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Abstract—Importance sampling (IS) is a well-known Monte 
Carlo method, widely used to approximate a distribution of 
interest using a random measure composed of a set of weighted 
samples generated from another proposal density. Since the 
performance of the algorithm depends on the mismatch between 
the target and the proposal densities, a set of proposals is often 
iteratively adapted in order to reduce the variance of the resulting 
estimator. In this paper, we review several well-known adaptive 
population importance samplers, providing a unified common 
framework and classifying them according to the nature of their 
estimation and adaptive procedures. Furthermore, we interpret 
the underlying motivation for the different adaptation schemes, 
opening the door for novel and more efficient algorithms. Finally, 
we compare the performance of different algorithms available in 
the literature through a toy example. 

I. INTRODUCTION 

Monte Carlo methods are widely used in signal processing, 
communications, machine learning and many other scientific 
disciplines [1], [2], [3], [4]. Importance sampling (IS) [5], 
[6] is a well-known Monte Carlo (MC) methodology that 
can be used to compute integrals involving a complicated 
multidimensional target probability density function (pdf), 
7r(x) with x G R™. The method proceeds by drawing samples 
from a simple proposal pdf, g(x), and assigning weights 
to them according to the ratio between the target and the 
proposal, i.e., w(x) = ^ f . However, although the validity 
of this approach is guaranteed under mild assumptions, the 
variance of the estimator depends critically on the discrepancy 
between the proposal and the target densities. 

In order to solve this issue, several works are devoted 
to the design of adaptive IS (AIS) schemes [7], where the 
proposal density is updated by learning from previously gen
erated samples [6]. Some well-known methods available in 
the literature are Population Monte Carlo (PMC) [8], [9], 
[10], Adaptive Multiple Importance Sampling (AMIS) [11], 
Adaptive Population Importance Sampling (APIS) [12], [13], 
or Layered Adaptive Importance Sampling (LAIS) [14]. All 
of them are iterated importance samplers, and most of them 
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employ the multiple importance sampling (MIS) approach 
[15] for building the IS estimators. In all of these schemes, 
the proposal or the population of proposals is updated at 
each iteration, using the statistical information that has been 
collected from the target in the previous iterations through 
the samples generated. However, the aforementioned methods 
differ substantially, both in the specific MIS scheme used to 
perform the estimation (different weighting functions can be 
employed within a MIS framework, as shown in [15]) and in 
the adaptation procedure used to update the proposals. 

In this work, we describe a general framework for adap
tive population importance samplers. Firstly, we introduce a 
generic AIS scheme that encompasses several state of the art 
methods currently available in the literature. For the sake of 
simplicity, we focus on the adaptation of the mean vectors of 
the proposal pdfs, although some variants of these techniques 
also consider the adaptation of the covariance matrices. Then, 
each step of this general AIS scheme is analyzed and discussed 
in detail. Furthermore, several examples are provided and the 
numerical performance of the different alternatives is com
pared through a toy example. The theoretical reinterpretation 
of these adaptive IS procedures and the practical considera
tions provided throughout the paper can be very useful for the 
better understanding of the existing methods, as well as for 
designing novel and more efficient techniques. 

II. STATIC IMPORTANCE SAMPLING 

Let us consider the variable of interest, x e X C Rn, and 
the target density 

TT(X) = ^ ( X ) , ( 1 ) 

that usually corresponds to a posterior pdf. Our goal is 
computing efficiently some moment of x, i.e., 

I = E*[f(X)] = f /(x)if(x)dx =jf / ( x M x ) d x , (2) 

where Z = Jx 7r(x)dx and / (x) can be any square-integrable 
function. In general, we are not able to draw samples from 
7f(x). The importance sampling technique is based on the 
following equality 

I = Eq[w(X)f(X)] = | | /(x)«;(x)<z(x)dx, (3) 



where q is a proposal pdf (simpler to draw from and with 
heavier tails than 7f), and 

w(x) 
7T(X) 

<zto' 
(4) 

Hence, drawing M samples x^ 1 ) , . . . ,x^M ) from </(x), the 
standard IS estimator when Z is known is given by 

1 1 
MZ 

M 

^ w ( » ) / ( x ( ™ ) ) ? (5) 
m = l 

where w/m) (x(m)) ZLO (™) 

