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ADAPTIVE POISSON DISORDER PROBLEM

BY ERHAN BAYRAKTAR,1 SAVAS DAYANIK2 AND IOANNIS KARATZAS3

University of Michigan, Princeton University and Columbia University

We study the quickest detection problem of a sudden change in the arrival
rate of a Poisson process from a known value to an unknown and unobserv-

able value at an unknown and unobservable disorder time. Our objective is
to design an alarm time which is adapted to the history of the arrival process
and detects the disorder time as soon as possible.

In previous solvable versions of the Poisson disorder problem, the arrival
rate after the disorder has been assumed a known constant. In reality, how-
ever, we may at most have some prior information about the likely values of
the new arrival rate before the disorder actually happens, and insufficient es-
timates of the new rate after the disorder happens. Consequently, we assume
in this paper that the new arrival rate after the disorder is a random variable.

The detection problem is shown to admit a finite-dimensional Markov-
ian sufficient statistic, if the new rate has a discrete distribution with finitely
many atoms. Furthermore, the detection problem is cast as a discounted op-
timal stopping problem with running cost for a finite-dimensional piecewise-
deterministic Markov process.

This optimal stopping problem is studied in detail in the special case
where the new arrival rate has Bernoulli distribution. This is a nontrivial opti-
mal stopping problem for a two-dimensional piecewise-deterministic Markov
process driven by the same point process. Using a suitable single-jump oper-
ator, we solve it fully, describe the analytic properties of the value function
and the stopping region, and present methods for their numerical calculation.
We provide a concrete example where the value function does not satisfy the
smooth-fit principle on a proper subset of the connected, continuously differ-
entiable optimal stopping boundary, whereas it does on the complement of
this set.

1. Introduction and synopsis. Suppose that arrivals of certain events consti-
tute a Poisson process N = {Nt ; t ≥ 0} with a known rate µ > 0. At some time θ ,
the arrival rate suddenly changes from µ to �. Both the disorder time θ and the
post-disorder arrival rate � of the Poisson process are unknown and unobservable
quantities. Our problem is to find an alarm time τ which depends only on the past
and the present observations of the process N , and detects the disorder time θ as
soon as possible.
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More precisely, we shall assume that θ and � are random variables on some
probability space (�,H ,P), on which the process N is also defined; the variables
θ , � are independent of each other and of the process N . An alarm time is a
stopping time τ of the history of the process N . We shall try to choose such a
stopping time so as to minimize the Bayes risk

P{τ < θ} + cE(τ − θ)+,(1.1)

namely, the sum of the frequency P{τ < θ} of the false alarms and the expected
cost cE(τ − θ)+ of the detection delay.

We shall assume that the post-disorder arrival rate � has some general prior dis-
tribution ν(·). Similarly, the disorder time θ will be assumed to have an exponential
distribution of the form

P{θ = 0} = π and P{θ > t |θ > 0} = e−λt , t ≥ 0,(1.2)

for some π ∈ [0,1) and λ > 0. The Poisson disorder problem with a known post-
disorder rate (namely, � equals a known constant with probability 1) was stud-
ied first by Galchuk and Rozovskii [10] and was solved completely by Peskir and
Shiryaev [15]. In the meantime, Davis [8] noticed that several forms of Bayes risks,
including (1.1), admit similar solutions. He called this class of problems standard

Poisson disorder problems, and found a partial solution. Recently, Bayraktar and
Dayanik [1] solved the Poisson disorder problem when the detection delay is pe-
nalized exponentially. Bayraktar, Dayanik and Karatzas [3] showed that the expo-
nential detection delay penalty in fact leads to another variant of standard Poisson
disorder problems if the “standards” suggested by Davis are restated under a suit-
able reference probability measure. It was also shown [3] that use of a suitable
reference probability measure reduces the dimension of the Markovian sufficient
statistic for the detection problem, and the solution of the standard Poisson disor-
der problem was described fully.

We believe that unknown and unobservable post-disorder arrival rate � cap-
tures quite well real-life applications of change-point detection theory. Before the
onset of the new regime, past experience may help us at most to fit an a priori
distribution ν(·) on the likely values of the new arrival rate of N after the disorder.
Even after the disorder happens, we may not have enough observations to get a
reliable statistical estimate of the post-disorder rate. Indeed, since a good alarm is
expected to sound as soon as the disorder happens, we may have very few observa-
tions of N sampled from the new regime since the disorder. The quickest detection
of an unknown and unobservable shift in the drift of a Wiener process has been
tackled by Beibel [4] and Beibel and Lerche [5]. However, we are unaware of any
work pertaining to Poisson processes.

Let us highlight our approach to the problem and our main results. We show
that the most general such detection problem is equivalent, under a reference prob-
ability measure, to a discounted optimal stopping problem with a running cost for
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an infinite-dimensional Markovian sufficient statistic. However, the dimension be-
comes finite as soon as the prior probability distribution ν(·) of the post-disorder
arrival rate � charges only a finite number of atoms. This class of problems is of
considerable interest since, in many applications, we have typically an empirical
distribution of the post-disorder arrival rate, constructed either from finite past data
or from expert opinions on the most significant likely values.

We then study in detail the case where the new arrival rate after the disorder
is expected either to increase or to decrease by the same amount. The detection
problem turns in this case into an optimal stopping problem for a two-dimensional

piecewise-deterministic Markov process, driven by the same point process. We
solve this optimal stopping problem fully by describing ε-optimal and optimal
stopping times and identifying explicitly the nontrivial shape of the optimal con-
tinuation region.

The common approach to an optimal stopping problem for a continuous-time
Markov process is to reformulate it as a free-boundary problem in terms of the in-
finitesimal generator of the process. The free-boundary problems sometimes turn
out to be quite hard, even in one dimension; see, for example, [1, 10, 15]. Here,
the infinitesimal operator gets complicated further, and becomes a singular partial
differential-delay operator. Moreover, it is a nontrivial task, even in two dimen-
sions, to guess the location, shape and smoothness of the free-boundary separating
the continuation and stopping regions, as well as the behavior of the value function
along the boundary.

Instead, we follow a direct approach and work with integral operators rather
than differential operators. As in [9] and [11] we use a suitable single-jump op-
erator to strip the jumps off the original two-dimensional piecewise-deterministic
Markov process and turn the original optimal stopping problem into a sequence
of optimal stopping problems for a deterministic process with continuous paths.
Using direct arguments, we are able to infer from the properties of the single-jump
operator the location and shape of the optimal continuation region, as well as the
smoothness of the switching boundary and the value function.

The single-jump operator also suggests a straightforward numerical method for
calculating the value function and the optimal continuation region. The determin-
istic process obtained after removing the jumps from the original Markov process
has two fundamentally different types of behavior. We tailor the naive numerical
method to each case, by exploiting the behavior of the paths.

We also raise the question when the value function should be a classical so-
lution of the relevant free-boundary problem. For a large range of configurations
of parameters, both the value function and the boundary of the continuation re-
gion turn out to be continuously differentiable, and one may also choose to use
finite-difference methods for differential-difference equations to solve the prob-
lem numerically. For a few other cases, we cannot qualify completely the degree
of smoothness of the value function. Viscosity approaches or some other tech-
niques of nonsmooth analysis are very likely to fill the gap, but we do not pursue
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this direction here. We report one concrete example on “partial” failure of the
smooth-fit principle: in certain cases, the value function is continuously differen-
tiable everywhere on the state space except on a proper subset of the connected
and continuously differentiable optimal stopping boundary.

This work is divided naturally in two parts. In Sections 2–6, we describe
the problem, formulate a model, and develop an important approximation. In
Sections 7–11, we use that approximation to develop the solution and study its
properties. Long proofs are presented in the Appendix.

2. Problem description. Let N = {Nt ; t ≥ 0} be a homogeneous Poisson
process with some rate µ > 0 on a fixed probability space (�,H ,P0), which
also supports two random variables θ and � independent of each other and of
the process N . We shall denote by ν(·) the distribution of the random variable �,
assume that

m(k) �

∫

R

(v − µ)kν(dv), k ∈ N0, are well defined and finite,(2.1)

and that

P0{θ = 0} = π and P0{θ > t} = (1 − π)e−λt , t ≥ 0,(2.2)

hold for some constants λ > 0 and π ∈ [0,1).
Let us denote by F = {Ft }t≥0 the right-continuous enlargement with P0-null

sets of the natural filtration σ(Ns;0 ≤ s ≤ t) of N . We also define a larger filtration
G = {Gt }t≥0 by setting Gt � Ft ∨σ {θ,�}, t ≥ 0. The G-adapted, right-continuous
(hence, G-progressively measurable) process

h(t) � µ1{t<θ} + �1{t≥θ}, t ≥ 0,(2.3)

induces the (P0,G)-martingale (see [6], pages 165–168)

Zt � exp
{∫ t

0
log

(
h(s−)

µ

)
dNs −

∫ t

0

(
h(s) − µ

)
ds

}
, t ≥ 0.(2.4)

This martingale defines a new probability measure P on every (�,Gt ) by

dP

dP0

∣∣∣∣
Gt

= Zt , t ≥ 0.(2.5)

Since P and P0 coincide on G0 = σ {θ,�}, the random variables θ and � are
independent and have the same distributions under both P and P0.

Under the new probability measure P the counting process N has G-progressi-
vely measurable intensity given by h(·) of (2.3), namely Nt −

∫ t
0 h(s) ds, t ≥ 0, is

a (P,G)-martingale. In other words, the G-adapted process N is a Poisson process
whose rate changes at time θ from µ to �.
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In the Poisson disorder problem, only the process N is observable, and our
objective is to detect the disorder time θ as quickly as possible. More precisely, we
want to find an F-stopping time τ that minimizes the Bayes risk

Rτ (π) � P{τ < θ} + cE(τ − θ)+,(2.6)

where c > 0 is a constant, and the expectation E is taken under the probability
measure P. Hence, we are interested in an alarm time τ which is adapted to the
history of the process N , and minimizes the trade-off between the frequency of
false alarms P{τ < θ} and the expected time of delay E(τ − θ)+ between the
alarm time and the unobservable disorder time.

In the next section we shall formulate the quickest detection problem as a prob-
lem of optimal stopping for a suitable Markov process.

3. Sufficient statistics for the adaptive Poisson disorder problem Let S be
the collection of all F-stopping times, and introduce the F-adapted processes


t � P{θ ≤ t |Ft } and
(3.1)

�
(k)
t �

E[(� − µ)k1{θ≤t}|Ft ]
1 − 
t

, k ∈ N0, t ≥ 0.

Since � has the same distribution ν(·) under P and P0, each �(k), k ∈ N0 is well
defined by (2.1). The process 
 = {
t , t ≥ 0} tracks the likelihood that a change
in the intensity of N has already occurred, given past and present observations of
the process. Each �(k) = {�(k)

t , t ≥ 0}, k ∈ N, may be regarded as a (weighted)
odds-ratio process.

Our first lemma below shows that the minimum Bayes risk can be found by
solving a discounted optimal stopping problem, with discount rate λ and running
cost function f (x) = x − λ/c for the F-adapted process �(0). By Lemma 3.2, the
observation process X and the sufficient statistic {�(k)}k≥0 jump exactly at the
same times and evolve deterministically between jumps; therefore, their natural
filtrations and the collection of their stopping times are the same.

The calculations are considerably easier when the process �(0) has the Markov
property. Unfortunately, this is not true in general. However, the explicit dynamics
of �(0) in Lemma 3.2 reveal that the infinite-dimensional sequence {�(k)}k∈N0 of
the processes in (3.1) is always a Markovian sufficient statistic for the quickest
detection problem. The same result also suggests sufficient conditions for the ex-
istence of a finite-dimensional Markovian sufficient statistic, a case amenable to
concrete analysis.

LEMMA 3.1. The Bayes risk in (2.6) equals

Rτ (π) = 1 − π + c(1 − π)E0

[∫ τ

0
e−λt

(
�

(0)
t − λ

c

)
dt

]
, τ ∈ S,(3.2)

where the expectation E0 is taken under the (reference) probability measure P0.
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The proof is very similar to that of Proposition 2.1 in [3]. Note that every Zt

in (2.4) can be written as

Zt = 1{t<θ} + Lt

Lθ

1{t≥θ}(3.3)

in terms of the likelihood ratio process

Lt �

(
�

µ

)Nt

e−(�−µ)t , t ≥ 0.(3.4)

Then the generalized Bayes theorem (see, e.g., [13], Section 7.9) and (3.3) imply

1 − 
t = E0[Zt1{θ>t}|Ft ]
E0[Zt |Ft ]

= P0{θ > t |Ft }
E0[Zt |Ft ]

= (1 − π)e−λt

E0[Zt |Ft ]
,(3.5)

since θ is independent of the process N under P0 and has the distribution (2.2).

LEMMA 3.2. Let m(k), k ∈ N0, be defined as in (2.1). Then every �(k), k ∈ N0,
in (3.1) satisfies the equation

d�
(k)
t = λ

(
m(k) + �

(k)
t

)
dt + 1

µ
�

(k+1)
t− (dNt − µdt), t > 0,

(3.6)
�

(k)
0 = π

1 − π
m(k).

PROOF. For every k ∈ N0, let us introduce the function

F (k)(t, x) �

∫ (
v

µ

)x

(v − µ)ke−(v−µ)tν(dv), t ∈ R+, x ∈ R.(3.7)

The generalized Bayes theorem, (3.5), and the independence of the random vari-
ables θ , � and the process N under P0 imply that we have

�
(k)
t = E0[(� − µ)kZt1{θ≤t}|Ft ]

(1 − 
t )E0[Zt |Ft ]

= πeλt

1 − π
F (k)(t,Nt ) + λ

∫ t

0
eλ(t−s)F (k)(t − s,Nt − Ns) ds(3.8)

= U
(k)
t + V

(k)
t

for every k ∈≥ 0 and t ∈ R+, where we have set

U
(k)
t �

πeλt

1 − π
F (k)(t,Nt ) and

(3.9)

V
(k)
t � λ

∫ t

0
eλ(t−s)F (k)(t − s,Nt − Ns) ds.
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Every F (k)(·, ·), k ∈ N0, in (3.7) is continuously differentiable, and

∂

∂t
F (k)(t, x) = −F (k+1)(t, x), t > 0, x ∈ R, k ∈ N0.(3.10)

The change of variable formula for jump processes gives

F (k)(t,Nt ) = F (k)(0,0) +
∫ t

0

∂F (k)

∂t
(s,Ns) ds +

∫ t

0

∂F (k)

∂x
(s,Ns−) dNs

+
∑

0<s≤t

[
F (k)(s,Ns) − F (k)(s,Ns−) − ∂F (k)

∂x
(s,Ns−)Ns

]

(3.11)

= m(k) −
∫ t

0
F (k+1)(s,Ns) ds

+
∑

0<s≤t

[
F (k)(s,Ns) − F (k)(s,Ns−)

]
,

where Ns � Ns − Ns− ∈ {0,1} for s > 0, and the last equality follows
from (3.10),

F (k)(0,0) = m(k) and
∫ t

0

∂F (k)

∂x
(s,Ns−) dNs =

∑

0<s≤t

∂F (k)

∂x
(s,Ns−)Ns

for every integer k ≥ 0. However, F (k)(s,Ns) − F (k)(s,Ns−) is equal to

∫ (
v

µ

)Ns−+Ns

(v − µ)ke−(v−µ)sν(dv) −
∫ (

v

µ

)Ns−
(v − µ)ke−(v−µ)sν(dv)

= Ns

µ

∫ (
v

µ

)Ns−
(v − µ)k+1e−(v−µ)tν(dv) = 1

µ
F (k+1)(s,Ns−)Ns,

since [(v/µ)Ns − 1] = (Ns/µ)(v − µ). This equation and (3.11) imply

F (k)(t,Nt ) = m(k) −
∫ t

0
F (k+1)(s,Ns) ds +

∑

0<s≤t

1

µ
F (k+1)(s,Ns−)Ns

(3.12)

= m(k) +
∫ t

0

1

µ
F (k+1)(s,Ns−)(dNs − µds), t ∈ R+, k ∈ N0.

This identity will help us derive the dynamics of U (k) and V (k) in (3.9). Note that

d

(
1 − π

π
U

(k)
t

)
= d

(
eλtF (k)(t,Nt )

)
= eλtF (k)(t,Nt )λdt + eλtdF (k)(t,Nt )

= λ
1 − π

π
U

(k)
t dt + eλt

µ
F (k+1)(t,Nt−)(dNt − µdt).
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Therefore,

dU
(k)
t = λU

(k)
t + 1

µ
U

(k+1)
t (dNt − µdt), t > 0,

(3.13)
U

(k)
0 = π

1 − π
m(k).

The derivation of the dynamics of V (k) is trickier. For every fixed s ∈ [0, t), let
us define N

(s)
u � Ns+u −Ns , 0 ≤ u ≤ t −s. This is also a Poisson process under P0.

As in (3.12),

F (k)(t − s,N
(s)
t−s

)
= m(k) +

∫ t−s

0

1

µ
F (k+1)(u,N

(s)
u−

)(
dN (s)

u − µdu
)
.

Changing the variable of integration and substituting N (s)
• = Ns+• − Ns into this

equality gives

F (k)(t − s,Nt − Ns) = m(k) + 1

µ

∫ t

s
F (k+1)(v − s,Nv− − Ns)(dNv − µdv).

Let us plug this identity into V
(k)
t in (3.9), multiply both sides by e−λt and change

the order of integration. Then

e−λtV
(k)
t =

∫ t

0
λe−λs

(
m(k) + 1

µ

∫ t

0
F (k+1)(v − s,Nv− − Ns)(dNv − µdv)

)
ds

= m(k)
∫ t

0
λe−λs ds

+ λ

µ

∫ t

0

(∫ v

0
e−λsF (k+1)(v − s,Nv − Ns) ds

)
(dNv − µdv)

= m(k)
∫ t

0
λe−λs ds + 1

µ

∫ t

0
e−λvV (k+1)

v (dNv − µdv).

Differentiating both sides and rearranging terms, we obtain

dV
(k)
t = λ

(
m(k) + V

(k)
t

)
dt + 1

µ
V

(k+1)
t (dNt − µdt), t > 0,

(3.14)
V

(k)
0 = 0.

Adding (3.13) and (3.14) as in (3.8) gives the dynamics (3.6) of the process �(k).
�

Lemma 3.2 shows that the process �(0) does not have the Markov property in
general. This is because, as (3.6) shows, �(0) depends on �(1), then �(1) depends
on �(2), and so on ad infinitum. However, a finite-dimensional Markovian suffi-
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cient statistic emerges if the system of stochastic differential equations in (3.6) is
closeable, namely, if the process �(k) can be expressed in terms of the processes
�(0), . . . ,�(k−1), for some k ∈ N0. Our next corollary shows that this is true if �

takes finitely many distinct values.

COROLLARY 3.3. Suppose that ν({λ1, . . . , λk}) = 1 for some positive num-

bers λ1, . . . , λk . Consider the polynomial

p(v) �

k∏

i=1

(v − λi + µ) ≡ vk +
k−1∑

i=0

civ
i, v ∈ R,

for suitable real numbers c0, . . . , ck−1. Then {�(0),�(1), . . . ,�(k−1)} is a k-di-

mensional sufficient Markov statistic, with �(k) = −∑k−1
i=0 ci�

(i).

PROOF. Under the hypothesis, the random variable p(� − µ) = (� − µ)k +∑k−1
i=0 ci(� − µ)i is equal to zero almost surely. Therefore, (3.1) implies

�
(k)
t +

k−1∑

i=0

ci�
(i)
t = E[p(� − µ)1{θ≤t}|Ft ]

1 − 
t

= 0, P-a.s., for every t ≥ 0.

The process on the left-hand side has right-continuous sample paths, by (3.6).
Therefore, �(k)

t +∑k−1
i=0 ci�

(i)
t = 0 for all t ∈ R+ almost surely, that is, the process

�(k) is a linear combination of the processes �(0), . . . ,�(k−1). �

In the remainder of the paper we shall study the case where the arrival rate of
the observations after the disorder has a Bernoulli prior distribution.

4. Poisson disorder problem with a Bernoulli post-disorder arrival rate.

We shall assume henceforth µ > 1 and that the random variable � has Bernoulli
distribution

ν({µ − 1,µ + 1}) = 1.(4.1)

Namely, the rate of the Poisson process N is expected to increase or decrease
by one unit after the disorder. Corollary 3.3 implies that �(2) = �(0), and the
sufficient statistic (�(0),�(1)) is a Markov process. According to Lemma 3.2, the
pair satisfies

d�
(0)
t = λ

(
1 + �

(0)
t

)
dt + 1

µ
�

(1)
t− (dNt − µdt), �

(0)
0 = π

1 − π
,(4.2)

d�
(1)
t = λ

(
m + �

(1)
t

)
dt + 1

µ
�

(0)
t− (dNt − µdt), �

(1)
0 = π

1 − π
m,(4.3)
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where, as in (2.1), we set

m ≡ m(1) = E0[� − µ] = P{� = µ + 1} − P{� = µ − 1}.(4.4)

The dynamics of the processes �(0) and �(1) in (4.2) and (4.3) are interdepen-
dent. However, if we define a new process

�̃ ≡
[
�̃(0)

�̃(1)

]
�

1√
2

[
�(0) − �(1)

�(0) + �(1)

]
,(4.5)

then each of the new processes �̃(0) and �̃(1) is autonomous:

d�̃
(0)
t =

[
(λ + 1)�̃

(0)
t + λ(1 − m)√

2

]
dt − 1

µ
�̃

(0)
t− dNt ,

�̃
(0)
0 = (1 − m)π√

2(1 − π)
,

(4.6)

d�̃
(1)
t =

[
(λ − 1)�̃

(1)
t + λ(1 + m)√

2

]
dt + 1

µ
�̃

(1)
t− dNt ,

�̃
(1)
0 = (1 + m)π√

2(1 − π)
.

The new coordinates �̃(0) and �̃(1) are in fact the conditional odds-ratio processes
as in

�̃
(0)
t =

√
2 · P{� = µ − 1, θ ≤ t |Ft }

P{θ > t |Ft }
and

�̃
(1)
t =

√
2 · P{� = µ + 1, θ ≤ t |Ft }

P{θ > t |Ft }
.

Therefore, both �̃(0) and �̃(1) are nonnegative processes.
Note that m ∈ [−1,1] in (4.4). The cases m = ±1 degenerate to Poisson dis-

order problems with known post-disorder rates, and were studied by Bayraktar,
Dayanik and Karatzas [3]. Therefore, we will assume that m ∈ (−1,1) in the re-
mainder.

REMARK 4.1. For every φ0 ∈ R and φ1 ∈ R, let us denote by x(t, φ0), t ∈ R,
and y(t, φ1), t ∈ R, the solutions of the differential equations

d

dt
x(t, φ0) = (λ + 1)x(t, φ0) + λ(1 − m)√

2
, x(0, φ0) = φ0,

(4.7)
d

dt
y(t, φ1) = (λ − 1)y(t, φ1) + λ(1 + m)√

2
, y(0, φ1) = φ1,
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respectively. These solutions are given by

x(t, φ0) = − λ(1 − m)√
2(λ + 1)

+ e(λ+1)t

[
φ0 + λ(1 − m)√

2(λ + 1)

]
, t ∈ R,

(4.8)

y(t, φ1) =





− λ(1 + m)√
2(λ − 1)

+ e(λ−1)t

[
φ1 + λ(1 + m)√

2(λ − 1)

]
, λ �= 1,

φ1 + 1 + m√
2

t, λ = 1,

t ∈ R.

Both x(·, φ0) and y(·, φ1) have the semigroup property, that is, for every t ∈ R and
s ∈ R

x(t + s, φ0) = x
(
s, x(t, φ0)

)
and y(t + s, φ1) = y

(
s, y(t, φ1)

)
.(4.9)

Note from (4.6) and (4.7) that

�̃
(0)
t = x

(
t − σn, �̃

(0)
σn

)
and �̃

(1)
t = y

(
t − σn, �̃

(1)
σn

)
,

(4.10)
σn ≤ t < σn+1, n ∈ N0.

4.1. An optimal stopping problem for the quickest detection of the Poisson dis-

order In terms of the new sufficient statistics �̃(1) and �̃(0) in (4.5), (4.6), the
Bayes risk of (2.6), (3.2) can be rewritten as

Rτ (π) = 1 − π + c(1 − π)√
2

· E0

[∫ τ

0
e−λt

(
�̃

(0)
t + �̃

(1)
t − λ

c

√
2
)

dt

]
, τ ∈ S.

Therefore, the minimum Bayes risk U(π) � infτ∈S Rτ (π), π ∈ [0,1), is given by

U(π) = 1 − π + c(1 − π)√
2

· V
(

(1 − m)π√
2(1 − π)

,
(1 + m)π√

2(1 − π)

)
,

(4.11)
π ∈ [0,1),

where m is as in (4.4), the function V (·, ·) is the value function of the optimal
stopping problem

V (φ0, φ1) � inf
τ∈S

E
φ0,φ1
0

[∫ τ

0
e−λtg

(
�̃

(0)
t , �̃

(1)
t

)
dt

]
,

(4.12)

g(φ0, φ1) � φ0 + φ1 − λ

c

√
2, (φ0, φ1) ∈ R

2
+,

and E
φ0,φ1
0 is the conditional P0-expectation given that �̃

(0)
0 = φ0 and �̃

(1)
0 = φ1.
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It is clear from (4.12) that it is never optimal to stop before the process �̃ leaves
the region

C0 �

{
(φ0, φ1) ∈ R

2
+ :φ0 + φ1 <

λ

c

√
2
}
.(4.13)

In the next subsection we shall discuss the pathwise behavior of the process �̃;
this will give insight into the solution of the optimal stopping problem in (4.12).

