r0 = 5, l0 = 10, [T1, T2].
ǫ (r, l) ∆̄ ε̄y Runtime(s) ROM sim. time(%)

1 · 10−1 (5, 10) 0.0057 5.01 · 10−4 49.47 72

1 · 10−2 (5, 10) 0.0057 5.01 · 10−4 49.47 72

1 · 10−3 (7, 10) 9.65 · 10−4 8.39 · 10−5 149.71 24

1 · 10−4 (11, 11) 5.59 · 10−5 4.31 · 10−6 287.23 13

1 · 10−5 (14, 16) 9.29 · 10−6 5.33 · 10−7 314.54 12

1 · 10−6 (21, 17) 3.72 · 10−7 2.50 · 10−8 563 16

1 · 10−7 (24, 20) 9.41 · 10−8 3.56 · 10−9 428.29 20

39

Table 4: ROMs constructed by standard POD-DEIM with ǫsvd = 10−10.

ROM : Σr∗l∗ time interval ∆̄ ε̄y Sim. time (s)
Simr,l

Simr∗,l∗

r∗ = 61, l∗ = 66 [0, T2] 3.97 · 10−4 3.37 · 10−5 477.40 0.87

r∗ = 38, l∗ = 41 [T1, T2] 5.34 · 10−8 4.01 · 10−10 272.72 0.55

40

Table 5: Comparison over the whole time interval.

model time interval dimension Sim. time (s) speed-up factor

FOM [0, T5] n = 18400 7030.9 –

ROM [0, T5] r = 16, l = 19 187.06 38

FOM [T1, T5] n = 18400 6722.8 –

ROM [T1, T5] r = 14, l = 16 156.20 43

41