Alternatively, when Z is q ( x ( m ) ) 

unknown the standard self-normalized IS estimator is 
M 

E 
7 7 1 = 1 

w(m) / ( x 
(m) (6) 

where w/m) (-) 
P £ i «>w Given a fixed function / ( x ) , the 

optimal proposal q that minimizes the variance of the IS 
estimator is </(x) oc |/(x)|7f(x) (at least, when I is applied). 
However, in practical applications we are often interested in 
computing expectations w.r.t. several / ’ s . In this context, a 
more appropriate strategy is minimizing the variance of the 
importance weights w^m' for m = 1 , . . . , M. In this case, the 
minimum variance is attained when </(x) = 7f (x) [16]. Thus, 
we are interested in choosing the proposal pdf q as close as 
possible to 7f. In the rest of this work, we consider the joint 
use of N different proposal pdfs, </ i , . . . , q^ [15]. In this case, 
drawing { x „ } „ = i ~ 9n(x) for all n = 1 , . . . , N, several 
choices of weights 

(m) 7r(x 
(m) 

(7) 
$„(xlm)) 

are valid. More specifically, several choices of the denominator 
3>n(x) that lead to an unbiased estimator I in Eq. (5) are 
possible, as proved in [15]. 

I I I . GENERIC SCHEME FOR A D A P T I V E POPULATION 

IMPORTANCE SAMPLERS 

Table I shows a generic population importance sampler that 
encompasses most of the state of the art approaches currently 
available in the literature. A generic adaptive importance 
sampler is a sequential algorithm where a set of N proposals 
are adapted over time. At the t-th iteration, the set of available 
proposals is {</ i , t , . . . , qN,t}. These proposals can change over 
time, not only updating their parameters but even completely 
changing their shape (i.e., the family of the distribution), and 
we only assume that all the qn,t’s have heavier tails than the 
target 7f [6]. For the sake of simplicity, we only consider 
location-scale densities such that each qnit is completely 
characterized by a mean vector, \in^, and a covariance matrix, 
C n . In this work, we focus on the adaptation of the mean 
vectors, i.e., the /in,t ’s. 

At the t-th iteration, M independent samples are drawn from 
each proposal in Step 1 of Table I , i.e., 

( m ) g„,t(x|/in, t,Cn), (8) 

Table I 
GENERIC ADAPTIVE POPULATION IMPORTANCE SAMPLER. 

Init ialization: Choose T, N, M, qn,o, Mn,o and C n for n = 1 , . . . , N. 

For t = 1 , . . . , T : 

1) Sampling: Draw M samples x(
n

 1 ( i ) AM) from each of the N 
proposal pdfs in the population {qi,..., g jv} , i.e., 

( m ) I \ r- \ 

for m = 1 , . . . , M. 

2) Weighting: Weight the samples, {x^™ }M
=1, with 

( m ) n n,t 

7 r ( X n t ) 

* n , t ( x „ ( ) 
(10) 

according to a proper function Qn,t that leads to unbiased IS 
estimators I [5, Section 2.5.4][14], [15]. 

3) Adaptation of the means: Apply some suitable procedure to 
update the mean vectors, 

without jeopardizing the consistency of the IS estimators. 

Outputs: Return {x^™ , w^t } for all m = 1 , . . . , M and t = 1 , . . . , T. 

EXAMPLES OF 
Table II 

$ n t AND Q n t IN LITERATURE. 

Weight den. PMC [8] AMIS (N = 1) [11] APIS [13] 

$ n ! t ( x ) <?n,t(x) 1 1 P 
t T = . 

qv(x) 1 V̂ 
N P n — l <M,t(x) 

^ n , t ( x ) <?n,t(x) 1 - P l 

t T — . 

^ T ( X ) qn t ( x ) | 

for m = 1 , . . . , M and n = 1 , . . . , N. In Step 2, a weight of 
the form 

(m) ^ ( X n , t ) 

' * Cx (m)V 
(9) 

is associated to these MN samples. In the denominator, we 
have a function 3>n t, properly chosen in such a way that the 
estimator of Eq. (5) is unbiased [5, Section 2.5.4], [14], [15]. 
Table I I shows some examples of the 3>n,t’s used in literature, 
denoting </„jt(x) = (/nt(x|/Lxnt, C n ) to ease the notation. Note 
that <Zn,t(x) = </t(x|/Lxt, C) for AMIS, since N = 1 in this 
case. Finally, Step 3 performs the adaptation of the mean 
vectors fxn,t. Several adaptive schemes have been proposed in 
the literature, and here we divide them into two main families. 

1) The adaptation procedure employs previous samples, 
weighted using either the same or other denominator 
w.r.t. the weights used for the estimation. This approach 
is summarized in Table I I I , and includes the possible 
application of resampling steps over a subset of these 
weighted samples [8], [9], [10]. 