4.2. The sample-paths of the sufficient-statistic process �̃ = (�̃(0), �̃(1)) The
process �̃(0) jumps downward and increases between jumps; see (4.6). On the
other hand, the process �̃(1) jumps upward, and its behavior between jumps de-
pends on the sign of 1−λ. If λ ≥ 1, then the process �̃(1) increases between jumps.
If 0 < λ < 1, then �̃(1) reverts to the (positive) “mean level”

φd �
λ(1 + m)

(1 − λ)
√

2
(4.14)

between jumps; it never visits φd unless it starts there; and in this latter case, it
stays at φd until the first jump and never returns to φd (i.e., φd > 0 is an entrance
boundary for �̃(1)). Finally, φd and 1 − λ �= 0 have the same signs.

As for the solution of the optimal stopping problem in (4.12), it is worth waiting
if the process �̃ is in the region C0 of (4.13), or is likely to return to C0 shortly.
The sample-paths of the process �̃ are deterministic between jumps, and tend
toward, or away from, the region C0. These two cases are described separately
below. In both cases, however, the process �̃ jumps in the same direction relative
to its position before the jump. A jump at (φ0, φ1) is an instantaneous displacement
(1/µ)[−φ0 φ1]T in �̃. Therefore, the jump direction is away from (resp. toward)
the region C0 if φ0 < φ1 (resp. φ0 > φ1). Along a quarter of a circle in Figure 1(a),
the directions of jumps at an equal distance from the origin are illustrated by the
arrows. Note also that, along any fixed half-ray in R

2
+, the jump direction [namely,

the angle α in Figure 1(a)] does not change, but the size of the jump does.

4.3. Case I: A “large” disorder arrival rate. Suppose that λ ≥ 1 or 0 <

(λ/c)
√

2 ≤ φd . Equivalently, λ ≥ [1 − (1 + m)(c/2)]+ is “large.” Between jumps,
the process �̃ gets farther away from the region C0. It may return to C0 by jumps
only, and only if the jump originates in the region L � {(φ0, φ1) :φ0 > φ1}; see
Figure 1(a). But, if �̃(1) reaches at or above (λ/c)

√
2, then �̃ will never return

to C0.

4.4. Case II: A “small” disorder arrival rate. Now suppose that 0 < φd <

(λ/c)
√

2. Equivalently, 0 < λ < 1 − (1 + m)(c/2) is “small.” If the process �̃

finds itself in a very close neighborhood of the upper-left corner of the triangular
region C0, then it will drift into C0 before the next jump with positive probability.
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FIG. 1. The sample-paths of �̃.

Otherwise, the behavior of the sample-paths of �̃ relative to C0 is very similar to
that in Case I; see Figure 1(b).

5. A family of related optimal stopping problems. Let us introduce for
every n ∈ N, the optimal stopping problem

Vn(φ0, φ1) � inf
τ∈S

E
φ0,φ1
0

[∫ τ∧σn

0
e−λtg

(
�̃

(0)
t , �̃

(1)
t

)
dt

]
,

(5.1)
(φ0, φ1) ∈ R

2
+,

obtained from (4.12) by stopping the process �̃ at the nth jump time σn of
the process N . Since g(·, ·) in (4.12) is bounded from below by the constant
−(λ/c)

√
2, the expectation in (5.1) is well defined for every stopping time τ ∈ S.

In fact, −
√

2/c ≤ Vn ≤ 0 for every n ∈ N. Since the sequence (σn)n≥1 of jump
times of the process N is increasing almost surely, the sequence (Vn)n≥1 is de-
creasing. Therefore, limn→∞ Vn exists everywhere. It is also obvious that Vn ≥ V ,
n ∈ N.

PROPOSITION 5.1. As n → ∞, the sequence Vn(φ0, φ1) converges to

V (φ0, φ1) uniformly in (φ0, φ1) ∈ R
2
+. In fact, for every n ∈ N and (φ0, φ1) ∈ R

2
+,

we have
√

2

c
·
(

µ

λ + µ

)n

≥ Vn(φ0, φ1) − V (φ0, φ1) ≥ 0.(5.2)
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PROOF. Fix (φ0, φ1) ∈ R
2
+. For τ ∈ S, n ∈ N, we express E

φ0,φ1
0 [

∫ τ
0 e−λs ×

g(�̃s) ds] as

E
φ0,φ1
0

[∫ τ∧σn

0
e−λsg(�̃s) ds

]
+ E

φ0,φ1
0

[
1{τ≥σn}

∫ τ

σn

e−λsg(�̃s) ds

]

≥ E
φ0,φ1
0

[∫ τ∧σn

0
e−λsg(�̃s) ds

]
− λ

c

√
2 · E

φ0,φ1
0

[
1{τ≥σn}

∫ τ

σn

e−λsds

]

≥ Vn(φ0, φ1) −
√

2

c
·
(

µ

λ + µ

)n

.

We have used the bound g(φ0, φ1) ≥ −(λ/c)
√

2 from (4.12), as well as the fact
that N is a Poisson process with rate µ under P0, and σn is the nth jump time of N .
Taking the infimum over τ ∈ S gives the first inequality in (5.2). �

We shall try to calculate now the functions Vn(·) of (5.1), following a method of
Gugerli [11] and Davis [9]. Let us start by defining on the collection of bounded
Borel functions w : R2

+ �→ R the operators

Jw(t,φ0, φ1) � E
φ0,φ1
0

[∫ t∧σ1

0
e−λug

(
�̃(0)

u , �̃(1)
u

)
du

(5.3)

+ 1{t≥σ1}e
−λσ1w

(
�̃(0)

σ1
, �̃(1)

σ1

)]
,

Jtw(φ0, φ1) � inf
u∈[t,∞]

Jw(u,φ0, φ1) for every t ∈ [0,∞].(5.4)

The special structure of the stopping times of jump processes (see Lemma A.1
below) implies

J0w(φ0, φ1) = inf
τ∈S

E
φ0,φ1
0

[∫ τ∧σ1

0
e−λtg

(
�̃

(0)
t , �̃

(1)
t

)
dt

(5.5)

+ 1{τ≥σ1}e
−λσ1w

(
�̃(0)

σ1
, �̃(1)

σ1

)]
.

By relying on the strong Markov property of the process N at its first jump time σ1,
one expects that the value function V of (4.12) satisfies the equation V = J0V .
Below, we show that this is indeed the case. In fact, if we define vn : R2

+ �→ R,
n ∈ N0 sequentially by

v0 ≡ 0 and vn � J0vn−1 ∀n ∈ N,(5.6)

then every vn is bounded and identical to Vn of (5.1), whereas limn→∞ vn exists
and is equal to the value function V in (4.12).

Under P0, the first jump time σ1 of the process N has exponential distribution
with rate µ. Using the Fubini theorem and (4.10), we can write (5.3) as

Jw(t,φ0, φ1) =
∫ t

0
e−(λ+µ)u(g + µ · w ◦ S)

(
x(u,φ0), y(u,φ1)

)
du(5.7)
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for every t ∈ [0,∞], where x(·, φ0) and y(·, φ1) are the solutions (4.8) of the ordi-
nary differential equations in (4.7), and S : R2

+ �→ R
2
+ is the linear mapping

S(φ0, φ1) �

((
1 − 1

µ

)
φ0,

(
1 + 1

µ

)
φ1

)
.(5.8)

REMARK 5.2. Using µ > 1 and the explicit forms of x(u,φ0) and y(u,φ1)

in (4.8), it is easy to check that the integrand in (5.7) is absolutely integrable on R+.
Therefore,

lim
t→∞

Jw(t,φ0, φ1) = Jw(∞, φ0, φ1) < ∞,

and the mapping t �→ Jw(t,φ0, φ1) : [0,∞] �→ R is continuous. The infimum
Jtw(φ0, φ1) in (5.4) is attained for every t ∈ [0,∞].

LEMMA 5.3. For every bounded Borel function w : R2
+ �→ R, the mapping

J0w is bounded. If we define ‖w‖ � sup(φ0,φ1)∈R
2
+

|w(φ0, φ1)| < ∞, then

−
(

λ

λ + µ
·
√

2

c
+ µ

λ + µ
· ‖w‖

)
≤ J0w(φ0, φ1) ≤ 0,

(5.9)
(φ0, φ1) ∈ R

2
+.

If the function w(φ0, φ1) is concave, then so is J0w(φ0, φ1). If w1 ≤ w2 are real-

valued and bounded Borel functions defined on R
2
+, then J0w1 ≤ J0w2.

COROLLARY 5.4. Every vn, n ∈ N0, in (5.6) is bounded and concave, and

−
√

2/c ≤ · · · ≤ vn ≤ vn−1 ≤ v1 ≤ v0 ≡ 0. The limit

v(φ0, φ1) � lim
n→∞vn(φ0, φ1), (φ0, φ1) ∈ R

2
+,(5.10)

exists, and is also bounded and concave.
Both vn : R2

+ �→ R, n ∈ N, and v : R2
+ �→ R are continuous, increasing in each of

their arguments, and their left and right partial derivatives are bounded on every

compact subset of R
2
+.

PROPOSITION 5.5. For every n ∈ N, the functions vn of (5.6) and Vn of (5.1)
coincide. For every ε ≥ 0, let for every n = 0,1, . . . , (φ0, φ1) ∈ R

2
+,

rε
n(φ0, φ1) � inf{s ∈ (0,∞] :Jvn(s, φ0, φ1) ≤ J0vn(φ0, φ1) + ε},

Sε
1 � rε

0(�̃0) ∧ σ1 and

Sε
n+2 �





r
ε/2
n+1(�̃0), if σ1 > r

ε/2
n+1(�̃0),

σ1 + S
ε/2
n+1 ◦ θσ1, if σ1 ≤ r

ε/2
n+1(�̃0),

where θs is the shift-operator on � :Nt ◦ θs = Ns+t . Then

E
φ0,φ1
0

[∫ Sε
n

0
e−λtg(�̃t ) dt

]
≤ vn(φ0, φ1) + ε, n = 1,2, . . . , ε ≥ 0.(5.11)
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PROPOSITION 5.6. We have v(φ0, φ1) = V (φ0, φ1) for every (φ0, φ1) ∈ R
2
+.

Moreover, V is the largest nonpositive solution U of the equation U = J0U .

LEMMA 5.7. Let w : R2
+ �→ R be a bounded function. For every t ∈ R+ and

(φ0, φ1) ∈ R
2
+,

Jtw(φ0, φ1) = Jw(t,φ0, φ1) + e−(λ+µ)tJ0w
(
x(t, φ0), y(t, φ1)

)
.(5.12)

COROLLARY 5.8. Let

rn(φ0, φ1) = inf
{
s ∈ (0,∞] :Jvn

(
s, (φ0, φ1)

)
= J0vn(φ0, φ1)

}
(5.13)

be the same as rε
n(φ0, φ1) in Proposition 5.5 with ε = 0. Then

rn(φ0, φ1) = inf
{
t > 0 :vn+1

(
x(t, φ0), y(t, φ1)

)
= 0

}
(inf ∅ ≡ ∞).(5.14)

PROOF. Let us fix (φ0, φ1) ∈ R
2
+, and denote rn(φ0, φ1) by rn. By Remark 5.2,

we have Jvn(rn, φ0, φ1) = J0vn(φ0, φ1) = Jrnvn(φ0, φ1).
Suppose first that rn < ∞. Since J0vn = vn+1, taking t = rn and w = vn

in (5.12) implies that Jvn(rn, φ0, φ1) equals

Jrnvn(φ0, φ1) = Jvn(rn, φ0, φ1) + e−(λ+µ)rnvn+1
(
x(rn, φ0), y(rn, φ1)

)
.

Therefore, vn+1(x(rn, φ0), y(rn, φ1)) = 0.
If 0 < t < rn, then Jvn(t, φ0, φ1) > J0vn(φ0, φ1) = Jrnvn(φ0, φ1) =

Jtvn(φ0, φ1) since u �→ Juvn(φ0, φ1) is nondecreasing. Taking t ∈ (0, rn) and
w = vn in (5.12) implies

J0vn(φ0, φ1) = Jtvn(φ0, φ1)

= Jvn(t, φ0, φ1) + e−(λ+µ)tvn+1
(
x(t, φ0), y(t, φ1)

)
.

Therefore, vn+1(x(t, φ0), y(t, φ1)) < 0 for every t ∈ (0, rn), and (5.14) follows.
Suppose now that rn = ∞. Then we have vn+1(x(t, φ0), y(t, φ1)) < 0 for

every t ∈ (0,∞) by the same argument in the last paragraph above. Hence,
{t > 0 :vn+1(x(t, φ0), y(t, φ1)) = 0} = ∅, and (5.14) still holds. �

REMARK 5.9. For every t ∈ [0, rn(φ0, φ1)], we have Jtvn(φ0, φ1) =
J0vn(φ0, φ1) = vn+1(φ0, φ1). Then substituting w(·, ·) = vn(·, ·) in (5.12) gives the
dynamic programming equation for the family {vk(·, ·)}k∈N0 : for every (φ0, φ1) ∈
R

2
+ and n ∈ N0,

vn+1(φ0, φ1) = Jvn(t, φ0, φ1) + e−(λ+µ)tvn+1
(
x(t, φ0), y(t, φ1)

)
,

(5.15)
t ∈ [0, rn(φ0, φ1)].



1206 E. BAYRAKTAR, S. DAYANIK AND I. KARATZAS

REMARK 5.10 (Dynamic programming equation). Since V (·, ·) is bounded,
and V = J0V by Proposition 5.6, Lemma 5.7 gives

JtV (φ0, φ1) = JV (t, φ0, φ1) + e−(λ+µ)tV
(
x(t, φ0), y(t, φ1)

)
,

(5.16)
t ∈ R+,

for every (φ0, φ1) ∈ R
2
+; and if we define

r(φ0, φ1) � inf{t > 0 :JV (t, φ0, φ1) = J0V (φ0, φ1)},
(5.17)

(φ0, φ1) ∈ R
2
+,

then arguments similar to those in the proof of Corollary 5.8, and (5.16), give

r(φ0, φ1) = inf
{
t > 0 :V

(
x(t, φ0), y(t, φ1)

)
= 0

}
, (φ0, φ1) ∈ R

2
+,(5.18)

as well as the dynamic programming equation

V (φ0, φ1) = JV (t, φ0, φ1) + e−(λ+µ)tV
(
x(t, φ0), y(t, φ1)

)
,

(5.19)
t ∈ [0, r(φ0, φ1)],

for the function V (·, ·) of (4.12). Because t �→ Jw(t, (φ0, φ1)) and t �→ Jtw(φ0,

φ1) are continuous for every bounded w : R2
+ �→ R [see, e.g., (5.7)], the iden-

tity (5.16) implies that t �→ V (x(t, φ0), y(t, φ1)) is continuous. Therefore, every
realization of t �→ V (�̃t ) is right-continuous and has left limits.

Let us define the F-stopping times

Uε � inf{t ≥ 0 :V (�̃t ) ≥ −ε}, ε ≥ 0.(5.20)

By Remark 5.10, we have

V
(
�̃Uε

)
≥ −ε on the event {Uε < ∞}.(5.21)

PROPOSITION 5.11. Let Mt � e−λtV (�̃t ) +
∫ t

0 e−λsg(�̃s) ds, t ≥ 0. For

every n ∈ N, ε ≥ 0 and (φ0, φ1) ∈ R
2
+, we have E

φ0,φ1
0 [M0] = E

φ0,φ1
0 [MUε∧σn],

that is,

V (φ0, φ1) = E
φ0,φ1
0

[
e−λ(Uε∧σn)V

(
�̃Uε∧σn

)
+

∫ Uε∧σn

0
e−λsg(�̃s) ds

]
.(5.22)

PROPOSITION 5.12. For every ε ≥ 0, the stopping time Uε in (5.20) is

ε-optimal for the problem (4.12), that is,

E
φ0,φ1
0

[∫ Uε

0
e−λsg(�̃s) ds

]
≤ V (φ0, φ1) + ε for every (φ0, φ1) ∈ R

2
+.
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6. A bound on the alarm time. We shall show that the optimal continuation
region C = {(φ0, φ1) ∈ R

2
+ :V (φ0, φ1) < 0} is contained in some set

D = {(φ0, φ1) ∈ R
2
+ :φ0 + φ1 < ξ∗}

(6.1)

for a suitable ξ∗ ∈
[
λ + µ

c

√
2,∞

)
.

Therefore, the region C has compact closure; this will be very useful in proving in
the next section that C has a boundary which is strictly decreasing and convex.

Recall from Section 4.1 that it is not optimal to stop before the process �̃ leaves
the region C0 in (4.13). Thus, the optimal stopping time U0 of Proposition 5.12 is
bounded from below and above as in

τC0 � inf
{
t ≥ 0 : �̃(0)

t + �̃
(1)
t ≥ λ

c

√
2
}

≤ U0 ≤ τD

(6.2)
� inf

{
t ≥ 0 : �̃(0)

t + �̃
(1)
t ≥ ξ∗}

in terms of the exit times τC0 and τD of the process �̃ from the regions C0 and D,
respectively. The constant threshold ξ∗ in (6.1) is essentially determined by the
number (λ+µ)

√
2/c [see (6.5), (6.9) and (6.11)], and our calculations below sug-

gest that they are close. Therefore, the bounds in (6.2) may prove useful in practice.
The difference [(λ+µ)/c]

√
2 − (λ/c)

√
2 = (µ/c)

√
2 between the thresholds that

determine the latest and the earliest alarm times is also meaningful. It increases
as µ/c increases: waiting longer is encouraged if the new information arrives at a
rate higher than the cost for detection delay per unit time when the disorder has
already happened.

Finally, we prove in Lemma 6.1 that τD in (6.2) has finite expectation. There-
fore,

E
φ0,φ1
0 [U0] ≤ E

φ0,φ1
0 [τD] < ∞ for every (φ0, φ1) ∈ R

2
+.

Let τ ∈ S be any F-stopping time. By Lemma A.1, there is a constant t ≥ 0 such
that τ ∧ σ1 = t ∧ σ1 almost surely. Therefore

E
φ0,φ1
0

[∫ τ

0
e−λsg(�̃s) ds

]

= E
φ0,φ1
0

[∫ τ∧σ1

0
e−λsg(�̃s) ds

]
+ E

φ0,φ1
0

[
1{τ≥σ1}

∫ τ

σ1

e−λsg(�̃s) ds

]

≥ E
φ0,φ1
0

[∫ t

0
1{s≤σ1}e

−λsg
(
x(s,φ0), y(s,φ1)

)
ds

]
(6.3)

−
√

2

c
· E

φ0,φ1
0

[
1{t≥σ1}e

−λσ1
]

=
∫ t

0
e−(λ+µ)s

[
g
(
x(s,φ0), y(s,φ1)

)
− µ

c

√
2
]
ds.
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The inequality follows from g(φ0, φ1) ≥ g(0,0) = −(λ/c)
√

2; see (4.12). The
functions x(·, φ0) and y(·, φ1) are the solutions of (4.7) (see Remark 4.1), and
σ1 has exponential distribution with rate µ under P0. Clearly, if for 0 < s < ∞ we
have

0 < g
(
x(s,φ0), y(s,φ1)

)
− µ

c

√
2 = x(s,φ0) + y(s,φ1) − λ + µ

c

√
2,(6.4)

then (6.3) implies that E
φ0,φ1
0 [

∫ τ
0 e−λsg(�̃s) ds] > 0 for every F-stopping time

τ �= 0 almost surely (since the filtration F is right-continuous, the probability of
{τ ≥ 0} ∈ F0 equals zero or 1). Thus, “stopping immediately” is optimal at every

(φ0, φ1) for which (6.4) holds.
If λ ≥ 1, then s �→ x(s,φ0) and s �→ y(s,φ1) are increasing for every

(φ0, φ1) ∈ R
2
+; see (4.7) and Figure 2(a). Therefore, x(s,φ0) + y(s,φ1) >

x(0, φ0)+ y(0, φ1) = φ0 +φ1 for every 0 < s < ∞. Hence, (6.4) holds, and there-
fore it is optimal to stop immediately outside the region

D1 �

{
(φ0, φ1) ∈ R

2
+ :φ0 + φ1 <

λ + µ

c

√
2
}

if λ ≥ 1.(6.5)

Suppose now that 0 < λ < 1; equivalently, φd of (4.14) is positive. Then s �→
x(s,φ0) is increasing for every φ0 ∈ R+. For φ1 = φd , the derivative dy(s,φd)/ds

in (4.7) vanishes for every 0 < s < ∞. The mapping s �→ y(s,φ1) is increasing if
φ1 ∈ [0, φd), decreasing if φ1 ∈ (φd ,∞), and φ(s,φd) = φd for every 0 ≤ s < ∞;
see (4.7) and Figures 2(b),(c). The derivative

d

dt
[x(t, φ0) + y(t, φ1)] = (λ + 1)x(t, φ0) + (λ − 1)y(t, φ1) + λ

√
2(6.6)

of the right-hand side of (6.4) [see also (4.7)] vanishes if s �→ (x(s,φ0), y(s,φ1))

meets at s = t the line

ℓ : (λ + 1)x + (λ − 1)y + λ
√

2 = 0 or y = 1 + λ

1 − λ
x + λ

1 − λ

√
2.(6.7)

FIG. 2. Region D.
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Since m ∈ (−1,1), the “mean-level” φd in (4.14) and the y-intercept of the line ℓ

in (6.7) are related as in

φd = λ

1 − λ
· 1 + m√

2
<

λ

1 − λ

√
2.

Because ℓ is increasing, this relationship implies that the line ℓ in contained in
R+ × (φd ,∞) [see Figure 2(b),(c)]. However, every curve t �→ (x(t, φ0), y(t, φ1))

starting at some (φ0, φ1) in R+ × (φd ,∞) is “decreasing,” and the derivative
in (6.6) is increasing. Therefore, any curve t �→ (x(t, φ0), y(t, φ1)), (φ0, φ1) ∈ R

2
+

may meet ℓ at most once, and

if t �→ (x(t, φ0), y(t, φ1)) meets the line ℓ at tℓ = tℓ(φ0, φ1), then
t �→ x(t, φ0)+ y(t, φ1) is decreasing (resp., increasing) on [0, tℓ]
(resp., on [tℓ,∞)). Otherwise, t �→ x(t, φ0) + y(t, φ1) is increas-
ing on [0,∞).

(6.8)

Consider now the first of two possible cases: the line ℓ does not meet D1 of (6.5);
that is, λ/(1 −λ) ≥ (λ+µ)/c, as in Figure 2(b). Then φ0 +φ1 ≥ (λ+µ)

√
2/c for

every (φ0, φ1) ∈ ℓ. Therefore, (6.8) implies that (6.4) holds, that is, it is optimal to
stop immediately, outside

D1 =
{
(φ0, φ1) ∈ R

2
+ :φ0 + φ1 <

λ + µ

c

√
2
}

if
λ

1 − λ
≥ λ + µ

c
.(6.9)

In the second case, the line ℓ of (6.7) meets the region D1, that is, 0 <

λ/(1 − λ) < (λ + µ)/c; see Figure 2(c). Let us denote by (φ∗
0 , φ∗

1) the point at
the intersection of the line ℓ and the boundary x + y − (λ + µ)

√
2/c = 0 of the

region D1. By running the time “backward,” we can find ξ∗ (and t∗) such that

(0, ξ∗) =
(
x(−t∗, φ∗

0), y(−t∗, φ∗
1)

)
.(6.10)

Indeed, using (4.8), we can obtain first t∗ ≥ 0 by solving 0 = x(−t∗, φ∗
0), and then

ξ∗ � y(−t∗, φ∗
1). By the semigroup property (4.9), we have

x(t∗,0) = x
(
t∗, x(−t∗, φ∗

0)
)
= x

(
t∗ + (−t∗), φ∗

0
)
= x(0, φ∗

0) = φ∗
0 ,

y(t∗, ξ∗) = y
(
t∗, y(−t∗, φ∗

1)
)
= y

(
t∗ + (−t∗), φ∗

1
)
= y(0, φ∗

1) = φ∗
1 .

Hence, the curve t �→ (x(t,0), y(t, ξ∗)), t ≥ 0, meets ℓ at (φ∗
0 , φ∗

1), and tℓ in (6.8)
equals t∗; see Figure 2(c). Therefore, (6.8) implies that

x(t,0) + y(t, ξ∗) ≥ x(t∗,0) + y(t∗, ξ∗) = φ∗
0 + φ∗

1 = λ + µ

c

√
2, 0 ≤ t < ∞.

In particular, ξ∗ = 0 + ξ∗ = x(0,0) + y(0, ξ∗) ≥ (λ + µ)
√

2/c. We are now ready
to show that it is optimal to stop immediately outside the region

D2 � {(φ0, φ1) ∈ R
2
+ :φ0 + φ1 < ξ∗} if 0 <

λ

1 − λ
<

λ + µ

c
,(6.11)
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where ξ∗ is as in (6.10). The curve t �→ (x(t,0), y(t, ξ∗)) divides R
2
+ into two

connected components each containing the region D1 of (6.5) and

M � (R2
+ \ D2) ∩

{
(x, y) ∈ R

2
+ : (λ + 1)x + (λ − 1)y + λ

√
2 < 0

}
,

respectively [see (6.7)]. Every curve t �→ (x(t, φ0), y(t, φ1)), t ≥ 0, starting at
(φ0, φ1) in M will stay in the same component as M .Therefore, the curve inter-
sects the line ℓ away from D1, and (6.8) implies that (6.4) is satisfied for every
(φ0, φ1) ∈ M .

For (φ0, φ1) ∈ (R2
+ \ D2) ∩ {(x, y) ∈ R

2
+ : (λ + 1)x + (λ − 1)y + λ

√
2 ≥ 0}, the

curve t �→ (x(t, φ0), y(t, φ1)), t ≥ 0, does not meet ℓ; therefore, t �→ x(t, φ0) +
y(t, φ1) increases by (6.8) and

x(t, φ0) + y(t, φ1) > x(0, φ0) + y(0, φ1)

= φ0 + φ1 ≥ ξ∗ ≥ λ + µ

c

√
2, 0 < s < ∞.

Thus, the sufficient condition (6.4) for the optimality of immediate stopping holds
for every (φ0, φ1) ∈ R

2
+ \ D2.

LEMMA 6.1. Let τD be the exit time of the process �̃ from the region D

in (6.1). Then E
φ0,φ1
0 [τD] is finite for every (φ0, φ1) ∈ R

2
+.

PROOF. Let f (φ0, φ1) � φ0 + φ1, (φ0, φ1) ∈ R
2
+. Using the explicit form of

the infinitesimal generator Ã of the process �̃ in (A.4), we obtain

Ãf (φ0, φ1) = (λ + 1)φ0 + λ(1 − m)√
2

+ (λ − 1)φ1 + λ(1 + m)√
2

+ µ

[(
1 − 1

µ

)
φ0 +

(
1 + 1

µ

)
φ1 − (φ0 + φ1)

]
(6.12)

= λ
(
φ0 + φ1 +

√
2
)
≥ λ

√
2

for every (φ0, φ1) ∈ R
2
+. Since f (·, ·) is bounded on �D of (6.1) and τD ∧ t , t ≥ 0,

is a bounded F-stopping time, (A.3) holds for τ = τD ∧ t . Then we have

ξ∗
(

1 + 1

µ

)
≥ E

φ0,φ1
0

[
f
(
�̃τD∧t

)]

= f (φ0, φ1) + E
φ0,φ1
0

[∫ τD∧t

0
Ãf (�̃t ) dt

]
(6.13)

≥ λ
√

2E
φ0,φ1
0 [τD ∧ t], t ≥ 0.

The process �̃ may leave the region D in (6.1) continuously or by a jump.
Since f (S(φ0, φ1)) = (1 + 1/µ)φ0 + (1 − 1/µ)φ1 ≤ (1 + 1/µ)(φ0 + φ1) =
(1 + 1/µ)f (φ0, φ1) ≤ (1 + 1/µ)ξ∗ for every (φ0, φ1) ∈ D, and this upper bound
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is larger than ξ∗, the first inequality in (6.13) follows. The second inequality is
due to (6.12). Finally, the monotone convergence theorem and (6.13) imply that
E

φ0,φ1
0 [τD] is finite. �

7. The solution. In Proposition 5.1, we showed that the function V (φ0, φ1)

of our original optimal stopping problem in (4.12) is approximated uniformly in
(φ0, φ1) ∈ R

2
+ by the decreasing sequence {Vn(φ0, φ1)}n∈N of the value functions

of the optimal stopping problems in (5.1). The value functions Vn(·, ·) = vn(·, ·),
n ∈ N can be calculated sequentially by setting v0 ≡ 0, and

vn+1(φ0, φ1) = J0vn(φ0, φ1) = inf
t∈[0,∞]

Jvn(t, φ0, φ1),

(7.1)
(φ0, φ1) ∈ R

2
+,

where the operator J is defined in (5.3); see Proposition 5.5.
Finding the infimum in (7.1) is not as formidable as it may appear. By Propo-

sition 5.5, the infimum in (7.1) is always attained [i.e., the case ε = 0 in (5.11)].
By Corollary 5.8, it is attained at the time, rn(φ0, φ1), the deterministic continuous
curve t �→ (x(t, φ0), y(t, φ1)) in (4.7) exits from the set

{(φ0, φ1) ∈ R
2
+ :vn+1(φ0, φ1) < 0} ⊆ {(φ0, φ1) ∈ R

2
+ :v(φ0, φ1) < 0} ⊆ D;

here D is the triangular region in (6.1), and the last inclusion is proven in Section 6.
Therefore, the search for the infimum in (7.1) can be confined for every n ∈ N to

Jvn(t, φ0, φ1) =
∫ t

0
e−(λ+µ)u[g + µ · vn ◦ S]

(
x(u,φ0), y(u,φ1)

)
du,

(7.2)
t ∈ [0, r̄(φ0, φ1)],

over the interval t ∈ [0, r̄(φ0, φ1)], where

r̄(φ0, φ1) � inf{t ≥ 0 :x(t, φ0) + y(t, φ1) ≥ ξ∗}, (φ0, φ1) ∈ R
2
+,

is the (bounded) exit time of the curve t �→ (x(t, φ0), y(t, φ1)) from the region D

of (6.1).
Finally, the error in approximating V (·, ·) of (4.12) by {vn(·, ·)}n∈N in (7.1) can

be controlled. For every ε > 0,
√

2

c

(
µ

λ + µ

)n

< ε �⇒ −ε ≤ V (φ0, φ1) − vn(φ0, φ1) ≤ 0,

(7.3)
(φ0, φ1) ∈ R

2
+,

by Propositions 5.1 and 5.5. The exponential rate of the uniform convergence of
{vn(·, ·)}n∈N to V (·, ·) on R

2
+ in (7.3) may also reduce the computational burden

by allowing relatively small number of iterations in (7.1).
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In the remainder, we draw attention to certain special cases where the value
function V (·, ·) can be calculated gradually at each iteration in (7.1); see Propo-
sition 8.3. In the meantime, we shall give a precise geometric description of the
stopping regions

Ŵn � {(φ0, φ1) ∈ R
2
+ :vn(φ0, φ1) = 0}, Cn � R

2
+ \ Ŵn, n ∈ N,(7.4)

Ŵ � {(φ0, φ1) ∈ R
2
+ :v(φ0, φ1) = 0}, C � R

2
+ \ Ŵ,(7.5)

and describe the optimal stopping strategies.

8. The structure of the stopping regions. By Proposition 5.12, the set Ŵ is
the optimal stopping region for the problem (4.12). Namely, stopping at the first

hitting time U0 = inf{t ∈ R+ : �̃t ∈ Ŵ} of the process �̃ = (�̃(0), �̃(1)) to the set Ŵ

is optimal for (4.12).
Similarly, we shall call each set Ŵn, n ∈ N, a stopping region for the family of

optimal stopping problems in (5.1). However, unlike the case above, we need the
first n stopping regions, Ŵ1, . . . ,Ŵn, in order to describe an optimal stopping time
for the problem of (5.1). Using Corollary 5.8, the optimal stopping time Sn ≡ S0

n

in Proposition 5.5 for Vn of (5.1) may be described as follows: Stop if the process

�̃ hits Ŵn before N jumps. If N jumps before �̃ reaches Ŵn, then wait, and stop if

�̃ hits Ŵn−1 before the next jump of N , and so on. If the rule is not met before the

(n − 1)st jump of N , then stop at the earliest of the hitting time of Ŵ1 and the next

jump time of N . See Figure 3(b) for three realizations of the stopping time S2.

FIG. 3. (a) The stopping regions (each arrow at the boundary of a region points toward the interior

of that region), and (b) three sample-paths and the optimal stopping times S2 and U0 for the optimal

stopping problems V2 in (5.1) and V in (4.12), respectively.
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We shall call each Cn � R
2
+ \ Ŵn, n ∈ N, a continuation region for the family

of optimal stopping problems in (5.1), and C � R
2
+ \ Ŵ the optimal continuation

region for (4.12). The stopping regions are related by

R
2
+ \ D ⊂ Ŵ ⊂ · · · ⊂ Ŵn ⊂ Ŵn−1 ⊂ · · · ⊂ Ŵ1 ⊂ R

2
+ \ C0 and

(8.1)

Ŵ =
∞⋂

n=1

Ŵn,

since the sequence of nonpositive functions {vn}n∈N is decreasing, and v =
limn→∞ ↓ vn by Lemma 5.4. The sets D and C0 are defined in (6.1) and (4.13), re-
spectively. Since vn, n ∈ N and v are concave and continuous mappings from R

2
+

into (−∞,0] by Lemma 5.4, the stopping regions Ŵn, n ∈ N, and Ŵ are convex
and closed. Let us define the functions γn : R+ �→ R+, n ∈ N, and γ : R+ �→ R+
by [see also Figure 3(a)]

γn(x) � inf{y ∈ R+ : (x, y) ∈ Ŵn}, x ∈ R+,

γ (x) � inf{y ∈ R+ : (x, y) ∈ Ŵ}, x ∈ R+,

and the numbers

ξn � inf{x ∈ R+ :γn(x) = 0}, n ∈ N, and ξ � inf{x ∈ R+ :γ (x) = 0}.
Then the stopping regions Ŵn, n ∈ N, and Ŵ are the convex and closed epigraphs
of the functions γn(·), n ∈ N, and γ (·), respectively. Therefore, γn(·), n ∈ N, and
γ (·) are convex and continuous mappings from R+ into R+.

By the set-inclusions in (8.1), we have (λ/c)
√

2 ≤ ξn−1 ≤ ξn ≤ ξ ≤ ξ∗ for the
same ξ∗ ∈ R+ in the description (6.1) of the set D. Since vn, n ∈ N, and v vanish
on R+ \ D = {(φ0, φ1) ∈ R

2
+ :φ0 + φ1 ≥ ξ∗} by (8.1), the functions γn(·), n ∈ N,

and γ (·) vanish on [ξ∗,∞). However, ξn and ξ are the smallest zeros of the con-
tinuous functions γn(·), n ∈ N, and γ (·), respectively. Since both functions are also
nonnegative and convex, the function γn(·), n ∈ N [resp. γ (·)] is zero on [ξn,∞)

(resp. on [ξ,∞)) and strictly decreasing on [0, ξn] (resp. on [0, ξ ]). For future
reference, we now summarize our results.

PROPOSITION 8.1. There are decreasing, convex and continuous mappings

γn : R+ �→ R+, n ∈ N, and γ : R+ �→ R+ such that

Ŵn = {(φ0, φ1) ∈ R
2
+ :φ1 ≥ γn(φ0)}, n ∈ N,

Ŵ = {(φ0, φ1) ∈ R
2
+ :φ1 ≥ γ (φ0)}.

The sequence {γn(φ0)}n∈N is increasing and γ (φ0) = lim ↑ γn(φ0) for every

φ0 ∈ R+. There are numbers

λ

c

√
2 ≤ ξ1 ≤ · · · ≤ ξn−1 ≤ ξn ≤ · · · ≤ ξ < ξ∗ < ∞(8.2)
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such that γn(·), n ∈ N [resp., γ (·)] is strictly decreasing on [0, ξn], n ∈ N (resp.,
[0, ξ ]) and vanishes on [ξn,∞), n ∈ N (resp., [ξ,∞)). Moreover,

λ

c

√
2 ≤ γ1(0) ≤ · · · ≤ γn−1(0) ≤ γn(0) ≤ · · · ≤ γ (0) < ξ∗ < ∞.(8.3)

The number ξ∗ is the same as in the definition of the set D in (6.1).

NOTATION 8.2. Let S : R2
+ �→ R

2
+ be the same linear map as in (5.8).

(N1) For any subset R ⊆ R
2
+,

S−(n+1)(R) � S−1(S−n(R)), n ∈ N,

S−1(R) � {(x, y) ∈ R
2
+ :S(x, y) ∈ R},

Sn+1(R) � S(Sn(R)), n ∈ N,

S(R) � {S(x, y) ∈ R
2
+ : (x, y) ∈ R},

and S0(R) = S(S−1(R)) = S−1(S(R)) = R.
(N2) For every singleton {(x, y)} ⊆ R

2
+, we write

Sm({x, y}) = Sm(x, y) =
((

1 − 1

µ

)m

x,

(
1 + 1

µ

)m

y

)
, m ∈ Z.

(N3) For any function g : R+ �→ R+, we define the function Sn[g] : R+ �→ R+,
n ∈ Z by

Sn[g](x) � inf{y ∈ R+ : (x, y) ∈ Sn(epi(g))}, x ∈ R+.

That is, Sn[g] is the function whose epigraph is the set Sn(epi(g)). Note that
we use Sn(·) and Sn[·] to distinguish the sets and the functions.

(N4) For every subset R of R
2
+, we denote by cl(R) its closure in R

2
+ and by

int(R) its interior. We shall denote the support of a function g : R+ �→ R+
by

supp(g) = cl
(
{x ∈ R+ :g(x) > 0}

)
.

The process �̃ jumps into the region Ŵ [resp. S−n(Ŵ), n ∈ N] if the process
N jumps while �̃ is in the region S−1(Ŵ) [resp. S−(n+1)(Ŵ), n ∈ N]. Clearly, if
the process �̃ can never leave the region S−1(Ŵ) before a jump, then the value
functions V (·, ·) and V1(·, ·) in (5.1) must coincide on the region S−1(Ŵ).

PROPOSITION 8.3. Suppose that

∀n ∈ N : (φ0, φ1) ∈ S−n(Ŵ) �⇒
(
x(t, φ0), y(t, φ1)

)
∈ S−n(Ŵ),

(8.4)
t ∈ [0,∞),
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holds. Then for every n ∈ N, we have

V (φ0, φ1) = Vn(φ0, φ1) = Vn+1(φ0, φ1) = · · · ∀ (φ0, φ1) ∈ S−n(Ŵ),

S−n(Ŵ) ∩ Ŵ = S−n(Ŵ) ∩ Ŵn = S−n(Ŵ) ∩ Ŵn+1 = · · · ,(8.5)

S−n(Ŵ) ∩ C = S−n(Ŵ) ∩ Cn = S−n(Ŵ) ∩ Cn+1 = · · · .

Since Ŵ and Ŵn are convex and closed, and S(·, ·) is a linear mapping, the sets
S−n(Ŵ) and S−n(Ŵn), n ∈ N, are convex and closed. The sets Ŵ and Ŵn, n ∈ N, are
the epigraphs of the continuous functions γ (·) and γn(·), n ∈ N, in Proposition 8.3,
respectively. Therefore,

S−n(Ŵ) = {(x, y) ∈ R
2
+ :y ≥ S−n[γ ](x)},

(8.6)
S−n(Ŵn) = {(x, y) ∈ R

2
+ :y ≥ S−n[γn](x)},

are the epigraphs of the functions S−n[γ ](·) and S−n[γn](·) for every n ∈ N0.
These functions are decreasing, continuous and convex. In fact,

S−n[γ ](x) =
(

µ

µ + 1

)n

γ

((
µ − 1

µ

)n

x

)
, x ∈ R+, n ∈ Z,(8.7)

and the function S−n[γn](·) is obtained by replacing γ with γn in (8.7). The sup-
port of the functions S−n[γ ](·) and S−n[γn](·) are

supp(S−n[γ ]) =
[
0,

(
µ

µ − 1

)n

ξ

]
,

(8.8)

supp(S−n[γn]) =
[
0,

(
µ

µ − 1

)n

ξn

]
,

respectively, for every n ∈ Z. By Proposition 8.1, the functions S−n[γ ](·) and
S−n[γn](·) are strictly decreasing on their supports.

Since S−n[γ ](0) = (µ/(µ + 1))nγ (0) < γ (0) and S−n[γ ](ξ) > 0 = γ (ξ) for
every n ∈ N, the functions S−n[γ ](·) and γ (·) intersect, and

xn(γ ) � min{x ∈ R+ :S−n[γ ](x) = γ (x)} ∈ (0,∞), n ∈ N.(8.9)

COROLLARY 8.4. Suppose that (8.4) holds. Then for every n = 1,2, . . . and

k ≥ n, we have xn ≡ xn(γ ) = xn(γk), and

S−n(Ŵ) ∩ C ∩ ([0, xn] × R+) = S−n(Ŵk) ∩ Ck ∩ ([0, xn] × R+).(8.10)

Particularly, we have γ (x) = γn(x) for every x ∈ [0, xn], and

V (x, y) = Vn(x, y) ∀ (x, y) ∈ S−n(Ŵn) ∩ Cn ∩ ([0, xn] × R+),
(8.11)

n ∈ N.
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PROOF. Let us fix any k ≥ n ∈ N. Since the value functions V (·, ·) and Vk(·, ·)
are equal on the region S−n(Ŵ) by Proposition 8.3, the boundaries of the regions
Ŵ and Ŵk coincide in the region S−n(Ŵ). Particularly, we have

γ (x) = γk(x) for every x ∈ [0, xn(γ )](8.12)

since S−n[γ ](x) < γ (x) for every x ∈ [0, xn(γ )). Therefore,

S−n[γ ](x) = S−n[γk](x)
(8.13)

for every x ∈
[
0,

(
µ

µ − 1

)n

xn(γ )

]
⊃ [0, xn(γ )].

Now, (8.12) and (8.13) imply that xn(γ ) = xn(γk), and (8.6) implies that

S−n(Ŵ) ∩ C ∩
(
[0, xn(γ )] × R+

)
= S−n(Ŵk) ∩ Ck ∩

(
[0, xn(γ )] × R+

)
.

Equality (8.11) follows immediately from Proposition 8.3. �

The identity in (8.11) suggests that, in a finite number of iterations of (7.1), we
can find the restrictions of the value function V (·, ·) and the continuation region C

to the set R+ × [B,∞) for any B > 0, when the condition (8.4) holds:
Step A.1. Calculate the value function v1(0, y) for every y ∈ [0, ξ∗], and deter-

mine γ (0) = γ1(0) = inf{y ∈ R+ :v1(x, y) = 0} ∈ (0, ξ∗); see (8.3), Corollary 8.4.
Step A.2. Given any B > 0, find the smallest n ∈ N such that

B >

(
µ

µ + 1

)n

γ1(0) =
(

µ

µ + 1

)n

γn(0) = S−n[γn](0).(8.14)

Because every S−m[γm](·), m ∈ N, is decreasing, this implies R+ × [B,∞) ⊂
S−n(Ŵn); see (8.6). We also have n ≤ min{m ∈ N :B > (µ/(µ + 1))mξ∗} since
γ1(0) ∈ (0, ξ∗).

Step A.3. Calculate vn(φ0, φ1) for every (φ0, φ1) ∈ R+ \D by (7.1), where D is
as in (6.1). By (8.1), D ⊆ Ŵn and vn ≡ 0 on D.

Then the value functions V (·, ·) and vn(·, ·) are equal on R+ × [B,∞) and
(R+ × [B,∞)) ∩ C = (R+ × [B,∞)) ∩ Cn.

The next lemma implies that we can calculate the exact value function V (·, ·)
under condition (8.4) on the set R+ × (0,∞) along an increasing sequence of sets
R+ × [Bn,∞), and on R+ × {0} by the continuity of the function V (·, ·) on R

2
+.

LEMMA 8.5. Suppose that (8.4) holds. Let ξ∗ be the same number as in the

definition of the region D in (6.1). Then limn→∞ S−n(Ŵ) = R+ × (0,∞), and

R+ ×
[(

µ

1 + µ

)n

· ξ∗,+∞
)

⊆ S−n(Ŵ), n ∈ N.(8.15)
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PROOF. Recall from (8.1) that R+ × [ξ∗,∞) ⊂ R
2
+ \ D ⊂ Ŵ. The rectangle

on the left-hand side in (8.15) is the same set as S−n(R+ × [ξ∗,∞)) ⊂ S−n(Ŵ).
But, (8.15) implies that R+ × (0,∞) ⊆ lim infn→∞S−n(Ŵ).

On the other hand, for every x ∈ R+, there exists number N(x) such that
Sn(x,0) = ((1 − 1/µ)nx,0) /∈ Ŵ, n ≥ N(x). Then (x,0) /∈ S−n(Ŵ) for every
n ≥ N(x). This implies that lim supn→∞ S−n(Ŵ) ⊆ R+ × (0,∞). �

REMARK 8.6. Every set S−n(Ŵ), n ∈ N, is separated from its comple-
ment by the strictly decreasing, convex and continuous function S−n[γ ](x), x ∈
[0, (µ/(µ − 1))nξ ]. Therefore, the condition (8.4) will be satisfied, for example, if
the mappings t �→ x(t, φ0), t ∈ R+, and t �→ y(t, φ1), t ∈ R+, are increasing for
every (φ0, φ1) ∈ R

2
+. We have seen in Section 4.3 that this is always the case when

λ is “large.”
Thus, if λ is “large,” then there is a sequence of sets R+ × [Bn,∞), n ∈ N,

increasing to R+ ×(0,∞) in the limit, such that V (·, ·) = vn(·, ·) on R+ ×[Bn,∞)

for every n ∈ N. See also Section 10 below.

9. The boundaries of the stopping regions. We shall show that the opti-
mization in (7.1) can be avoided in principle, and v1, v2, . . . can be calculated by
integration.

Note that we obtain Jvn(t, φ0, φ1) in (7.1) by integrating the function [g +
µ · vn ◦ S](·, ·) along the curve u �→ (x(u,φ0), y(u,φ1)) on u ∈ [0, t]; see (5.3).
Therefore, the infimum in (7.1) is determined by the excursions of u �→ (x(u,φ0),

y(u,φ1)), u ∈ R+, into the regions where the sign of the continuous mapping
[g + µ · vn ◦ S](·, ·) is negative and positive.

LEMMA 9.1. For every n ∈ N, we have

An � {(x, y) ∈ R
2
+ : [g + µ · vn ◦ S](x, y) < 0} ⊆ Cn+1.(9.1)

PROOF. Let (φ0, φ1) ∈ An. Since the function u �→ [g + µ · vn ◦ S](x(u,φ0),

y(u,φ1)) is continuous, there exists some t = t (φ0, φ1) > 0 such that

Jvn(t, φ0, φ1) =
∫ t

0
e−(λ+µ)u[g + µ · vn ◦ S]

(
x(u,φ0), y(u,φ1)

)
du < 0.

Hence, vn+1(φ0, φ1) = J0vn(φ0, φ1) ≤ Jvn(t, φ0, φ1) < 0, and (φ0, φ1) ∈ Cn+1.
�

For certain cases, the regions An and Cn+1 coincide, that is, the continuation re-
gion Cn+1 for vn+1(·, ·) can be found immediately when the value function vn(·, ·)
is available. Then vn+1 ≡ 0 on Ŵn+1 = R

2
+ \ Cn+1, and we calculate vn+1(·, ·) on
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Cn+1 by the integration

vn+1(φ0, φ1) = Jvn(t, φ0, φ1)|t=rn(φ0,φ1)

=
∫ rn(φ0,φ1)

0
e−(λ+µ)u[g + µvn ◦ S]

(
x(u,φ0), y(u,φ1)

)
du,(9.2)

(φ0, φ1) ∈ Cn+1,

of the function [g + µ · vn ◦ S](·, ·) over the curve (x(·, φ0), y(·, φ1)) until the
exit time rn(φ0, φ1) [see (5.14)] of the continuous curve u �→ (x(u,φ0), y(u,φ1)),
u ∈ R+ from the continuation region Cn+1.

The region An in (9.1) has properties very similar to those of the continuation
region Cn+1; compare Lemma 9.2 and Proposition 8.1. For example, both sets are
separated from their complements by a strictly decreasing, convex and continuous
function which stays flat on the x-axis for all large x values.

For every n ∈ N, let us define the function an : R+ �→ R+ by

an(x) � inf{y ≥ 0 : (x, y) ∈ R
2
+ \ An}

(9.3)
= inf{y ≥ 0 : [g + µvn ◦ S](x, y) ≥ 0}.

The function an(·) is finite since, given any x ∈ R+, we have [g+µ ·vn◦S](x, y) >

0 for every large y ∈ R+. Recall that the function vn(·, ·) vanishes outside the
bounded region Cn. The linear mapping S : R2

+ �→ R
2
+ in (5.8) is increasing in

both x and y. The affine mapping g : R2
+ �→ R in (4.12) is also increasing and

grows unboundedly in both x and y.
Similarly, given for large x ∈ R+, we have [g + µ · vn ◦ S](x, y) ≥ 0, ∀y ∈ R+.

Therefore, an(x) = 0 for x ∈ [α,∞) for some α ≥ 0, and

αn � inf{x ≥ 0 :an(x) = 0} is finite.(9.4)

The set R
2
+ \An = {(x, y) ∈ R

2
+ : [g+µ ·vn ◦S](x, y) ≥ 0} is convex and closed

since vn(·, ·) is concave and continuous, S(·, ·) is linear and g(·, ·) is affine. Be-
cause R

2
+ \ An is the epigraph of an(·), this implies that an(·) is a convex and

continuous mapping from R+ into R+.
The function an(·) does not vanish identically on R+; in particular, an(0) > 0

since the continuous function [g + µ · vn ◦ S](x, y) is strictly negative at (x, y) =
(0,0):

[g + µ · vn ◦ S](0,0) = g(0,0) + µ · vn(0,0) ≤ g(0,0) = −λ

c

√
2 < 0.

Because an(·) is continuous, this implies that the number αn in (9.4) is strictly
positive. Since an(·) is convex and vanishes for every large x ∈ R+, it is strictly

decreasing on [0, αn), and equals zero on [αn,∞).
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LEMMA 9.2. For n ≥ 1, there exist a number αn ∈ (0,∞) and a strictly de-

creasing, convex and continuous mapping an : [0, αn] �→ R+ such that an(αn) = 0,
and

{(
x, an(x)

)
;x ∈ [0, αn]

}
= {(x, y) ∈ R

2
+; [g + µ · vn ◦ S](x, y) = 0}.(9.5)

Moreover, the continuous mapping (x, y) �→ [g+µ ·vn ◦S](x, y), n ≥ 1, is strictly

increasing in each argument, and for every n ≥ 1,

{(x, y) ∈ [0, αn) × R+;y < an(x)}
(9.6)

= {(x, y) ∈ R
2
+; [g + µ · vn ◦ S](x, y) < 0} ≡ An.

Next, we shall relate the regions An in (9.1) and Cn+1, and their boundaries
an(·) and γn+1(·), respectively, for every n ∈ N.

Using the characterization of the stopping regions Ŵn, n ∈ N, in Proposition 8.1
in terms of the switching curves γn(·), the exit time rn(·, ·) in Corollary 5.8 can be
expressed as

rn(φ0, φ1) = inf
{
t > 0 :y(t, φ1) = γn+1

(
x(t, φ0)

)}
, (φ0, φ1) ∈ R

2
+,(9.7)

since the functions x(·, φ0) and y(·, φ1) in (4.8) are continuous. Because every
γn+1(·), n ∈ N, is bounded, the function rn(·, ·) is real-valued. Thus

0 < rn(φ0, φ1) < ∞ for every (φ0, φ1) ∈ Cn+1.

Therefore, the (smallest) minimizer rn(φ0, φ1) of the function t �→ Jvn(t, φ0, φ1)

as in (5.13), is an interior point of (0,∞] for every (φ0, φ1) ∈ Cn+1, and the deriv-
ative ∂Jvn(t, φ0, φ1)/∂t vanishes at t = rn(φ0, φ1). Using (5.7) and (9.7) gives

0 = [g + µ · vn ◦ S]
(
x(t, φ0), y(t, φ1)

)
|t=rn(φ0,φ1)

= [g + µ · vn ◦ S]
(
x(t, φ0), γn+1

(
x(t, φ0)

))
|t=rn(φ0,φ1),(9.8)

(φ0, φ1) ∈ Cn+1.

Let us denote the boundary of Ŵn+1 by

∂Ŵn+1 �
{(

x, γn+1(x)
)

:x ∈ [0, ξn+1]
}
,(9.9)

and define the entrance and exit boundaries of Ŵn+1 by

∂Ŵ
e
n+1 �

{(
x
(
rn(φ0, φ1), φ0

)
, γn+1

(
y
(
rn(φ0, φ1), φ1

)))
,

for some (φ0, φ1) ∈ Cn+1
}
,

(9.10)
∂Ŵ

x
n+1 �

{
(φ0, φ1) ∈ Ŵn+1 :

(
x(t, φ0), y(t, φ1)

)
∈ Cn+1,

t ∈ (0, δ] for some δ > 0
}
,

respectively. The path t �→ (x(t, φ0), y(t, φ1)) starts at some (φ0, φ1) ∈ Cn+1 and
enters the region Ŵn+1 (for the first time) at the entrance boundary ∂Ŵ

e
n+1. Simi-

larly, for every (φ0, φ1) ∈ ∂Ŵ
x
n+1, the path t �→ (x(t, φ0), y(t, φ1)) exits Ŵn+1 im-

mediately.
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REMARK 9.3. By Lemma 9.5 below, the entrance boundary ∂Ŵ
e
n+1 is a

subset of the boundary ∂An of the region An in (9.1). Clearly, the curve t �→
(x(t, φ0), y(t, φ1)) starting at any (φ0, φ1) ∈ ∂Ŵ

e
n+1 ⊆ ∂An cannot return imme-

diately into the region An [otherwise Jvn(t, φ0, φ1) < 0 for some t > 0 and
(φ0, φ1) ∈ Cn+1]. In the theory of Markov processes, every element of ∂Ŵ

e
n+1

(resp. ∂Ŵ
x
n+1) is a regular boundary point of the domain An (resp. the interior

of Ŵn+1) with respect to the process �̃.

REMARK 9.4. Observe that for every (φ0, φ1) ∈ ∂Ŵ
x
n+1, the quantity rn(φ0,

φ1) in (5.14) is the return time of the curve t �→ (x(t, φ0), y(t, φ1)) to the stop-
ping region Ŵn+1 and is also strictly positive. Therefore, the first-order necessary
optimality condition in (9.8) also holds on the exit boundary ∂Ŵ

x
n+1. Thus,

0 = [g + µ · vn ◦ S]
(
x(t, φ0), γn+1

(
x(t, φ0)

))
|t=rn(φ0,φ1),

(9.11)
(φ0, φ1) ∈ Cn+1 ∪ ∂Ŵ

x
n+1.

9.1. The entrance boundary ∂Ŵ
e
n+1. Since all of the functions in (9.11) are

continuous, (9.11) and the definition of the entrance boundary ∂Ŵ
e
n+1 in (9.10)

imply

[g + µ · vn ◦ S](x, y) = 0, (x, y) ∈ ∂Ŵ
e
n+1.(9.12)

The next lemma follows from (9.12), Lemma 9.2 and the continuity of the function
[g + µ · vn ◦ S](·, ·).

LEMMA 9.5. For every n ∈ N, let αn ∈ R+ and an : R+ �→ R+ be the same as

in Lemma 9.2. Then cl(∂Ŵ
e
n+1) ⊆ {(x, an(x)) :x ∈ [0, αn]}, n ∈ N.

COROLLARY 9.6. For any n ∈ N, if the equality ∂Ŵn+1 = cl(∂Ŵ
e
n+1) holds,

then

∂Ŵn+1 =
{(

x, an(x)
)

:x ∈ [0, αn]
}
.(9.13)

In other words, ξn+1 = αn, and γn+1(x) = an(x) for every x ∈ [0, ξn+1] ≡ [0, αn],
and

Cn+1 = {(x, y) : [g + µ · vn ◦ S](x, y) < 0}.(9.14)

PROOF. By Lemma 9.5, {(x, γn+1(x)) :x ∈ [0, ξn+1]} = ∂Ŵn+1 ⊆ {(x, an(x)) :
x ∈ [0, αn]}. Since γn+1(·) and an(·) are strictly decreasing, continuous functions
which equal zero at the right-hand point of their domains, they must be identical.
Finally,

Cn+1 = R
2
+ \ Ŵn+1 = {(x, y) ∈ [0, ξn+1) × R+ :y < γn+1(x)}

= {(x, y) ∈ [0, αn) × R+ :y < an(x)}
= {(x, y) ∈ R

2
+ : [g + µ · vn ◦ S](x, y) < 0},
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where the last equality follows from (9.6). �

If the disorder arrival rate λ is large, then every point on the boundary ∂Ŵn+1 of
the stopping region Ŵn+1 belongs to the entrance boundary ∂Ŵ

e
n+1; see Section 10.

Therefore, the stopping boundary ∂Ŵn+1 for the value function vn+1(·, ·) is deter-
mined as in Corollary 9.6, as soon as the value function vn(·, ·) is calculated. Using
this observation, the main solution method described at the beginning of Section 7
can be tailored into a more efficient algorithm; see Section 10 and Figure 4.

The exit boundary ∂Ŵ
x
n+1 may not always be nonempty. If it is nonempty, it is

also determined by the entrance boundary ∂Ŵ
e
n+1, and the general solution method

can be similarly enhanced in this case; see Section 11.

9.2. The exit boundary ∂Ŵ
x
n+1. Using the semigroup property in (4.9) of the

functions x(·, ·) and y(·, ·), along with a change of variable, we obtain

Jvn(t, φ0, φ1) = −e−(λ+µ)tJvn

(
−t, x(t, φ0), y(t, φ1)

)
,

(9.15)
t ≥ 0, (φ0, φ1) ∈ R

2
+.

Substituting in (5.12) w(·, ·) = vn(·, ·), and using the identity above, we obtain

Jtvn(φ0, φ1)
(9.16)

= e−(λ+µ)t [vn+1
(
x(t, φ0), y(t, φ1)

)
− Jvn

(
−t, x(t, φ0), y(t, φ1)

)]

for t ≥ 0, (φ0, φ1) ∈ R
2
+. Since vn+1(x(rn(φ0, φ1), φ0), y(rn(φ0, φ1), φ1)) = 0,

and Jrn(φ0,φ1)vn(φ0, φ1) = vn+1(φ0, φ1), the equality in (9.16) at t = rn(φ0, φ1)

gives

vn+1(φ0, φ1) =
[
−e−(λ+µ)tJvn

(
−t, x(t, φ0), y(t, φ1)

)]
|t=rn(φ0,φ1)(9.17)

for (φ0, φ1) ∈ R
2
+. Recall from Section 9.1 that (x(rn(φ0, φ1), φ0), y(rn(φ0, φ1),

φ1)) ∈ ∂Ŵ
e
n+1 for every (φ0, φ1) ∈ Cn+1 ∪ ∂Ŵ

x
n+1. Therefore, (9.17) implies that

we can both calculate the value function vn+1(·, ·) and find the continuation region
Cn+1 by backtracking the curves t �→ (x(−t, φ0), y(−t, φ1)) from every point
(φ0, φ1) ∈ ∂Ŵ

e
n+1 on the entrance boundary. Let us define for every (φ0, φ1) ∈

R
2
+, n ≥ 0,

r̂(φ0, φ1) � inf
{
t ≥ 0 :

(
x(−t, φ0), y(−t, φ1)

)
/∈ R

2
+
}
,

(9.18)
r̂n(φ0, φ1) � inf

{
t ∈

(
0, r̂(φ0, φ1)

]
:−Jvn(−t, φ0, φ1) ≥ 0

}
,

where the infimum of an empty set is infinity. Since the mapping t �→ Jvn(t, φ0, φ1)

is continuous, we have Jvn(−r̂n(φ0, φ1), φ0, φ1) = 0 if 0 < r̂n(φ0, φ1) < ∞.
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FIG. 4. Case I: λ is “large.” The illustration of Method C: Steps C.1 and C.2 when (a) n = 0, and

(b) n = 1 in Step C.1.
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LEMMA 9.7. The entrance boundary ∂Ŵ
e
n+1 determines the exit bound-

ary ∂Ŵ
x
n+1, the continuation region Cn+1, and the value function vn+1(·, ·)

on Cn+1:

∂Ŵ
x
n+1 =

{(
x(−t, φ0), y(−t, φ1)

)
|t=r̂n(φ0,φ1) : (φ0, φ1) ∈ ∂Ŵ

e
n+1,

r̂n(φ0, φ1) ≤ r̂(φ0, φ1)
}
,

Cn+1 =
{(

x(−t, φ0), y(−t, φ1)
)

: (φ0, φ1) ∈ ∂Ŵ
e
n+1, t ∈

(
0, řn(φ0, φ1)

]}
\ ∂Ŵ

x
n+1,

where řn(φ0, φ1) = r̂n(φ0, φ1) ∧ r̂(φ0, φ1). For every (φ0, φ1) ∈ ∂Ŵ
e
n+1

vn+1
(
x(−t, φ0), y(−t, φ1)

)
= −e−(λ+µ)tJvn(−t, φ0, φ1),

t ∈
(
0, řn(φ0, φ1)

]
.

10. Case I revisited: efficient methods for “large” post-disorder arrival

rates This is Case I on page 1201 where λ ≥ [1 − (1 +m)(c/2)]+ is “large,” and
the sample-paths of both components of the process �̃ = [�̃(0), �̃(1)]T increase
between the jumps; see also Figure 1(a). By the relation (4.10), the deterministic
functions t �→ x(t, φ0), t ∈ R+, and t �→ y(t, φ1), t ∈ R+, are strictly increasing
for every (φ0, φ1) ∈ R

2
+.

By Remark 8.6, the identity in (8.11) between the value functions V (·, ·)
and Vn(·, ·) on the set S−n(Ŵn) ∩ Cn ∩ ([0, xn] × R+) holds for every n ∈ N.
Thus, we can find the value function V (·, ·) by calculating Vn(·, ·), n ∈ N, using
steps A.1–A.3 after Corollary 8.4. This method can be improved further. We shall
show that the optimization in each iteration of (7.1) can be avoided, and the value
function V (·, ·) may be calculated in one pass over the continuation region C; see
Figure 4.

Since the boundary ∂Ŵn+1 of the stopping region Ŵn+1 is a (strictly) decreasing
continuous curve, every point in the set ∂Ŵn+1 ∩ int(R2

+) is accessible from some
point in the continuation region Cn+1. Therefore, we have ∂Ŵn+1 = cl(∂Ŵ

e
n+1) for

every n ∈ N0. By Corollary 9.6, the set An in (9.1) and the continuation region
Cn+1 (and their boundaries) coincide for every n ∈ N0.

If the value function vn(·, ·) ≡ Vn(·, ·) for some n ∈ N0 is already calculated,
then the boundary of the continuation region Cn+1 becomes immediately available
as in (9.13). In fact, (9.5) and (9.14) imply

S(Cn+1) =
{
(x, y) ∈ R

2
+ :vn(x, y) <

[
− 1

µ
· g ◦ S−1

]
(x, y)

}
,(10.1)

S(∂Ŵn+1) =
{
(x, y) ∈ R

2
+ :vn(x, y) =

[
− 1

µ
· g ◦ S−1

]
(x, y)

}
.(10.2)
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The set on the right-hand side in (10.2) is a strictly decreasing, convex and contin-
uous curve in R

2
+, and it is the same as

S(∂Ŵn+1) = S
(
the boundary of the set epi(γn+1) ∩

(
[0, ξn+1] × R+

))

= the boundary of the set epi(S[γn+1]) ∩
([

0,
µ − 1

µ
ξn+1

]
× R+

)
(10.3)

=
{(

x,S[γn+1](x)
)
;x ∈

[
0,

µ − 1

µ
ξn+1

]}
.

If we know vn(·, ·), then we can determine the set in (10.2) of all points (x, y) ∈ R
2
+

satisfying

vn(x, y) =
[
− 1

µ
· g ◦ S−1

]
(x, y) ≡ − x

µ − 1
− y

µ + 1
+ λ

cµ

√
2,(10.4)

and obtain the boundary function γn+1(·) after the transformation of this set
by S−1. Then we can calculate the (smallest) minimizer rn(·, ·) of (7.1) by the
relation (9.7), and the value function vn+1(·, ·) by (9.2). We can continue in this
manner to find the value functions vn+2(·, ·), vn+3(·, ·), . . . . This method saves us
from an explicit search for the solution rn(φ0, φ1) of the minimization problem
in (7.1) for every (φ0, φ1) ∈ Cn+1:

Step B.0. Initialize n = 0, v0(·, ·) ≡ 0.
Step B.1. Find the region

Bn �

{
(x, y) ∈ R

2
+ :vn(x, y) < − x

µ − 1
− y

µ + 1
+ λ

cµ

√
2
}
, n ≥ 1.(10.5)

Step B.2. Determine the continuation region Cn+1 = S−1(Bn) by the transfor-
mation of Bn under S−1.

Step B.3. Calculate the value function vn+1(·, ·) on Cn+1 by using (9.2) and
(9.7).

Step B.4. Set n to n + 1 and go to Step B.1.
In fact, we can do much better than this. After n ∈ N iterations, we find both

vn(·, ·) and V (·, ·), vn+1(·, ·), vn+2(·, ·), . . . on the subset

Qn � S−n(Ŵn) ∩ Cn ∩ ([0, xn] × R+)(10.6)

= {(x, y) ∈ [0, xn] × R+ :S−n[γn](x) ≤ y < γn(x)}, n ∈ N,(10.7)

of Cn+1 by Corollary 8.4. Therefore, we need to determine only the set

Rn+1 � Qn+1 \ Qn, n ∈ N (R1 ≡ Q1),(10.8)

in Step B.2, and calculate the value function vn+1(·, ·) only on this set in Step B.3.
By Lemma 8.5, this modified method calculates V (·, ·) [and all Vn(·, ·), n ∈ N, si-
multaneously] on any given set R+×(0,B), B > 0, in a finite number of iterations.
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We shall describe this modified method as Steps C.0–C.2 after Proposition 10.1 af-
ter establishing a few facts below. Several steps of the method are also illustrated
in Figure 4.

Since v0 ≡ 0, setting n = 0 in (10.4) gives a straight line; substituting (x, y) =
(x, S[γ1](x)) and comparing this with S(∂Ŵ1) in (10.3) gives

S[γ1](x) = −µ + 1

µ − 1
x + µ + 1

µ
· λ

c

√
2,

(10.9)

x ∈ supp(S[γ1]) =
[
0,

µ − 1

µ
· λ

c

√
2
]
,

and ξ1 = (λ/c)
√

2. Using (8.7), we find

γ1(x) = S−1[S[γ1]](x) = −x + λ

c

√
2, x ∈ [0, ξ1] =

[
0,

λ

c

√
2
]
.(10.10)

The function S−1[γ1](·) is affine and intersects with γ1(·) at x1 ≡ x1(γ1) =
(λ/c)(

√
2/2); see (8.9). By Corollary 8.4 and Remark 8.6, the boundary of the

stopping region on [0, x1] is

γ (x) = γ1(x) = −x + λ

c

√
2, x ∈ [0, x1] ≡

[
0,

λ
√

2

c
· 1

2

]
;(10.11)

see the inset in Figure 4(a). Hence, the boundaries of the optimal stopping region
Ŵ and the stopping regions Ŵn, n ∈ N stick on the upper half of the hypotenuse of
the rectangular triangle {(x, y) ∈ R

2
+ :g(x, y) ≤ 0} ≡ cl(C0).

PROPOSITION 10.1. Fix any n ∈ N. The functions in Sn � (S−k[γk])nk=1 do

not intersect inside the continuation region Cn = {(x, y) ∈ R
2
+ :y < γn(x)}. The

function S[γn+1](·) intersects with each function in Sn ∪ {γn} pairwise exactly

once.

The same conclusions hold when every γk , k = 1, . . . , n, in the proposition is re-
placed with γ ; this can be verified using the elementary properties of convex func-
tions and the affine structure of the boundary function γ (·) in (10.11); see [2] for
the details. Then the proof of Proposition 10.1 follows easily from Corollary 8.4.
We are now ready to give a better version of method B in Section 10 to calculate
each v(·, ·) and the boundary function γ (·). Recall that S−n[γn](·) and xn(γn) are
defined by (8.7) and (8.9). The steps C.1 and C.2 below are illustrated in Figure 4
for n = 0 and n = 1.

Step C.0. Initialize n = 0, x0 = 0, v0(·, ·) ≡ 0 and the region R1 as in (10.8).
Step C.1. Calculate the value function V (φ0, φ1) = vn+1(φ0, φ1) for every

(φ0, φ1) ∈ Rn+1 using (9.2) and (9.7).
Step C.2. Set n to n + 1.
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(i) Determine the set
{
(x, y) ∈ Rn :vn(x, y) = − x

µ − 1
− y

µ + 1
+ λ

cµ

√
2
}

(10.12)

of points in Rn which satisfy (10.4). This is the intersection of the set in (10.3)
and Rn. Namely, it is the section of the strictly decreasing, convex and continuous
curve x �→ S[γn+1](x) contained in Rn.

(ii) Find the subset of Rn enclosed between the vertical y-axis and the curve
in (10.12). This is the intersection Rn ∩ Bn of the sets Rn and Bn in (10.5).

(iii) Find the set Rn+1 = S−1(Rn∩Bn) in (10.8) by applying the transformation
S−1(·, ·) to the set found in (ii).

The region Rn+1 is enclosed between the y-axis from left, the S−1-transforma-
tion of the curve in (10.12) from right. This right boundary of Rn+1 extends the
boundary γ (·) ≡ γn+1(·) from the previous iteration into the region S−(n+1)(Ŵ) ≡
S−(n+1)(Ŵn+1).

(iv) Go to Step C.1.

11. The smoothness of the value functions and the stopping boundaries

The general method described at the beginning of this section evaluates the inte-
grals Jvn(·, φ0, φ1) in (7.2) of the function [g + µ · vn ◦ S](·, ·) along the curves
(x(·, φ0), y(·, φ1)) in R

2
+ in order to calculate the value function vn+1(φ0, φ1) as

in (7.1). For an accurate implementation of this method it may be useful to know
how smooth the integrand, or essentially the value function vn(·, ·), is.

The smoothness of the value function V (·, ·) may also allow us to formulate the
original optimal stopping problem in (4.12) as a free-boundary problem. Then, in
principle, we can calculate the value function V (·, ·) directly, by solving a partial
differential equation, as the next proposition suggests.

PROPOSITION 11.1. Suppose that there is a bounded and continuous func-

tion w : R2
+ �→ (−∞,0] which is continuously differentiable on R

2
+ \ ∂Ŵ, and

whose first-order derivatives are locally bounded near the boundary ∂Ŵ =
{(x, γ (x)) :x ∈ [0, ξ ]}. Moreover,

(Ã − λ)w(x, y) + g(x, y) = 0, (x, y) ∈ C,(11.1)

w(x, y) = 0, (x, y) ∈ Ŵ,(11.2)

(Ã − λ)w(x, y) + g(x, y) > 0, (x, y) ∈ Ŵ \ ∂Ŵ,(11.3)

w(x, y) < 0, (x, y) ∈ C,(11.4)

where Ã is the infinitesimal generator in (A.4) of the process �̃ acting on the

continuously differentiable functions.
Suppose also that the sample-paths of the process �̃ = (�̃(0), �̃(1)) spend zero

time on the boundary ∂Ŵ almost surely, that is,

E
φ0,φ1
0

[∫ ∞

0
1∂Ŵ(�̃t ) dt

]
= 0, (φ0, φ1) ∈ R

2
+.(11.5)
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If the convex function γ (·) is also Lipschitz continuous on [0, ξ ], then w(·, ·) =
V (·, ·) on R

2
+.

PROOF. Similar to the proof of Theorem 10.4.1 in [14], page 215. �

Under certain conditions, we are able to show that the bounded, concave and
continuous value functions vn(·, ·), n ∈ N, and V (·, ·) are continuously differen-
tiable on R

2
+ \ ∂Ŵ

x
n+1 and R

2
+ \ ∂Ŵ

x , respectively, and are not differentiable on
the exit boundaries ∂Ŵ

x
n, and ∂Ŵ

x in (9.10), respectively. The exit boundaries ∂Ŵ
x
n,

n ∈ N, and ∂Ŵ
x , and the entrance boundaries ∂Ŵ

e
n, and ∂Ŵ

e, are connected subsets
of R

2
+, and we have

∂Ŵn = ∂Ŵ
x
n ∪ cl(∂Ŵ

e
n), n ∈ N, and ∂Ŵ = ∂Ŵ

x ∪ cl(∂Ŵ
e).(11.6)

Moreover, the boundary functions γn(·) and γ (·) are continuously differentiable
on their supports.

The hypotheses of Proposition 11.1 are satisfied with w(·, ·) � v(·, ·) in (5.10).
Thus, the function v(·, ·) ≡ V (·, ·) may be obtained by solving the variational

inequalities (11.1)–(11.4). This may be a challenging problem since, as we already
pointed out above, the smooth-fit principle is guaranteed not to hold on some part
of the free boundary. We shall not investigate the variational problem here, but
give a concrete example with this interesting boundary behavior and describe our
solution method for it.

The main result is Proposition 11.17 below, and is proven by induction. Here,
we shall study the basis of the induction by breaking it down in several lemmas.
The proof of the induction hypothesis is very similar, and we shall point out only
the major differences after the proposition’s statement on page 1234.

Let us define the continuous mapping Gn : R
3
+ �→ R by

Gn(t, φ0, φ1) � [g + µ · vn ◦ S]
(
x(t, φ0), y(t, φ1)

)
,

(11.7)
(t, φ0, φ1) ∈ R

3
+, n ≥ 0.

Note that (9.2) gives

vn+1(φ0, φ1) =
∫ rn(φ0,φ1)

0
e−(λ+µ)tGn(t, φ0, φ1) dt,

(11.8)
(φ0, φ1) ∈ Cn+1, n ≥ 0.

Using (9.11), (9.12) and Lemmas 9.2 and 9.5, we obtain
(
x(t, φ0), y(t, φ1)

)
|t=rn(φ0,φ1) ∈ ∂Ŵ

e
n+1 ⊆

{(
x, an(x)

)
:x ∈ [0, αn]

}

≡ {(x, y) ∈ R
2
+ : [g + µ · vn ◦ S](x, y) = 0},(11.9)

(φ0, φ1) ∈ Cn+1 ∪ ∂Ŵ
x
n+1.
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Therefore, for every n ∈ N,

0 = Gn(t, φ0, φ1)|t=rn(φ0,φ1), (φ0, φ1) ∈ Cn+1 ∪ ∂Ŵ
x
n+1.(11.10)

Under certain local smoothness and nondegeneracy conditions on the func-
tion Gn(·, ·, ·), the implicit function theorems guarantee that the equation
Gn(t, φ0, φ1) = 0 determines t = tn(φ0, φ1) in an open neighborhood of every
point (rn(φ0, φ1), φ0, φ1) in R+ × Cn+1, as a smooth function of the variables
(φ0, φ1). Since the continuation region Cn+1 has compact closure, a finite sub-
covering of these open neighborhoods exists. Patching the solutions tn(·, ·) in the
finite subcovering gives the global solution, which is smooth and must coincide
with rn(·, ·) on Cn+1.

In the remainder, we shall use the following version of the implicit function
theorem; see [16], Chapter 14, and Conjecture 11.18.

THEOREM 11.2 (Implicit function theorem). Let A ⊆ R
m be an open set,

F :A �→ R be a continuously differentiable function, and (t̄ , x̄) ∈ R × R
m−1 be

a point in A such that

F(t̄, x̄) = 0 and
∂

∂t
F (t, x)

∣∣∣∣
(t,x)=(t̄,x̄)

�= 0.

Then there exist an open set B ⊆ R
m−1 containing the point x̄, and a unique con-

tinuously differentiable function f :B �→ R, such that t̄ = f (x̄) and F(f (x), x) = 0
for all x ∈ B .

Since v0(·, ·) ≡ 0, we have

G0(t, φ0, φ1) = x(t, φ0) + y(t, φ1) − λ

c

√
2,

(11.11)
(t, φ0, φ1) ∈ R+ × C1.

The function G0(·, ·, ·) is continuously differentiable on R+ × C1. By (6.8) in
Section 6, its partial derivative

DtG0(t, φ0, φ1) = d

dt
[x(t, φ0) + y(t, φ1)](11.12)

with respect to t-variable may vanish at most once; if this happens, this derivative
is strictly negative before, and strictly positive after, the derivative vanishes; oth-
erwise, it is strictly positive everywhere (see also Figure 2). Namely, the function
t �→ G0(t, φ0, φ1) has at most one local minimum for every (φ0, φ1) ∈ R

2
+.

LEMMA 11.3. Fix any (φ0, φ1) ∈ R
2
+. The function t �→ G0(t, φ0, φ1)

from R+ into R has at most one local minimum. It is strictly increasing if there is

no local minimum. If there is a local minimum, then the function G0(·, φ0, φ1) is

strictly decreasing before the minimum and strictly increasing after the minimum.
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LEMMA 11.4. The smallest minimizer r0(φ0, φ1) in (5.13) is continuously dif-

ferentiable at every (φ0, φ1) ∈ C1.

PROOF. The result will follow from Theorem 11.2 applied to the function
G0(·, ·, ·) on R × C1 at the point (t̄ , x̄) = (r0(φ0, φ1), φ0, φ1) ∈ R × C1. We only
need to establish that

DtG0(t, φ0, φ1)|t=r0(φ0,φ1) �= 0, (φ0, φ1) ∈ C1.

Let us fix (φ0, φ1) ∈ C1 and assume that DtG0(r0(φ0, φ1), φ0, φ1) = 0. Then
the function t �→ G0(t, φ0, φ1) is strictly decreasing on t ∈ [0, r0(φ0, φ1)] by
Lemma 11.3 and

G0(t, φ0, φ1) > G0
(
r0(φ0, φ1), φ0, φ1

)
= 0, t ∈

[
0, r0(φ0, φ1)

)
.

Therefore, (11.8) implies that v1(φ0, φ1) > 0. This contradicts our choice of
(φ0, φ1) in the continuation region C1 as well as the bound v1(·, ·) ≤ 0. �

COROLLARY 11.5. The value function v1(φ0, φ1) is continuously differen-

tiable at every (φ0, φ1) ∈ C1. For every (φ0, φ1) ∈ C1,

Dφ0v1(φ0, φ1) =
∫ r0(φ0,φ1)

0
e−(λ+µ)tDφ0G0(t, φ0, φ1) dt

= 1 − e−(µ−1)r0(φ0,φ1)

µ − 1
,

(11.13)

Dφ1v1(φ0, φ1) =
∫ r0(φ0,φ1)

0
e−(λ+µ)tDφ1G0(t, φ0, φ1) dt

= 1 − e−(µ+1)r0(φ0,φ1)

µ + 1
.

PROOF. By (11.8) and Lemma 11.4, the value function v1(·, ·) is continuously
differentiable. Using (11.9) after applying the chain-rule to (11.8) with n = 0 gives
the integrals in (11.13). These integrals can be calculated explicitly by using (4.7)
or (4.8). �

COROLLARY 11.6. The entrance boundary ∂Ŵ
e
1 in (9.10) is connected. More

precisely,

∂Ŵ
e
1 =

{(
x, γ1(x)

)
:x ∈ (ξ e

1 , ξ1)
}

for some 0 ≤ ξ e
1 < ξ1,(11.14)

where ξ1 is the same as in [0, ξ1] = supp(γ1), the support of the boundary function

γ1(·); see Proposition 8.1.
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COROLLARY 11.7. The restriction of the boundary function γ1(·) to the in-

terval (ξ e
1 , ξ1) is continuously differentiable. In fact,

γ1(x) = a0(x), x ∈ [ξ e
1 , ξ1], [0, ξ1] ≡ supp(γ1) = supp(a0) ≡ [0, α0],

where

a0(x) =





−x + λ

c

√
2, x ∈

[
0,

λ

c

√
2
)

,

0, elsewhere,
(11.15)

is the continuously differentiable boundary function of the region A0 = {(x, y) ∈
R

2
+ : [g + µ · v0 ◦ S](x, y) < 0} in (9.6).

PROOF. The function a0(·) in (11.15) is continuously differentiable on its
support supp(a0) = [0, α0], and the result follows from Lemma 9.5 and Corol-
lary 11.6. �

The entrance boundary ∂Ŵ
e
1 always exists. However, the exit boundary ∂Ŵ

x
1 may

not exist all the time. Next we shall identify the geometry of the exit boundary ∂Ŵ
x
1

when it exists.

LEMMA 11.8. For every (φ0, φ1) ∈ ∂Ŵ
x
1 , we have [g +µ ·v0 ◦S](φ0, φ1) > 0.

Therefore, cl(∂Ŵ
e
1) ∩ ∂Ŵ

x
1 = ∅.

PROOF. Suppose that (φ0, φ1) ∈ ∂Ŵ
x
1 . Let us assume that [g + µ · v0 ◦

S](φ0, φ1) ≤ 0. Then G0(0, φ0, φ1) = [g+µ ·v0 ◦S](φ0, φ1) ≤ 0 = G0(r0(φ0, φ1),

φ0, φ1), and Lemma 11.3 implies

G0(t, φ0, φ1) = [g + µ · v0 ◦ S]
(
x(t, φ0), y(t, φ1)

)
< 0, t ∈

(
0, r0(φ0, φ1)

)
.

This inequality and (11.8) for n = 0 give

v1(φ0, φ1) =
∫ r0(φ0,φ1)

0
e−(λ+µ)tG0(t, φ0, φ1) dt < 0,

which contradicts v1(φ0, φ1) = 0. This proves that [g + µ · v0 ◦ S](φ0, φ1) > 0
for every (φ0, φ1) ∈ ∂Ŵ

x
1 . Since the mapping (x, y) �→ [g + µ · v0 ◦ S](x, y) is

continuous, we have [g + µ · v0 ◦ S](φ0, φ1) = 0 for every (φ0, φ1) ∈ cl(∂Ŵ
e
1) by

Lemmas 9.2 and 9.5. Therefore, cl(∂Ŵ
e
1) ∩ ∂Ŵ

x
1 = ∅. �

The next corollary is helpful in determining the point (ξ e
1, γ1(ξ

e
1 )) ≡ (ξ e

1,

a0(ξ
e
1 )). The region An was introduced in Section 9.

COROLLARY 11.9. The parametric curve

C1 � R
2
+ ∩

{(
x(t, ξ e

1 ), y
(
t, a0(ξ

e
1 )

))
: t ∈ R

}
(11.16)
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is the smallest among all parametric curves R
2
+ ∩ {(x(t, φ0), y(t, φ1)) : t ∈ R},

(φ0, φ1) ∈ R
2
+ that majorize the boundary function a0(·) of the region A0 =

{(x, y) : [g + µ · v0 ◦ S](x, y) < 0} = {(x, y) ∈ R
2
+ :y < a0(x)}.

The curve C1 and the boundary ∂A0 = {(x, a0(x)) :x ∈ [0, α0]} touch exactly at

(ξ e
1 , a0(ξ

e
1 )) ≡ (ξ e

1 , γ1(ξ
e
1 )) and nowhere else.

PROOF. By Corollary 11.7 and Lemma 11.8, we have (ξ e
1 , a0(ξ

e
1 )) = (ξ e

1 ,

γ1(ξ
e
1 )) ∈ cl(∂Ŵ1) \ ∂Ŵ

e
1. Therefore (ξ e

1 , a0(ξ
e
1 )) /∈ ∂Ŵ

e
1 ∪ ∂Ŵ

x
1 . Hence there exists

some δ > 0 such that
(
x(t, ξ e

1 ), y
(
t, a0(ξ

e
1 )

))
∈ Ŵ1 ⊆ R

2
+ \ A0, t ∈ (−δ,+δ).(11.17)

Recall from (9.18) that r̂(ξ e
1 , a0(ξ

e
1 )) is the exit time of t �→ (x(−t, ξ e), y(−t,

a0(ξ
e
1 ))) from R

2
+. Then the function

t �→ G0
(
t, ξ e

1 , a0(ξ
e
1 )

)
≡ [g + µ · v0 ◦ S]

(
x(t, ξ e

1 ), y
(
t, a0(ξ

e
1 )

))
,

t ∈
[
−r̂

(
ξ e

1 , a0
(
ξ e

1

))
,∞

)

has a zero at t = 0 and is nonnegative for every t ∈ (−δ, δ) by (11.17). Hence it has
a local minimum at (ξ e

1 , a0(ξ
e
1 )). By Lemma 11.3, the function G0(t, ξ

e
1 , a0(ξ

e
1 ))

is strictly positive for t �= 0. Therefore, y(t, a0(ξ
e
1 )) > a0(x(t, ξ e

1 )) for t �= 0. �

REMARK 11.10. Since C1 ⊂ R
2
+ \ A0, we have Jv0(t, φ0, φ1) > 0 for t > 0

and (φ0, φ1) ∈ C1. This implies v1(φ0, φ1) = 0 for (φ0, φ1) ∈ C1. Therefore,
C1 ⊂ Ŵ1.

The curve C1 divides R
2
+ into two components. Since the continuation region

C1 is connected and contains A0, the region C1 is contained in the (lower) com-
ponent which lies between C1 and x-axis. Thus the boundary ∂Ŵ1 is completely
below the curve C1, and they touch at the point (ξ e

1 , a0(ξ
e
1 )) ≡ (ξ e

1 , γ1(ξ
e
1 )). See

Figure 5(a).

The next corollary shows that no point on the boundary {(x, a0(x)) :x ∈ [0, ξ e
1 )}

over the interval [0, ξ e
1 ) of the region A0 = {(x, y) ∈ R

2
+ : [g+µ ·v0 ◦S](x, y) < 0}

is a boundary point for the stopping region Ŵ1.

COROLLARY 11.11. For every x ∈ [0, ξ e
1 ), we have γ1(x) > a0(x) and [g +

µ · v0 ◦ S](x, γ1(x)) > 0.

PROOF. If [0, ξ e
1 ) = ∅, there is nothing to prove. Otherwise, fix any φ0 ∈

[0, ξ e
1 ). Assume that (φ0, a0(φ0)) ∈ ∂Ŵ1. By Corollary 11.6 and Lemma 11.8,

we have (φ0, a0(φ0)) /∈ ∂Ŵ
e
1 ∪ ∂Ŵ

x
1 . The same argument as in the proof of Corol-

lary 11.9, with (φ0, a0(φ0)) instead of (ξ e
1 , a0(ξ

e
1 )), gives that the parametric curve

{(x(−t, φ0), y(−t, a0(φ0))) : t ∈ [−r̂(φ0, a0(φ0)),∞)} is the smallest majorant of



1232 E. BAYRAKTAR, S. DAYANIK AND I. KARATZAS

FIG. 5. (a) and (b) illustrate Steps D.1 and D.2 of Method D for n = 0, and (c) and (d) for a gen-

eral n.

the boundary function a0(·), and both curves touch at the point (φ0, a0(φ0)). But
this implies φ0 = ξ e

1 , a contradiction with our choice of φ0. �

COROLLARY 11.12. If φ0 ∈ [0, ξ e
1 ), then (φ0, γ1(φ0)) ∈ ∂Ŵ

x
1 has an open

neighborhood, on the intersection with the continuation region C1 of which the

function r0(·, ·) is bounded and bounded away from zero.
On the other hand, the function r0(·, ·) is continuous on the entrance bound-

ary ∂Ŵ
e
1: for every (φ0, φ1) ∈ ∂Ŵ

e
1 and every sequence {(φ(n)

0 , φ
(n)
1 )}n∈N ⊆ C1 con-

verging to the boundary point (φ0, φ1), we have limn→∞ r0(φ
(n)
0 , φ

(n)
1 ) = 0.
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LEMMA 11.13. If ξ e
1 = 0, then ∂Ŵ1 = cl(∂Ŵ

e
1). If ξ e

1 > 0, then the exit bound-

ary ∂Ŵ
x
1 is not empty, and ∂Ŵ1 = ∂Ŵ

x
1 ∪ cl(∂Ŵ

e
1).

If ∂Ŵ1 �= cl(∂Ŵ
e
1), then ξ e

1 > 0, and the exit boundary ∂Ŵ
x
1 is not empty by

Lemma 11.13. The characterization of the exit boundary in Lemma 9.7 can be cast
as

Ŵ
x
1 =

{(
x(−t, φ0), y

(
−t, a0(φ0)

))
|t=r̂0(φ0,a0(φ0)) :φ0 ∈ (ξ e

1 , ξx
1 ]

}

for some ξx
1 ∈ (ξ e

1 , ξ1). More precisely,

ξx
1 = inf

{
φ0 ∈ [ξ e

1 , ξ1] : r̂0
(
φ0, γ1(x)

)
≤ r̂

(
φ0, γ1(x)

)}
.(11.18)

For every φ0 ∈ (ξ e
1 , ξx

1 ], we have r̂0(φ0, γ1(φ0)) ≤ r̂(φ0, γ1(φ0). See (9.18).
Our next result shows that the exit boundary ∂Ŵ

x
1 = {(φ0, γ1(φ0)) :φ0 ∈ [0, ξ e

1 )}
is on a continuously differentiable curve, if it is not empty.

LEMMA 11.14. The restriction of the boundary function γ1(·) to the interval

[0, ξ e
1 ) is continuously differentiable.

If the value function v1(·, ·) were continuously differentiable on the exit bound-
ary ∂Ŵ

x
1 , then the result would follow from an application of the implicit function

theorem to the identity v1(φ0, φ1) = 0 near the point (φ0, φ1) = (φ0, γ1(φ0)). Un-
fortunately, v1(·, ·) is not differentiable on ∂Ŵ

x
1 ; see Lemma 11.16. Therefore, we

shall first extend the restriction to the set C1 ∪ ∂Ŵ
x
1 of the value function v1(·, ·) to

a new function ṽ1(·, ·) on an open set B1 ⊃ C1 ∪ ∂Ŵ
x
1 such that ṽ1(·, ·) is contin-

uously differentiable on B1. We shall then use the identity ṽ1(φ0, γ1(φ1)) = 0 as
above.

LEMMA 11.15. The boundary function γ1(·) is continuously differentiable on

the interior of its support [0, ξ1].

The next result shows that the value function is not differentiable on the exit
boundary ∂Ŵ

x
1 . In fact, as the proof reveals, the left and right partial derivatives

are different along the exit boundary. Therefore, the smooth-fit principle does not
apply to the value function v1(·, ·) along (some part of ) the boundary, if the exit
boundary ∂Ŵ

x
1 is not empty.

LEMMA 11.16. The value function v1(·, ·) is continuously differentiable on

the entrance boundary ∂Ŵ
e
1, but is not differentiable on the exit boundary ∂Ŵ

x
1 .

The techniques used above in the analysis of the value function v1(·, ·) and the
boundary function γ1(·) can be extended by induction to every function vn(·, ·)
and the boundary function γn(·), if the following are true for every n ∈ N:
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A1(n): For every (φ0, φ1) ∈ R
2
+, the function t �→ Gn(t, φ0, φ1) in (11.7) from R+

into R has at most one local minimum. It is strictly increasing if there
is no local minimum. If there is a local minimum, then the function
Gn(·, φ0, φ1) is strictly decreasing before the minimum and strictly in-
creasing after the minimum.

A2(n): The function (x, y) �→ [g + µ · vn ◦ S](x, y) is (continuously) differen-
tiable on the entrance boundary ∂Ŵ

e
n+1 of the stopping region Ŵn+1 =

{(x, y) :vn+1(x, y) = 0}.

PROPOSITION 11.17. If A1(k) and A2(k) above are valid for every 0 ≤ k ≤ n,
then the following hold:

1. The value function vn+1(·, ·) is continuously differentiable on R
2
+ \Ŵ

x
n+1 every-

where except the exit boundary ∂Ŵ
x
n+1. For every (φ0, φ1) ∈ Cn+1,

Dφ0vn+1(φ0, φ1) =
∫ rn(φ0,φ1)

0
e−(λ+µ)tDφ0Gn(t, φ0, φ1) du

=
∫ rn(φ0,φ1)

0
e−(λ+µ)t [1 + (µ − 1)Dφ0vn ◦ S]

×
(
x(u,φ0), y(u,φ1)

)
du

and

Dφ1vn+1(φ0, φ1) =
∫ rn(φ0,φ1)

0
e−(λ+µ)tDφ1Gn(t, φ0, φ1) du

=
∫ rn(φ0,φ1)

0
e−(λ+µ)t [1 + (µ + 1)Dφ1vn ◦ S]

×
(
x(u,φ0), y(u,φ1)

)
du.

2. The entrance boundary ∂Ŵ
e
n+1 is connected. More precisely,

∂Ŵ
e
n+1 =

{(
x, an(x)

)
:x ∈ (ξ e

n+1, ξn+1)
}

for some ξ e
n+1 ∈ [0, ξn+1).

The boundary function an(·) of the region An = {(x, y) ∈ R
2
+ : [g + µ · vn ◦

S](x, y) < 0} is continuously differentiable on (ξ e
n+1, ξn+1). Therefore, the

boundary function γn+1(·) ≡ an(·) on (ξ e
n+1, ξn+1) is continuously differen-

tiable.
3. The parametric curve

Cn+1 � R
2
+ ∩

{(
x(t, ξ e

n+1), y
(
t, an(ξ

e
n+1)

))
: t ∈ R

}

is the smallest among all the parametric curves R
2
+ ∩ {(x(t, φ0), y(t, φ1)) : t ∈

R}, (φ0, φ1) ∈ R
2
+ that majorize the boundary function an(·) of the region An =

{(x, y) : [g + µ · vn ◦ S](x, y) < 0} = {(x, y) ∈ R
2
+ :y < an(x)}.

The curve Cn+1 and the boundary ∂An = {(x, an(x)) :x ∈ [0, αn]} touch ex-

actly at (ξ e
n+1, an(ξ

e
n+1)) ≡ (ξ e

n+1, γn+1(ξ
e
n+1)) and nowhere else.
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4. If ξ e
n+1 = 0, then ∂Ŵn+1 = cl(∂Ŵ

e
n+1). If ξ e

n+1 > 0, then the exit boundary

∂Ŵ
x
n+1 is not empty, and ∂Ŵn+1 = ∂Ŵ

x
n+1 ∪ cl(∂Ŵ

e
n+1).

5. The boundary function γn+1(·) is continuously differentiable on the interior of

its support [0, ξn+1].

The proof of the proposition is by induction on n ∈ N0. The suppositions A1(0)

and A2(0) are always valid; see Lemma 11.3, and note that [g + µ · v0 ◦ S](·, ·) ≡
g(·, ·) is continuously differentiable everywhere. All of the claims are proved for
the basis of the induction n = 0 before the statement of the proposition. For n ≥ 1,
the proofs are the same with obvious changes, with the exception of the differen-
tiability of an(·) in part 2 of the proposition.

For n = 0, the differentiability of a0(x) = −x + (λ/c)
√

2, x ∈ (0, ξ1) was obvi-
ous. For n ≥ 1, the function an(·) is not available explicitly, only through

[g + µ · vn ◦ S]
(
x, an(x)

)
= 0, x ∈ [0, ξn+1].

By A2(n), the function [g + µ · vn ◦ S](·, ·) is continuously differentiable on
∂Ŵ

e
n+1 = {(x, an(x)) :x ∈ (ξ e

n+1, ξn+1)}. Since y �→ [g +µ ·vn ◦S](x, y) is strictly
increasing for every x ∈ R+, we have

∂

∂y
[g + µ · vn ◦ S](x, y)|(x,y)=(x,an(x)) > 0, x ∈ (ξ e

n+1, ξn+1).

Thus, the function an(·) is continuously differentiable on (ξ e
n+1, ξn+1) by the im-

plicit function theorem.

11.1. The interplay between the exit and entrance boundaries We have been
unable to identify fully all the cases where the hypotheses A1(n) and A2(n) on
page 1233 are satisfied for every n ∈ N (see, though, Section 11.2 for the impor-
tant case of “large” disorder arrival rate λ, and Section 11.3 for another interesting
example, where these hypotheses are satisfied). However, they are sufficient for
Proposition 11.17 to hold, and Proposition 11.17 shows the crucial interplay be-
tween the exit and entrance boundaries. We would like to illustrate this interplay
briefly; it may be very useful in designing efficient detection algorithms for general
Poisson disorder problems. We suggest how the gap may be closed as an interest-
ing open research problem.

In Section 9.2, we showed that both the value functions and the exit boundaries
are determined by the entrance boundaries; see Lemma 9.7. More explicitly, once
the entrance boundary ∂Ŵ

e
n+1 has been obtained, one can calculate the value func-

tion vn+1(·, ·) and the exit boundary ∂Ŵ
x
n+1 by running backward in time the para-

metric curves t �→ (x(t, φ0), y(t, φ1)) from every point (φ0, φ1) on the entrance
boundary ∂Ŵ

e
n+1 and by evaluating the explicit expressions of Lemma 9.7 along

the way. On the other hand, the entrance boundary ∂Ŵ
e
n+1 can be found when the

value function vn(·, ·) has already been calculated. Since v0 ≡ 0 is readily avail-
able, the following iterative algorithm will give us every vn(·, ·), n ∈ N0, and the
boundary functions γn(·); see also Figure 5.
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Step D.0. Initialize n = 0, v0(·, ·) ≡ 0 on R
2
+. Let a0(·) be the boundary function

of the region A0 = {(φ0, φ1) ∈ R
2
+ : [g + µ · v0 ◦ S](φ0, φ1) < 0}; see (11.15).

Step D.1. There is unique number φ0 = ξ e
n+1 in the bounded support φ0 ∈

[0, ξn+1] of the function an(·) such that, for every small δ > 0, we have

an

(
x(t, φ0)

)
≤ y

(
t, an(φ0)

)
, t ∈ [0, δ) if φ0 = 0, and

t ∈ (−δ, δ) if φ0 > 0.

Equivalently, the parametric curve Cn+1 � R
2
+ ∩ {(x(t, ξ e

n+1), y(t, an(ξ
e
n+1))) :

t ∈ R} in (3) of Proposition 11.17 majorizes the boundary {(x, an(x)) :x ∈
supp(an)} of the region An = {(x, y) ∈ R

2
+ : [g+µ ·vn ◦S](x, y) < 0} everywhere.

The entrance boundary of the stopping region Ŵn+1 = {(φ0, φ1) ∈ R
2
+ :vn+1(φ0,

φ1) = 0} is given by ∂Ŵ
e
n+1 = {(φ0, an(φ0)) :φ0 ∈ (ξ e

n+1, ξn+1)}.
(i) Find the entrance boundary ∂Ŵ

e
n+1.

(ii) For every (φ0, φ1) ∈ ∂Ŵ
e
n+1, take the following steps to calculate the value

function vn+1(·, ·) on the continuation region Cn+1 and the exit boundary ∂Ŵ
x
n+1:

(a) Calculate r̂(φ0, φ1) � inf{t ≥ 0 : (x(−t, φ0), y(−t, φ1)) /∈ R
2
+}.

(i) If −Jvn(−r̂(φ0, φ1), φ0, φ1) < 0, then set r̂n(φ0, φ1) = ∞. Otherwise, find

r̂n(φ0, φ1) � inf
{
t ∈

(
0, r̂(φ0, φ1)

]
:−Jvn(−t, φ0, φ1) ≥ 0

}

by a bisection search on (0, r̂(φ0, φ1)], and add the point
(
x
(
−r̂n(φ0, φ1), φ0

)
, y

(
−r̂n(φ0, φ1), φ1

))
∈ ∂Ŵ

x
n+1

to the exit boundary.
(c) Calculate the value function

vn+1
(
x(−t, φ0), y(−t, φ1)

)
= −e−(λ+µ)tJvn(−t, φ0, φ1)

along the curve (x(−t, φ0), y(−t, φ1)), t ∈ (0, r̂(φ0, φ1) ∧ r̂n(φ0, φ1)], until it ei-
ther leaves R

2
+ or hits the exit boundary ∂Ŵ

x
n+1.

The union ∂Ŵ
x
n+1 ∪ cl(∂Ŵ

e
n+1) = ∂Ŵ

x
n+1 ∪ {(x, an(x)) :x ∈ [ξ e

n+1, ξn+1]} gives
the boundary ∂Ŵn+1 = {(x, γn+1(x)) :x ∈ [0, ξn+1]} and the boundary curve
γn+1(·), which is strictly decreasing and convex on its support [0, ξn+1].

(iii) Set vn+1(·, ·) = 0 on the stopping region Ŵn+1 = {(x, y) :y ≥ γn+1(x)}.
Step D.2. Set n to n + 1. Determine the locus of the points (φ0, φ1) in R

2
+ that

satisfy the equation
[

1

µ
· g ◦ S−1

]
(φ0, φ1) = vn(φ0, φ1).

This locus is the same as {(x, S[an+1](x)) :x ∈ supp(S[an+1])}; see Nota-
tion 8.2. Shift it by the linear transformation S−1 of (5.8) to obtain the boundary
{(x, an(x)) :x ∈ supp(an)} of the region An = {(x, y) : [g + µ · vn ◦ S](x, y) < 0}.
Go to Step D.1.
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CONJECTURE 11.18. The algorithm relies on only two results from Sec-

tion 11: (i) the entrance boundary ∂Ŵ
e
n+1, n ∈ N0, is connected, and (ii) the bound-

ary ∂Ŵ
x
n+1, n ∈ N0, is the disjoint union of the exit boundary ∂Ŵ

x
n+1 and the closure

of the entrance boundary ∂Ŵ
e
n+1. Part (ii) was proved by using (i) and the first

hypothesis A1(n + 1) on page 1233; see Lemma 11.13. We conjecture that the

hypothesis A1(n + 1) always holds for all n ∈ N0.
On the other hand, part (i) was proved by using the continuity of the map-

ping (φ0, φ1) �→ rn(φ0, φ1) on the connected continuation region Cn+1; see Corol-

lary 11.6. The continuity of the mapping rn(·, ·) followed from its continuous dif-

ferentiability on Cn+1, which we proved by using the implicit function theorem

(Theorem 11.2) under hypothesis A2(n + 1); see Lemma 11.4. We conjecture that

this mapping is always continuous on the continuation region Cn+1. This may be

proved directly by using a weaker version of the implicit function theorem (see,
e.g., [12]) or by using nonsmooth analysis (see, e.g., [7]).

11.2. The regularity of the value functions and the optimal stopping boundaries

when the disorder arrival rate λ is “large.” One of the cases where both A1(n)

and A2(n) on page 1233 are satisfied for every n ∈ N, is when the disorder arrival
rate λ is “large;” see Section 4.3 and Figure 1(a).

Suppose that λ ≥ [1 − (1 + µ)(c/2)]+. Then the curve t �→ (x(t, φ0), y(t, φ1)),
and therefore the mapping t �→ Gn(t, φ0, φ1), t ∈ R+, are strictly increasing for
every (φ0, φ1) ∈ R

2
+ and n ∈ N0; see Lemma 9.2. Hence, A1(n) always holds for

every n ∈ N0.
For the same reason, all of the exit boundaries ∂Ŵ

x
n, n ∈ N, are empty; see Sec-

tion 10. Since ∂Ŵ
x
1 is empty, the value function v1(·, ·) is continuously differen-

tiable everywhere. Therefore, A2(1) holds. Then Proposition 11.17 implies that
v2(·, ·) is continuously differentiable everywhere since ∂Ŵ

x
2 is empty. Therefore,

A2(2) holds, and so on.

COROLLARY 11.19 (“Large” disorder arrival rate: smooth solutions of refer-
ence optimal stopping problems). Suppose that λ ≥ [1 − (1 + µ)(c/2)]+. Then

A1(n) and A2(n) hold for every n ∈ N0, and Proposition 11.17 applies. Particu-

larly, for every n ∈ N0:

1. The value function vn+1(·, ·) is continuously differentiable everywhere.
2. The exit boundary ∂Ŵ

x
n+1 is empty, and ∂Ŵn+1 = cl(∂Ŵ

e
n+1).

3. The boundary function γn+1(·) is continuously differentiable on the interior of

its support [0, ξn+1]. Thus, the function γn+1(·) coincides with the boundary

a0(x) = −x + λ

c

√
2 of the region A0 on the interval

[
0,

λ
√

2

2c

]
,

and fits smoothly to this function at the right end-point of the same interval.
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The last part of (3) in the corollary follows from (10.11) in Section 10 and
Proposition 11.17. Recall also from Remark 8.6 that, if the disorder arrival rate
λ is “large,” then there is an increasing sequence of sets R+ × [Bn,∞) whose
limit is R+ × (0,∞), and v(·, ·) = vn(·, ·) on R+ × [Bn,∞) for every n ∈ N.
Therefore, Corollary 11.19 implies immediately that the value function v(·, ·) and
the boundary function γ (·) are continuously differentiable on R+ × (0,∞) and on
the interior of the support [0, ξ ] of the function γ (·), respectively.

To prove that v(·, ·) is continuously differentiable on (0,∞) × {0}, we shall use
again the implicit function theorem. By Proposition 5.6 and Remark 5.10,

v(φ0,0) = Jv
(
r(φ0,0), φ0,0

)
=

∫ r(φ0,0)

0
e−(λ+µ)tG(t,φ0,0) dt, φ0 ∈ R+.

The function (t, φ0) �→ G(t,φ0,0) � [g + µ · v ◦ S](x(t, φ0), y(t,0)) is contin-
uously differentiable on (0,∞) × (0,∞) since v(·, ·) is continuously differen-
tiable on R+ × (0,∞) and (x(t, φ0), y(t,0)) ∈ (0,∞) × (0,∞) for every t > 0.
Moreover, the partial derivative (t, φ0) �→ Dφ0G(t,φ0,0) is locally bounded on
(0,∞) × (0,∞) by Corollary 5.4. Therefore, the function (t, φ0) �→ Jv(t, φ0,0)

is continuously differentiable on (0,∞) × (0,∞) and

Dφ0Jv(t, φ0,0) =
∫ t

0
e−(λ+µ)uDφ0G(t,φ0,0) du

=
∫ t

0
e−(µ+1)u[1 + (µ − 1)Dφ0v ◦ S

](
x(u,φ0), y(u,0)

)
du,

(t, φ0) ∈ R+ × (0,∞).

Since v(φ0,0) ≡ 0 for every φ0 ∈ [ξ,∞), it is continuously differentiable on
(ξ,∞). To show that it is differentiable on (0, ξ), it is enough to prove that the
mapping φ0 �→ r(φ0,0) from (0, ξ) to R+ is continuously differentiable. Observe
that, if we define

F(t,φ0) � γ
(
x(t, φ0)

)
− y(t,0), (t, φ0) ∈ R

2
+,

then F(r(φ0,0), φ0) = 0 for every φ0 ∈ [0, ξ ]. For every φ0 ∈ (0, ξ), the function
F(·, ·) is continuously differentiable in some neighborhood of (r0(φ0,0), φ0) since
x(r(φ0,0), φ0) ∈ (0, ξ) and γ (·) is continuously differentiable on [0, ξ). More-
over,

DtF(t,φ0) = γ ′(x(t, φ0)
)
Dtx(t, φ0) − Dty(t,0) < 0

at every (t, φ0) ∈ R
2
+ where DtF(t,φ0) exists [because since γ (·) is decreas-

ing, t �→ x(t,0) and t �→ x(t, φ0) are strictly increasing]. Then the implicit
function theorem implies that φ0 �→ r(φ0,0), and therefore, φ0 �→ v(φ0,0) =
Jv(r(φ0,0), φ0,0), is continuously differentiable at φ0 ∈ (0, ξ). An argument sim-
ilar to that in Corollary 11.12 shows that φ0 �→ r(φ0,0) is continuous at φ0 = ξ and
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limφ0↑ξ r(φ0,0) = 0. By the Leibniz rule (see, e.g., [16], Theorem 11.1, page 286),
the limit of the derivative

Dφ0v(φ0,0) = DtJv
(
r(φ0,0), φ0,0

)
+ Dφ0Jv

(
r(φ0,0), φ0,0

)

=
∫ r(φ0,0)

0
e−(µ+1)u[1 + (µ − 1)Dφ0v ◦ S

](
x(u,φ0), y(u,0)

)
du,

φ0 ∈ (0, ξ),

of the value function v(·, ·) at (φ0,0), as φ0 increases to ξ , equals zero. Recall
that, since r(φ0,0) > 0 for every φ0 ∈ [0, ξ), the derivative of t �→ Jv(t, φ0,0) on
the right-hand side vanishes at its minimizer t = r(φ0,0). Thus, the left and right
derivatives of the concave function φ0 �→ v(φ0,0) at φ0 = ξ , are equal:

D−
φ0

v(ξ,0) = lim
φ0↑ξ

D−
φ0

v(φ0,0) = lim
φ0↑ξ

Dφ0v(φ0,0) = 0 = D+
φ0

v(ξ,0).

This shows that the function (0,∞) ∋ φ0 �→ v(φ0, ·) is continuously differentiable.
Hence the value function v(·, ·) is continuously differentiable on R+ × {0}.

COROLLARY 11.20 (“Large” disorder arrival rate: smooth solution of the main
optimal stopping problem). Suppose that λ ≥ [1 − (1 + µ)(c/2)]+. Then:

1. the value function v(·, ·) is continuously differentiable everywhere;
2. the boundary function γ (·) is continuously differentiable on the interior of its

support [0, ξ ], coincides with the boundary function

a0(x) = −x + λ

c

√
2 of the region A0 on the interval

[
0,

λ
√

2

2c

]
,

and fits smoothly to this function at the right end-point of the same interval;
3. the function v(·, ·) is the solution of the variational inequalities (11.1)–(11.4).

COROLLARY 11.21. If λ ≥ [1 − (1 + µ)(c/2)]+, then both the sequence

{vn}n∈N of the value functions and the sequences of their partial derivatives

{Dφ0vn}n∈N and {Dφ1vn}n∈N converge uniformly to the value function v and its

partial derivatives Dφ0v and Dφ1v, respectively.

PROOF. This follows immediately from Theorem 25.7 in [17], page 248. �

The results obtained in Section 9 for the functions vn, n ∈ N can be extended
easily to the value function v(·, ·), n ∈ N. As in Lemma 9.2, we have

A � {(x, y) ∈ R
2
+ : [g + µ · v ◦ S](x, y) < 0} = {(x, y) ∈ R

2
+ :y < a(x)},

{(x, y) ∈ R
2
+ : [g + µ · v ◦ S](x, y) = 0} =

{(
x, a(x)

)
:x ∈ [0, α]

}

for some decreasing function a : R+ �→ R+ which is strictly decreasing on its finite
support [0, α]. We have A ⊆ C, and equality holds if λ ≥ [1−(1+µ)(c/2)]+ since
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the parametric curves t �→ (x(t, φ0), y(t, φ1)) increase and do not come back to the
region A after they leave; see Section 10. Therefore, γ (·) ≡ a(·) and

[g + µ · v ◦ S](x, y) > 0, (x, y) ∈ Ŵ \ ∂Ŵ.(11.19)

PROOF OF COROLLARY 11.20. Only (3) remains to be proven. The function
v : R

2
+ �→ (−∞,0] is bounded and continuously differentiable. By the definition

of the continuation region C = {(x, y) ∈ R
2
+ : v(x, y) < 0} and the stopping region

Ŵ = R
2
+ \ C, the (in)equalities (11.2) and (11.4) are satisfied. On the other hand,

(11.19) implies

[(Ã − λ)v + g](φ0, φ1) = [g + µ · v ◦ S](φ0, φ1), (φ0, φ1) ∈ Ŵ,

is strictly positive for every (φ0, φ1) ∈ Ŵ \ ∂Ŵ, that is, (11.3) is also satisfied. On
the other hand, [(Ã − λ)v + g](φ0, φ1) equals

Dφ0v(φ0, φ1)

[
(λ + 1)φ0 + λ(1 − m)√

2

]
+ Dφ1v(φ0, φ1)

[
(λ − 1)φ1 + λ(1 + m)√

2

]

+ µ

[
v

((
1 − 1

µ

)
φ0,

(
1 + 1

µ

)
φ1

)
− v(φ0, φ1)

]
− λv(φ0, φ1) + g(φ0, φ1)

= Dφ0v(φ0, φ1) · Dtx(0, φ0)

+ Dφ1v(φ0, φ1) · Dty(0, φ1) − (λ + µ)v(φ0, φ1)

+ [g + µ · v ◦ S](φ0, φ1)

= ∂

∂t

[
e−(λ+µ)tv

(
x(t, φ0), y(t, φ1)

)

+
∫ t

0
e−(λ+µ)t [g + µv ◦ S]

(
x(u,φ0), y(u,φ1)

)
du

]∣∣∣∣
t=0

= ∂

∂t

[
e−(λ+µ)tv

(
x(t, φ0), y(t, φ1)

)
+ Jv(t, φ0, φ1)

]
|t=0, (φ0, φ1) ∈ C.

Observe that the expression in the square brackets of the last equation equals
v(φ0, φ1) for every sufficiently small t > 0, by (5.19) in Remark 5.10. Therefore,
the derivative above equals zero, and (11.1) holds. This completes the proof that
the function v(·, ·) satisfies the variational inequalities (11.1)–(11.4).

The boundary function γ (·) is strictly decreasing on its support. The process
�̃ can have at most countably many jumps, and its paths are strictly increasing
between the jumps. Therefore, the time that the process �̃ spends on the boundary
∂Ŵ = {(x, γ (x)) :x ∈ [0, ξ ]} equals zero almost surely. Since the derivative of the
convex boundary curve 0 ≥ γ ′(x) ≥ γ ′(0+) = a0(0+) = −1 is bounded on x ∈
(0, ξ), the curve is Lipschitz continuous on its support. �

Finally, Corollary 11.20 also shows that for every λ ≥ [1 − (1 + m)(c/2)]+, the
smooth restrictions of value function vn+1(·, ·) to the continuation region Cn+1 and
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to the stopping region Ŵn+1 fit to each other smoothly across the smooth boundary
∂Ŵn+1 = {(x, γn+1(x)) :x ∈ [0, ξn+1]}.

However, if 0 < λ < 1 − (1 + m)(c/2) is small, then the corresponding value
function does not have to have the same smooth-fit property.

11.3. Failure of the smooth-fit principle: a concrete example. Here we shall
give a concrete example of a case where the value function fits smoothly across
the entrance boundary, but fails to fit smoothly across the exit boundary of the
optimal stopping region; see Figure 6(d).

FIG. 6. (a) shows the location of points (φ∗
0 , φ∗

1 ) and (0, φ̄1) and the line described by the function

S[a0](·). In (b) and (c), we recall how to find the function v1(·) and region A1, respectively; compare

with Figure 4. The boundary function γ (·) of the stopping region Ŵ = {(x, y) ∈ R
2
+ :v(x, y) = 0} is

sketched in (d).
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Suppose that the disorder arrival rate λ, the pre-disorder arrival rate µ of
the observations, the detection delay cost c per unit time, and the expectation
m = E0[� − µ] of the difference � − µ between the arrival rates of the obser-
vations after and before the disorder, are chosen so that

0 < λ < 1 − (1 + m)(c/2),

µ + 1

µ
φd > φ̄1,

(11.20)
y < S[a0](x) = µ + 1

µ
a0

(
µ

µ − 1
x

)
,

(x, y) ∈ {(φ∗
0 , φ∗

1), (0, φ̄1)}.

Here φd > 0 is the mean-reversion level in (4.14) of y �→ y(t, φ1) for every initial
condition φ1 ∈ R+; see Section 4.4. The point

(φ∗
0 , φ∗

1) =
(

λ√
2

(
1 − λ

c
− 1

)
,

λ√
2

(
1 + λ

c
+ 1

))
(11.21)

is the intersection of the straight lines ℓ in (6.7) and y = a0(x). Recall from (11.15)
that a0(·) is the boundary function of the region A0 = {(x, y) ∈ R

2
+ :g(x, y) <

0} ≡ {(x, y) ∈ R
2
+ :y < a0(x)}. For every initial point (φ0, φ1) in R

2
+, the sum

t �→ x(t, φ0) + y(t, φ1), t ∈ R+, of the coordinates of the parametric curve t �→
(x(t, φ0), y(t, φ1)), t ∈ R+, strictly decreases before the parametric curve meets
the line ℓ, and strictly increases thereafter; see Lemma 11.3 and (6.8). Finally, the
point (0, φ̄1) with

φ̄1 = − λ(1 + m)√
2(λ − 1)

(11.22)

+
[
φ∗

1 + λ(1 + m)√
2(λ − 1)

][
1 + φ∗

0

√
2(λ + 1)

λ(1 − m)

]−(λ−1)/(λ+1)

is the initial point on the y-axis of the parametric curve t �→ (x(t,0), y(t, φ̄1)),
t ∈ R+ which passes through the point (φ∗

0 , φ∗
1) in (11.21). The coordinate φ̄1

in (11.22) is found by substituting the solution of x(t∗,0) = φ∗
0 for t∗ into the

equation y(t∗, φ̄1) = φ∗
1 and solving the latter for φ̄1; see also Figure 6(a).

Let us show that, under the conditions in (11.20), the “closedness” property
in (8.4) holds. By Lemma 11.3 and (6.8), the curve C1 in Corollary 11.9 becomes

C1 =
{(

x(t,0), y(t, φ̄1)
)

: t ∈ R+
}
≡ R

2
+ ∩

{(
x(t, φ∗

0), y(t, φ∗
1)

)
: t ∈ R

}
;

it is tangent to the broken line {(x, a0(x)) :x ∈ R+} at the point (φ∗
0 , φ∗

1). There-
fore, ξ e

1 = φ∗
0 by the same corollary, and the entrance boundary of the stop-

ping region Ŵ1 = {(x, y) :v1(x, y) = 0} is ∂Ŵ
e
1 = {(x, a0(x)) :x ∈ (φ∗

0 , (λ/c)
√

2 )}
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by Corollary 11.6. Moreover, the boundary function γ1(·) of the region Ŵ1 =
{(x, γ1(x)) :γ1(x) ≤ y} is supported on [0, (λ/c)

√
2 ] and satisfies

γ1(x) = a0(x), x ∈
[
φ∗

0 ,
λ

c

√
2
]

and

(11.23)
γ1(x) < y(0, φ̄1) = φ̄1, x ∈ [0, φ∗

0).

The equality follows from Corollary 11.7, and the inequality from Remark 11.10
and the fact that the parametric curve C1 is decreasing. One can easily see
from (11.23) and the second inequality in (11.20) that

(0, φd) ∈ R+ × [φd ,∞) ⊂ S−1(Ŵ1) =
{(

x,S−1[γ1](x)
)

:x ∈ R+
}
,

(11.24)
φd ≥ S−1[γ1](0) = µ

µ + 1
γ1(0).

The restrictions of the value functions v(·, ·) and v1(·, ·), and therefore those of
the boundaries ∂Ŵ and ∂Ŵ1, coincide on R+ × [φd ,∞). First, observe that





x(t, φ0) + y(t, φ1) ≥ x(t,0) + y(t, φ̄1) ≥ λ

c

√
2

that is,
(
x(t, φ0), y(t, φ1)

)
/∈ C0, t ∈ R+



 ,

(φ0, φ1) ∈ R+ × [φ̄1,∞),

where C0 = {(x, y) ∈ R
2
+ :g(x, y) < 0} is as in (4.13) and coincides with A0. By

the second inequality in (11.20) and the properties of the parametric curves t �→
(x(t, φ0), y(t, φ1)), t ∈ R+ (see Section 4.2), we have

(φ0, φ1) ∈ R+ × [φd ,∞)

�⇒
{

S(φ0, φ1) ∈ R+ × [φ̄1,∞) ⊂ R+ × [φd ,∞)(
x(t, φ0), y(t, φ1)

)
∈ R+ × [φd ,∞), t ∈ R+

}
.

Using the last two displayed equations gives that, if the initial state �̃0 on a
sample-path of the sufficient statistic �̃ = (�̃(0), �̃(1)) is in R+ × [φd ,∞), then
the sample-path stays in the region R

2
+ × [φd ,∞) and never returns to the advan-

tageous region C0 after the first jump; see Section 4.1. In fact,

v ◦ S(φ0, φ1) = inf
τ∈S

E
S(φ0,φ1)
0

[∫ τ

0
e−λug(�̃u) du

]
= 0,

(φ0, φ1) ∈ R+ × [φd ,∞),

and therefore,

v(φ0, φ1) = J0v(φ0, φ1)

= inf
t∈[0,∞]

∫ t

0
e−(λ+µ)u

≡g(·,·)︷ ︸︸ ︷
[g + µ · v ◦ S]

(
x(u,φ0), y(u,φ1)

)
du(11.25)

= J0v0(φ0, φ1) = v1(φ0, φ1), (φ0, φ1) ∈ R+ × [φd ,∞).
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The stopping region Ŵ = {(x, y) ∈ R
2
+ :v(x, y) = 0} and its boundary ∂Ŵ are de-

termined by the value function v(·, ·). Then (11.25) implies that the restrictions of
the boundaries ∂Ŵ and ∂Ŵ1 to the region R+ × [φd ,∞) also coincide. Therefore,
the second inequality in (11.20) implies

φd <
λ

c

√
2 ≤ γ1(0) = γ (0) and S−1[γ ](0) ≡ µ

µ + 1
γ (0) < φd

follows from (11.24). Since the boundary function S−1[γ ](·) of the region
S−1(Ŵ) is decreasing [see (8.7)], the second inequality gives

R+ × [φd ,∞) ⊆ S−1(Ŵ) = {(x, y) ∈ R
2
+ : S−1[γ ](x) ≤ y}.

But starting at any (φ0, φ1) ∈ R × [0, φd ], the parametric curves t �→ (x(t, φ0),

y(t, φ1)), t ∈ R+, are increasing. Since the boundary functions S−n[γ ](·) of the re-
gions S−n(Ŵ) = {(x, y) ∈ R

2
+ :S−n[γ ](x) ≤ y}, n ∈ N, are also decreasing, every

region S−n(Ŵ), n ∈ N, is “closed” in the sense of (8.4). Therefore, Method A after
Corollary 8.4 can be used in order to calculate the value function v(·, ·) on R

2
+.

COROLLARY 11.22. Suppose that (11.20) holds. Let Bn � [µ/(µ+1)]nγ1(0)

for every n ∈ N. Then the sequence R+ × [Bn,∞), n ∈ N, increases to R+ ×
(0,∞), and we have v(·, ·) = vn(·, ·) on R+ × [Bn,∞) for every n ∈ N.

Since (φ∗
0 , φ∗

1) ∈ R+ × [φd ,∞) ⊆ R+ × [B1,∞), the exit boundaries ∂Ŵ
x
1 and

∂Ŵ
x of the stopping regions Ŵ1 and Ŵ are the same, and

∂Ŵ
x = ∂Ŵ

x
1 =

{(
x, γ1(x)

)
:x ∈ [0, ξ e

1 )
}
≡

{(
x, γ1(x)

)
:x ∈ [0, φ∗

0)
}
.

From the entrance boundary ∂Ŵ
e
1 = {(x, a0(x)) :x ∈ (φ∗

0 , (λ/c)
√

2 )} of the stop-
ping region Ŵ1, we can obtain its exit boundary ∂Ŵ

x
1 and the value function

v1(·, ·) on the continuation region C1 by using Method D in Section 11.1; see
Figures 5(a), (b) and 6(b).

Note also that the value function v(·, ·) ≡ v1(·, ·) is continuously differentiable
on R+ × [B1,∞) \ ∂Ŵ

x
1 and is not differentiable on ∂Ŵ

x
1 by Corollary 11.5 and

Lemma 11.16. Let x1 ≡ x1(γ1) = min{x ∈ R+ :S−1[γ1](x) = γ1(x)} be the (small-
est) intersection point of the functions S−1[γ1](·) and γ1(·) as in (8.9). Then Corol-
lary 8.4 implies

{(
x, γ (x)

)
:x ∈ R+

}
∩ S−1(Ŵ1) =

{(
x, γ1(x)

)
:x ∈ [0, x1]

}
,

and the restriction of the boundary function γ (·) ≡ γ1(·) to the interval [0, x1) is
continuously differentiable by Lemma 11.15.

Using Corollary 11.22, we can also show that the restrictions of the value func-
tion v(·, ·) and the boundary ∂Ŵ of the stopping region Ŵ on the complement of
the region R+ × [B1,∞) are continuously differentiable.
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Since the sequence {vn(·, ·)}n∈N of the value functions increases to the func-
tion v(·, ·), all of them coincide with v(·, ·) ≡ v1(·, ·) on the region R+ × [B1,∞).
On the region R+ × [0,B1), they differ, but are continuously differentiable.

In fact, since every parametric curve t �→ (x(t, φ0), y(t, φ1)), t ∈ R+, starting
at any point (φ0, φ1) ∈ R+ × [0, φd ] ⊃ R+ × [0,B1] is increasing, the hypothesis
A1(n) on page 1233 holds on the region R+ × [0, φd ] for every n ∈ N.

On the other hand, the third inequality in (11.20) guarantees that hypothe-
sis A2(n) on page 1233 also holds on R+ × [0, φd ] for every n ∈ N. Indeed,
every entrance boundary ∂Ŵ

e
n+1 coincides with some part of the boundary ∂An =

{(x, an(x)) :x ∈ R+} of the region An = {(x, y) ∈ R
2
+ : [g +µ · vn ◦ S](x, y) < 0};

see Lemma 9.5. Since the sequence {an(·)}n∈N0 of the boundary functions is in-
creasing, the third inequality in (11.20) implies

y < S[a0](x) ≤ S[an](x), n ∈ N0, (x, y) ∈ {(φ∗
0 , φ∗

1), (0, φ̄1)}.

Thus, by an induction on n ∈ N0, we can easily show that the transformation
S(∂Ŵ

e
n+1) of the entrance boundary ∂Ŵ

e
n+1 of every stopping region Ŵn+1 is away

from the exit boundary ∂Ŵ
x
n+1 ≡ ∂Ŵ

x
1 . Therefore, the function (x, y) �→ [g + µ ·

vn ◦ S](x, y) is differentiable on the entrance boundary ∂Ŵ
e
n+1. The same induc-

tion, as in Section 11.2, will also prove the continuous differentiability of the value
functions vn(·, ·), n ∈ N and v(·, ·) on the region R+ × [0, φd ] ⊃ R+ × [0,B1], as
well as the continuous differentiability of the restrictions of the boundaries ∂Ŵn,
n ∈ N, and ∂Ŵ to the set R+ × [0, φd ].

COROLLARY 11.23. Suppose that (11.20) holds. Then the boundary function

γ (·) of the stopping region Ŵ = {(x, y) ∈ R
2
+ :γ (x) ≤ y} is continuously differen-

tiable on its support [0, ξ ]. The exit boundary Ŵ
x is not empty. The value function

v(·, ·) is continuously differentiable on R
2
+ \ ∂Ŵ

x , but not differentiable on ∂Ŵ
x .

The interesting feature of the solutions of the problems covered under condi-
tion (11.20) is that the smooth-fit principle is satisfied on one connected proper
subset of the (connected and continuously differentiable) boundary of the optimal
stopping region, and fails on the complement of this subset. Moreover, the value
function is continuously differentiable away from the boundary.

The conditions in (11.20) are satisfied, for example, if λ = 0.15, µ = 1.5 and
c = 0.7 and m = 0.9. In general, the functions S−1[a0](·) and a0(·) always in-
tersect on the line y = x. Since γ1(·) ≥ a0(·) and γ1(·) is decreasing, we have
x1 ≤ (λ/c) · (

√
2/2), with equality if and only if

S−1(φ∗
0 , φ∗

1) ∈ {(x, y) ∈ R
2
+ :x < y} ⇐⇒ 1 < µ(λ + c).

This condition is satisfied for the numbers above. As a result, we have x1 = (λ/c) ·
(
√

2/2) and γ (x) = a0(x) = x − (λ/c)
√

2 for every x ∈ [φ∗
0 , x1]. The boundary

function γ (·) is strictly above the function a0(·) everywhere else.
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APPENDIX: PROOFS OF SELECTED RESULTS

The P0-infinitesimal generator Ã of the process �̃ in (4.5) Let us denote by
Ã the infinitesimal generator under P0 of the process �̃ = [�̃(0) �̃(1)]T in (4.5).
For every function f ∈ C1,1(R+ × R+), we have

f (�̃t ) = f (�̃0) +
∑

0<s≤t

[f (�̃s) − f (�̃s−)]

+
∫ t

0

{
Dφ0f (�̃s)

[
(λ + 1)�̃(0)

s + λ(1 − m)√
2

]
(A.1)

+ Dφ1f (�̃s)

[
(λ − 1)�̃(1)

s + λ(1 + m)√
2

]}
ds,

and
∑

0<s≤t [f (�̃s) − f (�̃s−)] equals
∫ t

0

[
f

((
1 − 1

µ

)
· �̃(0)

s−,

(
1 + 1

µ

)
· �̃(1)

s−

)
− f

(
�̃

(0)
s−, �̃

(1)
s−

)]
dNs .

Note that {Nt −µt; t ≥ 0} is a (P0,F)-martingale. Then for every F-stopping time
τ such that

E
φ0,φ1
0 |f (�̃τ )| < ∞ and

E
φ0,φ1
0

[∫ τ

0

∣∣∣∣f
((

1 − 1

µ

)
· �̃(0)

s−,

(
1 + 1

µ

)
· �̃(1)

s−

)
(A.2)

− f
(
�̃

(0)
s−, �̃

(1)
s−

)∣∣∣∣ds

]
< ∞,

we have

E0f (�̃τ ) = f (�̃0) + E0

∫ τ

0
Ãf (�̃s) ds, t ≥ 0,(A.3)

and Ãf (φ0, φ1) equals

Dφ0f (φ0, φ1)

[
(λ + 1)φ0 + λ(1 − m)√

2

]

+ Dφ1f (φ0, φ1)

[
(λ − 1)φ1 + λ(1 + m)√

2

]

(A.4)

+ µ

[
f

((
1 − 1

µ

)
φ0,

(
1 + 1

µ

)
φ1

)
− f (φ0, φ1)

]
,

(φ0, φ1) ∈ R+ × R+.

PROOF OF LEMMA 5.3. Let w : R2
+ �→ R be a bounded Borel function. Since

g(·, ·) ≥ g(0,0) = −λ
√

2/c in (4.12) is bounded from below, the function J0w is
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well defined. By (5.7),

Jw(t,φ0, φ1) ≥ −
(

λ

c

√
2 + µ‖w‖

)∫ ∞

0
e−(λ+µ)u du

= −
(

λ

c

√
2 + µ‖w‖

)
1

λ + µ

for every t ∈ [0,∞]. Since we also have J0w(φ0, φ1) ≤ Jw(0, φ0, φ1) = 0, we
obtain (5.9).

Suppose now that w is also concave. For every u ∈ R, the functions φ0 �→
x(u,φ0) and φ1 �→ y(u,φ1) in (4.8) are linear. The mappings (φ0, φ1) �→
S(φ0, φ1) in (5.8) and (φ0, φ1) �→ g(φ0, φ1) in (4.12) are also linear. Therefore, the
integrand in (5.7), namely (φ0, φ1) �→ e−(λ+µ)u(g +µ ·w ◦S)(x(u,φ0), y(u,φ1)),
is concave for every u ∈ [0,∞). Thus, the mappings (φ0, φ1) �→ Jw(t, (φ0, φ1)),
t ∈ [0,∞] in (5.7) are concave. Then J0w(φ0, φ1) = inft∈[0,∞] Jw(t,φ0, φ1)

is a lower envelope of concave mappings, and therefore, is a concave func-
tion of (φ0, φ1) ∈ R

2
+. Finally, it is clear from (5.7) that w1 ≤ w2 implies that

J0w1 ≤ J0w2. �

PROOF OF COROLLARY 5.4. The function v0 ≡ 0 has all of the properties.
The proof follows from an induction and the properties of concave functions. �

For the proof of Proposition 5.5, we shall need the following result on the
characterization of F-stopping times; see [6], Theorem T33, page 308, and [9],
Lemma A2.3, page 261.

LEMMA A.1. For every F-stopping time τ and every n ∈ N0, there is an

Fσn -measurable random variable Rn :� �→ [0,∞] such that τ ∧ σn+1 = (σn +
Rn) ∧ σn+1 holds P0-a.s. on {τ ≥ σn}.

PROOF OF PROPOSITION 5.5. First, we shall establish the inequality

E
φ0,φ1
0

∫ τ∧σn

0
e−λtg(�̃t ) dt ≥ vn(φ0, φ1), τ ∈ S, (φ0, φ1) ∈ R

2
+,(A.5)

for every n ∈ N0, by proving inductively on k = 1, . . . , n + 1 that

E
φ0,φ1
0

∫ τ∧σn

0
e−λtg(�̃t ) dt

≥ RHSk−1(A.6)

:= E
φ0,φ1
0

[(∫ τ∧s

0
e−λtg(�̃t ) dt + 1{τ≥s}e

−λsvk−1(�̃s)

)∣∣∣∣
s=σn−k+1

]
.

Observe that (A.5) follows from (A.6) when we set k = n + 1.
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If k = 1, then the inequality (A.6) is satisfied as an equality, since v0 ≡ 0. Sup-
pose that (A.6) holds for some 1 ≤ k < n + 1. We shall prove that it must also
hold when k is replaced with k + 1. Let us denote the right-hand side of (A.6)
by RHSk−1, and rewrite it as

RHSk−1 = RHS
(1)
k−1 + RHS

(2)
k−1 � E

φ0,φ1
0

[∫ τ∧σn−k

0
e−λtg(�̃t ) dt

]

+ E
φ0,φ1
0

[
1{τ≥σn−k}

(∫ τ∧s

σn−k

e−λtg(�̃t ) dt(A.7)

+ 1{τ≥s}e
−λsvk−1(�̃s)

)∣∣∣∣
s=σn−k+1

]
.

By Lemma A.1, there is an Fσn−k
-measurable random variable Rn−k such that

τ ∧ σn−k+1 = (σn−k + Rn−k) ∧ σn−k+1 holds P0-almost surely on {τ ≥ σn−k}.
Therefore, the second expectation, denoted by RHS

(2)
k−1, in (A.7) becomes

E
φ0,φ1
0 1{τ≥t}

[∫ (t+Rn−k)∧s

t
e−λug(�̃u) du + 1{t+Rn−k≥s}e

−λsvk−1(�̃s)

]∣∣∣∣
t=σn−k

s=σn−k+1

= E
φ0,φ1
0

{
1{τ≥σn−k}e

−λσn−kfn−k(Rn−k, �̃σn−k
)
}

by the strong Markov property of N , where

fk−1(r, φ0, φ1) � E
φ0,φ1
0

[∫ r∧σ1

0
e−λtg(�̃t ) dt + 1{r≥σ1}e

−λσ1vk−1(�̃σ1)

]

= Jvk−1
(
r, (φ0, φ1)

)
≥ J0vk−1(φ0, φ1) = vk(φ0, φ1).

The (in)equalities follow from (5.3), (5.4) and (5.6), respectively. Thus

RHS
(2)
k−1 ≥ E

φ0,φ1
0

[
1{τ≥σn−k}e

−λσn−kvk

(
�̃σn−k

)]
.

From (A.6) and (A.7), we obtain

E
φ0,φ1
0

∫ τ∧σn

0
e−λtg(�̃t ) dt

≥ RHSk−1 = E
φ0,φ1
0

[∫ τ∧σn−k

0
e−λtg(�̃t ) dt

]
+ RHS

(2)
k−1

≥ E
φ0,φ1
0

[∫ τ∧σn−k

0
e−λtg(�̃t ) dt + 1{τ≥σn−k}e

−λσn−kvk(�̃σn−k
)

]
= RHSk.

This completes the proof of (A.6) by induction on k, and (A.5) follows by setting
k = n + 1 in (A.6). When we take the infimum of both sides in (A.5), we obtain
Vn ≥ vn, n ∈ N.
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The reverse inequality Vn ≤ vn, n ∈ N, follows immediately from (5.11), since
every F-stopping time Sε

n is less than or equal to σn, P0-a.s. by construction. There-
fore, we only need to establish (5.11). We shall prove it by induction on n ∈ N. For
n = 1, the left-hand side of (5.11) becomes

E
φ0,φ1
0

∫ Sε
1

0
e−λtg(�̃t ) dt = E

φ0,φ1
0

∫ rε
0 (φ0,φ1)∧σ1

0
e−λtg(�̃t ) dt

= Jv0
(
rε

0(φ0, φ1), φ0, φ1
)
.

Since Jv0(r
ε
0(φ0, φ1), φ0, φ1) ≤ J0v0(φ0, φ1) + ε by Remark 5.2, (5.11) holds for

n = 1.
Suppose that (5.11) holds for every ε > 0 for some n ∈ N. We will prove that it

also holds when n is replaced with n+1. Since Sε
n+1 ∧σ1 = r

ε/2
n (�̃0)∧σ1, P0-a.s.,

the expectation E
φ0,φ1
0 [

∫ Sε
n+1

0 e−λtg(�̃t ) dt] becomes

E
φ0,φ1
0

[∫ Sε
n+1∧σ1

0
e−λtg(�̃t ) dt + 1{Sε

n+1≥σ1}

∫ Sε
n+1

σ1

e−λtg(�̃t ) dt

]

= E
φ0,φ1
0

[∫ r
ε/2
n (φ0,φ1)∧σ1

0
e−λtg(�̃t ) dt

]

+ E
φ0,φ1
0

[
1{rε/2

n (φ0,φ1)≥σ1}
e−λσ1fn

(
�̃σ1

)]

by the strong Markov property of N , where

fn(φ0, φ1) � E
φ0,φ1
0

[∫ S
ε/2
n

0
e−λtg(�̃t ) dt

]
≤ vn(φ0, φ1) + ε/2

by the induction hypothesis. Therefore,

E
φ0,φ1
0

[∫ Sε
n+1

0
e−λtg(�̃t ) dt

]

≤ E
φ0,φ1
0

[∫ r
ε/2
n (φ0,φ1)∧σ1

0
e−λtg(�̃t ) dt

(A.8)

+ 1{rε/2
n (φ0,φ1)≥σ1}

e−λσ1vn

(
�̃σ1

)]
+ ε/2

= Jvn

(
rε/2
n (φ0, φ1), (φ0, φ1)

)
+ ε/2.

Since Jvn(r
ε/2
n (φ0, φ1), (φ0, φ1)) ≤ vn+1(φ0, φ1) + ε/2 by Remark 5.2, this in-

equality and (A.8) prove (5.11) when n is replaced with n + 1. �

PROOF OF PROPOSITION 5.6. Corollary 5.4 and Propositions 5.5 and 5.1
imply that v(φ0, φ1) = limn→∞ vn(φ0, φ1) = limn→∞ Vn(φ0, φ1) = V (φ0, φ1) for
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every (φ0, φ1) ∈ R
2
+. Next, let us show that V = J0V . Since (vn)n≥1 is a decreas-

ing sequence,

V (φ0, φ1) = lim
n→∞vn(φ0, φ1) = inf

n≥1
vn(φ0, φ1) = inf

n≥1
J0vn−1(φ0, φ1)(A.9)

for every (φ0, φ1) ∈ R
2
+. Since (Jvn)n≥1 is a decreasing sequence, and {vn}n∈N are

uniformly bounded, we have V (φ0, φ1) = infn≥1 J0vn−1(φ0, φ1) = J0v(φ0, φ1) =
J0V (φ0, φ1) by the dominated convergence theorem and (A.9). Finally, since
U ≤ 0, we have U ≤ vn for every n by induction, and U ≤ limn→∞ vn = V . �

PROOF OF LEMMA 5.7. Let us fix a constant u ≥ t and (φ0, φ1) ∈ R
2
+. Then

Jw(u,φ0, φ1)

= E
φ0,φ1
0

[∫ t∧σ1

0
e−λsg(�̃s) ds + 1{u≥σ1}e

−λσ1w
(
�̃σ1

)]
(A.10)

+ E
φ0,φ1

[
1{σ1>t}

∫ u∧σ1

t
e−λsg(�̃s) ds

]
.

On the event {σ1 > t}, we have u ∧ σ1 = [t + (u − t)] ∧ [t + (σ1 ◦ θt )] = t + [(u −
t) ∧ (σ1 ◦ θt )]. Therefore, the strong Markov property of N gives

E
φ0,φ1
0 1{σ1>t}

∫ u∧σ1

t
e−λsg(�̃s) ds

= E
φ0,φ1
0 1{σ1>t}e

−λt
E

�̃t

0

[∫ (u−t)∧σ1

0
e−λsg(�̃s) ds

]

= E
φ0,φ1
0

[
1{σ1>t}e

−λt (Jw(u − t, �̃t ) − E
�̃t

0

[
1{u−t≥σ1}e

−λσ1w
(
�̃σ1

)])]

= e−(λ+µ)tJw
(
u − t,

(
x(t, φ0), y(t, φ0)

))

− E
φ0,φ1
0

[
1{σ1>t}1{u≥σ1}e

−λσ1w
(
�̃σ1

)]
.

The third equality follows from the definition of Jw in (5.3) and the last
from (4.10) and the strong Markov property. Substituting the last equation into
(A.10) and simplifying the rest give

Jw(u,φ0, φ1) = Jw
(
t, (φ0, φ1)

)
+ e−(λ+µ)tJw

(
u − t,

(
x(t, φ0), y(t, φ0)

))
.

Finally, taking the infimum of both sides over u ∈ [t,+∞] gives (5.12). �

PROOF OF PROPOSITION 5.11. First, let us show (5.22) for n = 1. Fix ε ≥ 0
and (φ0, φ1) ∈ R

2
+. By Lemma A.1, there exists a constant u ∈ [0,∞] such that
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Uε ∧ σ1 = u ∧ σ1. Then

E
φ0,φ1
0 MUε∧σ1 = E

φ0,φ1
0

[
e−λ(u∧σ1)V

(
�̃u∧σ1

)
+

∫ u∧σ1

0
e−λsg(�̃s) ds

]

= E
φ0,φ1
0

[∫ u∧σ1

0
e−λsg(�̃s) ds + 1{u≥σ1}e

−λσ1V
(
�̃σ1

)]

+ E
φ0,φ1
0

[
1{u<σ1}e

−λuV (�̃u)
]

(A.11)

= JV
(
u, (φ0, φ1)

)
+ e−(λ+µ)uV

(
x(u,φ0), y(u,φ1)

)

= JuV (φ0, φ1),

where the third equality follows from (5.3) and (4.10), and the fourth from (5.16).
Fix any t ∈ [0, u). By (5.16) and (4.10) once again, we have

JV (t, φ0, φ1) = JtV (φ0, φ1) − e−(λ+µ)tV
(
x(t, φ0), y(t, φ1)

)

≥ J0V (φ0, φ1) − E
φ0,φ1
0

[
1{σ1>t}e

−λtV (�̃t )
]
.

On the event {σ1 > t}, we have Uε > t (otherwise, Uε ≤ t < σ1 would imply Uε =
u ≤ t , contradicts with our initial choice of t < u). Thus, V (�̃t ) < −ε on {σ1 > t}.
Hence,

JV (t, φ0, φ1) > J0V (φ0, φ1) + εe−(λ+µ)u ≥ J0V (φ0, φ1)

for every t ∈ [0, u). Therefore, J0V (φ0, φ1) = JuV (φ0, φ1), and (A.11) implies

E
φ0,φ1
0

[
MUε∧σ1

]
= JuV (φ0, φ1) = J0V (φ0, φ1) = V (φ0, φ1) = E

φ0,φ1
0 [M0].

This completes the proof of (5.22) for n = 1. Now suppose that (5.22) holds for
some n ∈ N, and let us show the same equality for n + 1. Note that

E
φ0,φ1
0

[
MUε∧σn+1

]

= E
φ0,φ1
0

[
1{Uε<σ1}MUε

]
+ E

φ0,φ1
0

[
1{Uε≥σ1}

∫ σ1

0
e−λsg(�̃s) ds

]

+ E
φ0,φ1
0

[
1{Uε≥σ1}

{∫ Uε∧σn+1

σ1

e−λsg(�̃s) ds

+ e−λ(Uε∧σn+1)V
(
�̃Uε∧σn+1

)}]
.

Since Uε ∧σn+1 = σ1 +[(Uε ∧σn)◦θσ1] on the event {Uε ≥ σ1}, the strong Markov
property of �̃ at the stopping time σ1 will complete the proof. �

PROOF OF PROPOSITION 5.12. Note that the sequence of random variables
∫ Uε∧σn

0
e−λsg(�̃s) ds + e−λ(Uε∧σn)V

(
�̃Uε∧σn

)
≥ −2

∫ ∞

0
e−λs λ

c

√
2ds = −2

√
2

c
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is bounded from below; see (4.12). By (5.22) and Fatou’s lemma, we have

V (φ0, φ1) ≥ E
φ0,φ1
0

[
lim inf
n→∞

(∫ Uε∧σn

0
e−λsg(�̃s) ds + e−λ(Uε∧σn)V

(
�̃Uε∧σn

))]

≥ E
φ0,φ1
0

[∫ Uε

0
e−λsg(�̃s) ds

]
− ε

for every (φ0, φ1) ∈ R
2
+. The second inequality follows from (5.21). �

PROOF OF PROPOSITION 8.3. Let us prove (8.5) for n = 1. Take (φ0, φ1) ∈
S−1(Ŵ). By (8.4), the curve u �→ (x(u,φ0), y(u,φ1)), u ≥ 0, does not leave
S−1(Ŵ). Hence,

S
(
x(u,φ0), y(u,φ1)

)
∈ Ŵ and (V ◦ S)

(
x(u,φ0), y(u,φ1)

)
= 0, u ∈ R+.

Then Lemma 5.6, (5.4), (5.6) and Proposition 5.5 imply that

V (φ0, φ1) = J0V (φ0, φ1)

= inf
t∈[0,∞]

∫ t

0
e−(λ+µ)u[g + µ · V ◦ S]

(
x(u,φ0), y(u,φ1)

)
du

= inf
t∈[0,∞]

∫ t

0
e−(λ+µ)ug

(
x(u,φ0), y(u,φ1)

)
du

= J0V0(φ0, φ1)

= V1(φ0, φ1).

Since V is the limit of the decreasing sequence {Vn}n∈N, the equalities V = V1 =
V2 = · · · on S−1(Ŵ) follow.

On S−1(Ŵ) ∩ C, we have 0 > V = V1 = V2 = · · ·. Therefore, S−1(Ŵ) ∩ C ⊆ Ck

for every k ≥ 1. Taking intersection of both sides with S−1(Ŵ) gives S−1(Ŵ)∩C ⊆
S−1(Ŵ)∩Ck for every k ≥ 1. To prove the opposite inclusion, note that V = Vk < 0
on S−1(Ŵ) ∩ Ck for every k ≥ 1. Therefore, S−1(Ŵ) ∩ Ck ⊆ C, k ≥ 1. Intersecting
both sides with the set S−1(Ŵ) gives S−1(Ŵ) ∩ Ck ⊆ S−1(Ŵ) ∩ C, k ≥ 1.

The proof of S−n(Ŵ)∩Ŵ = S−n(Ŵ)∩Ŵn = S−n(Ŵ)∩Ŵn+1 = · · · reads as in the
previous paragraph, after every “C” is replaced by “Ŵ,” and every strict inequality
by an equality. This completes the proof of (8.5) for n = 1.

Suppose that (8.5) holds for some n ∈ N, and let us prove it for n + 1. Take
(φ0, φ1) ∈ S−(n+1)(Ŵ). Since the curve u �→ (x(u,φ0), y(u,φ1)), u ∈ R+, does
not leave the region S−(n+1)(Ŵ) by (8.4), we have S(x(u,φ0), y(u,φ1)) ∈ S−n(Ŵ),
u ∈ R+, and

(V ◦ S)
(
x(u,φ0), y(u,φ1)

)
= (Vn ◦ S)

(
x(u,φ0), y(u,φ1)

)
, u ∈ R+,
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by the induction hypothesis. Lemma 5.6, (5.4), (5.6) and Proposition 5.5 imply

V (φ0, φ1) = J0V (φ0, φ1)

= inf
t∈[0,∞]

∫ t

0
e−(λ+µ)u[g + µ · V ◦ S]

(
x(u,φ0), y(u,φ1)

)
du

= inf
t∈[0,∞]

∫ t

0
e−(λ+µ)u[g + µ · Vn ◦ S]

(
x(u,φ0), y(u,φ1)

)
du

= Vn+1(φ0, φ1).

Since V is the limit of the decreasing sequence {Vn}n∈N, we have V = Vn+1 =
Vn+2 = · · · on S−(n+1)(Ŵ). From these equalities follows the proof of the equalities
of the regions in (8.5) for n + 1, by arguments similar to those presented for n = 1
above. �

PROOF OF LEMMA 9.2. The obvious choices are the function an : R+ �→ R+
and the number αn in (9.3) and (9.4), respectively. By the discussion above,

{(x, y) ∈ R
2
+; [g + µ · vn ◦ S](x, y) < 0}

= An = R
2
+ \ epi(an)

= {(x, y) ∈ R
2
+;y < an(x)}

= {(x, y) ∈ [0, αn) × R+;y < an(x)},
and (9.6) follows. The proof will be complete if we show the equality in (9.5).

Since [g + µ · vn ◦ S](x, y), x ∈ R+, is continuous, we have [g + µ · vn ◦
S](x, an(x)) ≥ 0 for every x ∈ R+, and the equality holds for every x ∈ [0, αn)

because an(x) > 0, x ∈ [0, αn). Because an(·) is also continuous, the equality also
holds for (x, y) = (αn, a(αn)), and

[g + µ · vn ◦ S]
(
x, an(x)

)
= 0, x ∈ [0, αn].(A.12)

The identity (9.5) will follow immediately if we show for the same An in (9.1) that

[g + µ · vn ◦ S](x, y) > 0,
(A.13)

(x, y) ∈ (R2
+ \ An) \

{(
x, an(x)

)
:x ∈ [0, αn]

}
.

The nonpositive function vn(·, ·) is concave and equal to zero outside the
bounded region Cn. Therefore, the functions y �→ vn(x, y), x ∈ R+, and x �→
vn(x, y), y ∈ R+, are nonpositive, concave and equal zero for every large real
y and x, respectively. This implies that the functions y �→ vn(x, y), x ∈ R+,
and x �→ vn(x, y), y ∈ R+, are nondecreasing. Therefore, the functions y �→
[g + µ · vn ◦ S](x, y), x ∈ R+, and x �→ [g + µ · vn ◦ S](x, y), y ∈ R+, are strictly
increasing since both S(x, y) and g(x, y) are strictly increasing in both x and y.
Now (A.13) follows from (A.12). �
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PROOF OF LEMMA 9.7. Fix any (φ0, φ1) ∈ ∂Ŵ
e
n+1. Then vn+1(φ0, φ1) = 0,

and substituting (φ−t
0 , φ−t

1 ) � (x(−t, φ0), y(−t, φ1)) into (9.15) for t ∈ [0, r̂(φ0,

φ1)] gives

Jtvn

(
x(−t, φ0), y(−t, φ1)

)
= −e−(λ+µ)tJvn(−t, φ0, φ1),

(A.14)
t ∈ [0, r̂(φ0, φ1)],

thanks to the semigroup property of x(·, ·) and y(·, ·).
By the definition of the entrance boundary ∂Ŵ

e
n+1 in (9.10), the point (φ0, φ1)

is reachable from the inside of the continuation region Cn+1. Namely, there
exists some δ > 0 such that (x(−t, φ0), y(−t, φ1)) ∈ Cn+1 and rn(x(−t, φ0),

y(−t, φ1)) = t for every t ∈ (0, δ]. Then (9.16) implies

0 > vn+1
(
x(−t, φ0), y(−t, φ1)

)
= −e−(λ+µ)tJvn(−t, φ0, φ1)

for every t ∈ (0, δ]. Since r̂n(φ0, φ1) is the first time when the last function on the
right may change its sign, we obtain

−Jvn(−t, φ0, φ1) < 0, t ∈
(
0, r̂n(φ0, φ1) ∧ r̂(φ0, φ1)

)
.

Using (9.16) once again, we conclude

vn+1
(
x(−t, φ0), y(−t, φ1)

)

≤ Jtvn

(
x(−t, φ0), y(−t, φ1)

)

= −e−(λ+µ)tJvn(−t, φ0, φ1) < 0, t ∈
(
0, r̂n(φ0, φ1) ∧ r̂(φ0, φ1)

)
.

Thus {(x(−t, φ0), y(−t, φ1)); t ∈ (0, r̂n(φ0, φ1) ∧ r̂(φ0, φ1))} ⊆ Cn+1,

rn
(
x(−t, φ0), y(−t, φ1)

)
= t, vn+1

(
x(−t, φ0), y(−t, φ1)

)

= −e−(λ+µ)tJvn(−t, φ0, φ1),

for t ∈ (0, r̂n(φ0, φ1) ∧ r̂(φ0, φ1)). The third equation follows from the second
and (A.14), and the second from the first and the fact (x(t, x(−t, φ0)), y(t, y(−t,

φ1))) = (φ0, φ1) ∈ Ŵ. Taking the limit in the third equation as t increases to
r̂n(φ0, φ1) gives

{
vn+1

(
x(−t, φ0), y(−t, φ1)

)
|t=r̂n(φ0,φ1) = 0 and(

x
(
−r̂n(φ0, φ1), φ0

)
, y

(
−r̂n(φ0, φ1), φ1

))
∈ ∂Ŵ

x
n+1

}

if r̂n(φ0, φ1) ≤ r̂(φ0, φ1).

Finally, every (φ̃0, φ̃1) ∈ Cn+1 ∪ ∂Ŵ
x
n+1 is reachable from (φ0, φ1) ≡ rn(φ̃0, φ̃1) ∈

∂Ŵ
e
n+1 on the entrance boundary by {(x(t, φ̃0), y(t, φ̃1)); t ∈ [0, rn(φ̃0, φ̃1)]} which

is contained (possibly, excluding end-points) in the continuation region Cn+1. �

PROOF OF COROLLARY 11.6. By Lemma 11.4, the function (φ0, φ1) �→
r0(φ0, φ1) is continuous on the continuation region (φ0, φ1) ∈ C1. Therefore, the
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entrance boundary ∂Ŵ
e
1 is the image of the continuous mapping [see the definition

in (9.10)]

(φ0, φ1) �→
(
x
(
r0(φ0, φ1), φ1

)
, γ1

(
y
(
r0(φ0, φ1), φ1

)))
, (φ0, φ1) ∈ C1,

from the connected C1 into R
2
+. Thus the set ∂Ŵ

e
1 is a connected subset of R

2
+.

Since the parametric curves t �→ (x(t, φ0), y(t,0)), φ0 ∈ R+ starting on the
x-axis are increasing, the points on the boundary ∂Ŵ1 where these curves meet
the boundary belong to the entrance boundary ∂Ŵ

e
1; see also Figure 1. Hence

{(x, γ1(x)) : x ∈ [δ, ξ1)} ⊆ ∂Ŵ
e
1 for some 0 ≤ δ < ξ1. Then the connectedness of

∂Ŵ
e
1 gives (11.14) with ξ e

1 � inf{x ∈ R+ : (x, γ1(x)) ∈ ∂Ŵ
e
1}.

Indeed, the point (ξ e
1 , γ1(ξ

e
1 )) does not belong to the entrance boundary ∂Ŵ

e
1.

Suppose it does. Then {(x(−t, ξ e
1 ), y(−t, γ1(ξ

e
1 ))); t ∈ (0, δ]} ⊂ C1 for some

δ > 0. Let (φ0, φ1) ∈ C1 be the point in the middle of the vertical line-segment
connecting the points (x(−δ, ξ e

1 ), y(−δ, γ1(ξ
e
1 ))) and (x(−δ, ξ e

1 ), γ1(x(−δ, ξ e
1 ))).

Then we have x(δ,φ0) = x(δ, x(−δ, ξ e
1 )) = ξ e

1 and y(δ,φ1) > y(δ, y(−δ,

γ1(ξ
e
1 ))) = γ1(ξ

e
1 ) = γ1(x(δ,φ0)) since the mapping φ �→ y(t, φ) is increasing for

every t ∈ R. Therefore, (x(δ,φ0), y(δ,φ1)) ∈ Ŵ1 and 0 < r0(φ0, φ1) < δ. Thus
we have (x(r0(φ0, φ1), φ0), y(r0(φ0, φ1), φ1)) ∈ ∂Ŵ

e
1, but x(r0(φ0, φ1), φ0) <

x(δ,φ0) = ξ e
1 [the mapping φ �→ x(t, φ) is increasing for every t ∈ R]. This con-

tradicts the minimality of ξ e
1 . �

PROOF OF COROLLARY 11.12. Suppose ξ e
1 > 0 and fix any φ0 ∈ [0, ξ e

1 ). Let
φ̄0 � (1/2)(φ0 + ξ e

1 ). Then (φ̄0, γ1(φ̄0)) ∈ ∂Ŵ
x
1 , and γ1(φ0) > γ1(φ̄0) > γ1(ξ

e
1 )

since γ1(·) is strictly decreasing on its support. Then the set B � [0, φ̄0) ×
(γ1(φ̄0),∞) is an open neighborhood of (φ̄0, γ1(φ̄0)) such that for every (φ̃0, φ̃1) ∈
B ∩ C1, we have

0 < r ≤ r0(φ̃0, φ̃1) ≤ r̄ < ∞,

where r � inf{t ≥ 0 :y(t, γ1(φ̄0)) ≤ γ1(ξ
e
1 )} and r̄ � inf{t ≥ 0 :x(t,0) ≥ ξ1}. This

completes the proof of the first part.
Now let (φ0, φ1) ∈ ∂Ŵ

e
1 be a point on the entrance boundary. Take any con-

vergent sequence {(φ(n)
0 , φ

(n)
1 )}n∈N in the continuation region C1 whose limit is

the boundary point (φ0, φ1). Since r0(·, ·) ≤ r̄ (see above) on C1, the sequence
{r0(φ

(n)
0 , φ

(n)
1 )}n∈N is bounded and has a convergent subsequence. We shall con-

clude the proof of the second part by showing that every convergent subsequence
of the sequence {r0(φ

(n)
0 , φ

(n)
1 )}n∈N has the same limit 0.

Without changing the notation, suppose that {r0(φ
(n)
0 , φ

(n)
1 )}n∈N converges

to some finite number r0 ≥ 0. Since the functions (φ0, φ1) �→ v1(φ0, φ1) and
(t, φ0, φ1) �→ Jv0(t, φ0, φ1) are continuous, we have

0 = v1(φ0, φ1) = lim
n→∞v1

(
φ

(n)
0 , φ

(n)
1

)
= lim

n→∞Jv0
(
r0

(
φ

(n)
0 , φ

(n)
1

)
, φ

(n)
0 , φ

(n)
1

)

= Jv0(r0, φ0, φ1) =
∫ r0

0
e−(λ+µ)tG0(t, φ0, φ1) dt.
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If we show that G0(t, φ0, φ1) > 0 for every t > 0, then r0 = 0 follows.
However, t = 0 is a point of increase for the function t �→ G0(t, φ0, φ1). Since

(φ0, φ1) ∈ ∂Ŵ
e
1 = {(x, a0(x)) :x ∈ (ξ e

1 , ξ1)} by Corollary 11.7, and the boundary
function a0(·) of the region A0 = {(x, y) ∈ R

2
+ : [g+µ ·v0 ◦S](x, y) < 0} is strictly

decreasing, there exists some δ > 0 such that (x(t, φ0), y(t, φ1)) ∈ A0 ⊆ C1 for
every t ∈ [−δ,0). Therefore,

G(t,φ0, φ1) = [g + µ · v0 ◦ S]
(
x(t, φ0), y(t, φ1)

)
< 0 = G0(0, φ0, φ1),

t ∈ [−δ,0).

Then Lemma 11.3 implies that G0(t, φ0, φ1) > 0 for every t > 0 and completes
the proof of r0 = 0. �

PROOF OF LEMMA 11.13. If ξ e
1 = 0, then cl(∂Ŵ

e
1) = {(x, γ1(x)) :x ∈

[0, ξ1]} = ∂Ŵ1 by Corollary 11.6. In the remainder, suppose that ξ e
1 > 0 and fix

any φ0 ∈ [0, ξ e
1 ). The boundary point (φ0, γ1(φ0)) is not included in the entrance

boundary ∂Ŵ
e
1. We shall prove that it is an exit boundary point; namely, there exists

some δ > 0 such that [see (9.10)]
(
x(t, φ0), y

(
t, γ1(φ0)

))
∈ C1 ∀ t ∈ (0, δ].(A.15)

Since the boundary γ1(·) is strictly decreasing on its support [0, ξ1], we have

0 ≤ φ0 < ξ e
1 �⇒ γ1(φ0) > γ1(ξ

e
1 ).

Then there is always a sequence of points {(φ(n)
0 , φ

(n)
1 )}n∈N ⊆ C1 such that

φ
(n)
0 = φ0 and φ

(n)
1 > γ1(ξ

e
1 ) for every n ∈ N, and

lim
n→∞φ

(n)
1 = ↑ γ1(φ0).

Namely, the sequence {(φ(n)
0 , φ

(n)
1 )}n∈N “increases” to the point (φ0, γ1(φ0)) along

the vertical line passing through the point (φ0, γ1(φ0)). For every n ∈ N, we have

v1
(
φ

(n)
0 , φ

(n)
1

)
= Jv0

(
r0

(
φ

(n)
0 , φ

(n)
1

)
, φ

(n)
0 , φ

(n)
1

)

and
(
x
(
r0

(
φ

(n)
0 , φ

(n)
1

)
, φ

(n)
0

)
, y

(
r0

(
φ

(n)
0 , φ

(n)
1

)
, φ

(n)
1

))
∈ ∂Ŵ

e
1.

By Corollary 11.12, the sequence {r0(φ
(n)
0 , φ

(n)
1 )}n∈N is bounded. Therefore, it

has a convergent subsequence; we shall denote it by the same notation and its
limit by r0. The functions Jv0(·, ·, ·), x(·, ·), y(·, ·) and v1(·, ·) are continuous, and
v1(φ0, γ1(φ0)) = 0. Therefore, taking limits of the displayed equations above gives

0 = Jv0
(
r0, φ0, γ1(φ0)

)
and

(
x(r0, φ0), y

(
r0, γ1(φ0)

))
∈ cl(∂Ŵ

e
1).(A.16)
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The second expression implies that x(r0, φ0) ≥ ξ e
1 . We shall prove that the inequal-

ity is strict, and therefore,
(
x(r0, φ0), y

(
r0, γ1(φ0)

))
∈ ∂Ŵ

e
1.(A.17)

Let us assume that x(r0, φ0) = ξ e
1 . Then the second expression in (A.16) implies

that (x(r0, φ0), y(r0, γ1(φ0))) = (ξ e
1 , γ1(ξ

e
1 )). Thus (φ0, γ1(φ0)) is on the curve C1

given by (11.16). Then Corollary 11.9 implies that G(t,φ0, γ1(φ0)) > 0 for every
t �= r0. Since r0 > 0, this implies that Jv0(r0, φ0, γ1(φ0)) =

∫ r0
0 e−(λ+µ)sG0(s, φ0,

γ1(φ0)) ds is strictly positive. But this contradicts the first equality in (A.16).
Therefore, we must have x(r0, φ0) > ξ e

1 , and (A.17) is correct.
Now we are ready to prove (A.15). Since φ0 < ξ e

1 , we have [g + µ · v0 ◦
S](φ0, γ1(φ0)) > 0 by Corollary 11.11. Because the mapping [g + µ · v0 ◦ S](·, ·)
is continuous, there exists some r0 > δ > 0 such that

G0
(
t, φ0, γ1(φ0)

)
= [g + µ · v0 ◦ S]

(
x(t, φ0), y

(
t, γ1(φ0)

))
> 0, t ∈ [0, δ].

Then for every t ∈ (0, δ] we have

v0
(
x(t, φ0), y

(
t, γ1(φ0)

))

≤ Jv0
(
r0 − t, x(t, φ0), y

(
t, γ1(φ0)

))

=
∫ r0−t

0
e−(λ+µ)u[g + µ · v0 ◦ S]

(
x
(
u,x(t, φ0)

)
, y

(
u,y

(
t, γ1(φ0)

)))
du

= e(λ+µ)t
∫ r0

t
e−(λ+µ)u[g + µ · v0 ◦ S]

(
x(t, φ0), y

(
t, γ1(φ0)

))
du

= e(λ+µ)t

[
Jv0

(
r0, φ0, γ1(φ0)

)
︸ ︷︷ ︸

=0

−
∫ t

0
e−(λ+µ)uG0

(
u,φ0, γ1(φ0)

)
du

]
< 0.

Therefore, (A.15) holds and (φ0, γ1(φ0)) ∈ ∂Ŵ
x
1 . �

PROOF OF LEMMA 11.14. There is nothing to prove if ξ e
1 = 0. Therefore,

suppose ξ e
1 > 0. Let B1 be the union of the continuation region C1 and the open

subset of [0, ξ e
1 ) × R+ strictly below the curve C1 in Corollary 11.9. Then B1 is

open and C1 ∪ ∂Ŵ
x
1 ⊂ B1; see Remark 11.10. Define

{
r̃0(φ0, φ1) � inf

{
t > 0 :

(
x(t, φ0), y(t, φ1)

)
∈ ∂Ŵ

e
1

}

ṽ1(φ0, φ1) � Jv0
(
r̃0(φ0, φ1), φ0, φ1

)
}

for every (φ0, φ1) ∈ B1.

Then

r0(φ0, φ1) = r̃0(φ0, φ1) and v1(φ0, φ1) = ṽ1(φ0, φ1),
(A.18)

(φ0, φ1) ∈ C1 ∪ ∂Ŵ
x
1 .
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Let us show that r̃0(·, ·), and therefore, ṽ1(·, ·) are continuously differentiable
on B1. The infimum r̃0(φ0, φ1) is finite and strictly positive for every (φ0, φ1) ∈ B1.
By (9.12), G0(r̃0(φ0, φ1), φ0, φ1) equals

[g + µ · v0 ◦ S]
(
x
(
r̃0(φ0, φ1), φ0

)
, y

(
r̃0(φ0, φ1), φ1

))
= 0,

(A.19)
(φ0, φ1) ∈ B1.

The mapping (t, φ0, φ1) �→ G0(t, φ0, φ1) is continuously differentiable. If

DtG0(t, φ0, φ1)|t=r̃0(φ0,φ1) �= 0, (φ0, φ1) ∈ B1,(A.20)

then Theorem 11.2 implies that, in an open neighborhood in B1 of every (φ0, φ1),
the equation G0(t, φ0, φ1) = 0 determines t = t (φ0, φ1) implicitly as a function
of (φ0, φ1), and this function is continuously differentiable. In every neighbor-
hood, these solutions must then coincide with r̃0(φ0, φ1). Therefore, r̃0(φ0, φ1) is
continuously differentiable on B1. Then the function ṽ1(φ0, φ1) is continuously
differentiable on B1 since Jv0(·, ·, ·) is continuously differentiable on R

3
+.

Now fix any (φ0, φ1) ∈ B1 and assume DtG0(r̃0(φ0, φ1), φ0, φ1) = 0. Then the
function t �→ G0(t, φ0, φ1) has a local minimum at t = r̃0(φ0, φ1). Lemma 11.3
and (A.19) imply that G0(t, φ0, φ1) > 0 for every t �= r̃0(φ0, φ1). Therefore, the
parametric curve

{(
x(t, φ0), y(t, φ1)

)
: t ∈ R

}
∩ R

2
+ ⊆ R

2
+ \ A0

does not intersect A0, but touches the boundary ∂A0. Then this curve has to
be the same as C1 in Corollary 11.16, and (φ0, φ1) ∈ C1. But this contradicts
(φ0, φ1) ∈ B1, since Remark 11.10 and the description of B1 show that C1 ∩ B1 =
∅. Therefore, (A.20) holds.

Now let us show that γ1(·) is continuously differentiable on [0, ξ e
1 ). Fix any

φ0 ∈ [0, ξ e
1 ). Then (φ0, γ1(φ0)) ∈ ∂Ŵ

x
1 ⊂ B1 and ṽ1(φ0, γ1(φ0)) = 0 by (A.18).

The function ṽ1(·, ·) is continuously differentiable on B1. Therefore, the result
will again follow from the implicit function theorem (Theorem 11.2) if we show
that Dφ1 ṽ1(φ0, γ1(φ0)) �= 0. However, Dφ1 ṽ1(φ0, γ1(φ0)) equals

D−
φ1

ṽ1
(
φ0, γ1(φ0)

)
= D−

φ1
v1

(
φ0, γ1(φ0)

)
= lim

φ1↑γ1(φ0)
D−

φ1
v1(φ0, φ1)

= lim
φ1↑γ1(φ0)

Dφ1v1(φ0, φ1)

= lim
φ1↑γ1(φ0)

1 − e−(µ+1)r0(φ0,φ1)

µ + 1
> 0.

The second equality follows from (A.18), and the third from the concavity of
v1(·, ·). The fourth and the fifth follow from Corollary 11.5. Finally, the limit at
the end is strictly positive since r0(·, ·) is bounded away from zero in the intersec-
tion of C1 with some neighborhood of (φ0, γ1(φ0)) by Corollary 11.12. �
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PROOF OF LEMMA 11.15. The result follows from Corollary 11.7 if ξ e
1 = 0.

Therefore, suppose ξ e
1 > 0. Then the boundary function γ1(·) is continuously dif-

ferentiable on [0, ξ e
1 ) ∪ (ξ e

1 , ξ1) by Corollary 11.7 and Lemma 11.14. We need to
show that x �→ γ1(x) is continuously differentiable at x = ξ e

1 .
Recall that the function γ1(·) is convex. Therefore, the left derivative D−γ1(·)

and the right derivative D+γ1(·) of the function γ1(·) exist and are left- and right-
continuous, respectively, at x = ξ e

1 . Thus

lim
x↑ξ e

1

Dγ1(x) = lim
x↑ξ e

1

D−γ1(x) = D−γ1(ξ
e
1 )

(A.21)
≤ D+γ1(ξ

e
1 ) = lim

x↓ξ e
1

D+γ1(x) = lim
x↓ξ e

1

Dγ1(x).

The continuity of the derivative Dγ1(·) of the function γ1(·) at x = ξ e
1 will follow

immediately from the existence of the derivative of γ1(·) at x = ξ e
1 .

Now recall from Corollary 11.9 and Remark 11.10 that the point (ξ e
1 , γ1(ξ

e
1 )) is

on the parametric curve C1, which lies above {(x, γ1(x)) :x ∈ R+} and touches it
at the point (ξ e

1 , γ1(ξ
e
1 )). Therefore, for every t > 0 and s > 0

y(0, γ1(ξ
e
1 )) − y(−t, γ1(ξ

e
1 ))

x(0, ξ e
1 ) − x(−t, ξ e

1 )
≤ γ1(x(0, ξ e

1 )) − γ1(x(−t, ξ e
1 ))

x(0, ξ e
1 ) − x(−t, ξ e

1 )

≤ γ1(x(s, ξ e
1 )) − γ1(x(0, ξ e

1 ))

x(s, ξ e
1 ) − x(0, ξ e

1 )

≤ y(s, γ1(ξ
e
1 )) − y(0, γ1(ξ

e
1 ))

x(s, ξ e
1 ) − x(0, ξ e

1 )
.

When we take the limit as t ↓ 0 and s ↓ 0, we obtain

Dty(0, γ1(ξ
e
1 ))

Dtx(0, ξ e
1 )

≤ D−γ1(ξ
e
1 ) ≤ D+γ1(ξ

e
1 ) ≤ Dty(0, γ1(ξ

e
1 ))

Dtx(0, ξ e
1 )

.

Note that the terms on the far left and far right are the same. Therefore,
D−γ1(ξ

e
1 ) = D+γ1(ξ

e
1 ) and the derivative of the boundary function γ1(·) at x = ξ e

1
exists. �

PROOF OF LEMMA 11.16. Since v1(·, ·) is concave, the left derivatives
D−

φ0
v1(·, ·), D−

φ1
v1(·, ·) and the right derivatives D+

φ0
v1(·, ·), D+

φ1
v1(·, ·) exist and

are left- and right-continuous on the boundary ∂Ŵ, respectively. Because v1(·, ·)
vanishes on Ŵ1, and the function γ1(·) is strictly decreasing, we have

D−
φ0

v1(φ0, φ1) ≥ D+
φ0

v1(φ0, φ1) = 0,
(A.22)

(φ0, φ1) ∈ ∂Ŵ1 \
{(

0, γ1(0)
)}

.

D−
φ1

v1(φ0, φ1) ≥ D+
φ1

v1(φ0, φ1) = 0,
(A.23)

(φ0, φ1) ∈ ∂Ŵ1 \ {(ξ1,0)}.
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For every boundary point (φ0, φ1) ∈ ∂Ŵ1 \ {(0, γ1(0))} and any {(φ(n)
0 , φ

(n)
1 )}n∈N

⊂ C1 such that limn→∞ φ
(n)
0 =↑ φ0 and φ

(n)
1 = φ1 for every n ∈ N, we have

D−
φ0

v1(φ0, φ1) = lim
n→∞D−

φ0
v1

(
φ

(n)
0 , φ

(n)
1

)

= lim
n→∞Dφ0v1

(
φ

(n)
0 , φ

(n)
1

)
(A.24)

= lim
n→∞

1 − exp{−(µ − 1)r0(φ
(n)
0 , φ

(n)
1 )}

µ − 1
.

The second and the third equalities follow from Corollary 11.5. The function
r0(·, ·) is continuous on the entrance boundary ∂Ŵ

e
1 and is bounded away from

zero in some neighborhood of every point on the exit boundary ∂Ŵ
x
1 ; see Corol-

lary 11.12. Therefore, the limit on the right in (A.24) equals zero for every point
(φ0, φ1) on the entrance boundary ∂Ŵ

e
1 and is strictly positive for every point

(φ0, φ1) on the exit boundary ∂Ŵ
x
1 .

Thus, for every (φ0, φ1) ∈ ∂Ŵ
e
1, the equality in (A.22), and as a result of a sim-

ilar argument, the equality in (A.23) are attained. Therefore, the partial deriva-
tives Dφ0v1(·, ·) and Dφ1v1(·, ·) exist at every (φ0, φ1) ∈ ∂Ŵ

e
1 and are continuous

since Dφ0v1(·, ·) = D±
φ0

v1(·, ·) is both left- and right-continuous near the entrance
boundary ∂Ŵ

e
1.

However, if (φ0, φ1) is a point on the exit boundary ∂Ŵ
x
1 , then the inequalities

in (A.23) and (A.24) are strict. Namely, the v1(·, ·) is not differentiable on the exit
boundary ∂Ŵ

x
1 . �
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