2) More sophisticated procedures are employed. For in
stance, information about the gradient of 7f can be 
used [17], [18], or MCMC techniques applied to adapt 
the mean vectors [14], [19], [20], [21], [22]. These 
approaches tend to provide better performance, but they 
are more computationally demanding in general (see 
Section V). Table IV summarizes them. 
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(a) Scheme used, e.g., in [8], [24], [25]. 

©> 
p(x-t+i\Vk+i) 

(b) Scheme used in [14]. 

Figure 1. Graphical representation of two possible generation procedures of the pair ( / i t+i , x t + i ) given (/xt, x i : t ) 
of simplicity, we have set N = 1. The PMC method corresponds to a simplification of (a), where p(/ii : jv|xi:jv,i : t) 

Note that, for the sake 

= P(>l:Jv|Xl:JV,t)' 

Table III 
ADAPTATION BASED ON WEIGHTED SAMPLES. 

Let us consider the set of IS weights 

(m) 
Pn,t = nn,t(xi™V 

where Qn>t are chosen in such a way that they do not jeopardize the 
consistency of the IS estimators, and they can be equal to w^\ in Eq. 
(10) or not (see Table II). Two different procedures are used in literature: 

PI Apply some resampling strategy to {/in,t}^_j, with probabilities 

according to the weights p„t, to obtain {Mn,t+i}^Li [8], [10], 

[23]. Nonlinear transformations of />„™ can be also applied [9]. 
P2 Building estimators of some moments of 7r employing />„™ , and 

using this information to obtain {f^n,t+i}n=i P4], [11], [25]. 

Table IV 
M O R E SOPHISTICATED ADAPTATION PROCEDURES. 

P3 Adaptation by using MCMC transitions to obtain {Mn,t+i}^-1 
given {Mn,t}^_i, as in [14], [23], [20], [21], [22], 

P4 Adaptation by using stochastic gradient search of 7r for moving 
{Mn,t}£U tO {Mn,t+l}£U [17], [18]. 

IV. THE DYNAMICS IN AIS 

Henceforth, we consider M = 1 for the sake of simplicity. 
The consistency of the AIS estimators depends on a proper 
choice of $ n t but also on the employed adaptation procedure. 
In many AIS methods [8], [24], [11], [25], the set of means 
at the (£ + l)-th iteration, (J,i-N,t+i = {(J>n,t+i}n=i> is chosen 
among the previous samples x i ^ i ^ = {xn,t}n'I=i> according 
to some probabilities. The next set of samples x1 : Ar t + i are 
then drawn from <?„,t+i(x|/Lx„it+i, C„). Namely, the gener
ating procedure of (pv.N,t+i,^-i:N,t+i) can be expressed in 
terms of two conditional probabilities, i.e., 

p(pi:N\X-l:N,l:t), 

P(X-l:N\Vl:N,t+l), 
(11) 

where p{fJ>i-.N\x-i:N,i:t) depends on the specific adaptation 
procedure applied by the algorithm, and 

N 

p(-Xl:N\Vl:N,t+l) = J J <7n,t+l (Xl AVt+1; C„), (12) 

is common for all the methods encompassed by the proposed 
framework. In some techniques, like PMC [8], [10], we have 
p(/j.i:N\x-i:N,i:t) = p(pi:N\xi:N,t), i.e., the means a t the 
following iteration only depend on xi:jvit at the previous 
iteration. Another interesting special case, often used in stan
dard adaptation approaches [7], [24], [11], [25], occurs when 
p(fJ,i:N\x-i:N,i-.t) is a singular density [26], i.e., fJ,uN,t+i and 
XI:JV i:t are linked by a deterministic function ipt: 

t*l:N,t+l — <Pt(xl:N,l:t), (13) 

where y t is typically an estimator of ^ [ X ] with X ~ 7f(x) 
[11] or related values [24]. In other schemes, such as LAIS 
[14], the selection of fJ,uN,t+i is performed independently 
from the generation of x1:Ar t. In this case, the generating 
procedure for (pi-.N,t+i,^-i:N,t+i) becomes 

(J>l:N,t+l ~ P(fJ>l:N \(J>l:N,t), 

Xl:AT,t+l ~ P(X-l:N\fJ>l:N,t+l), 
(14) 

n = l 

where p(xi:jv|/ii:jvit+i) is still given by Eq. (12). Figures 
l(a)-(b) depict the graphical models corresponding to Eq. (11) 
and Eq. (14), respectively (with N = 1 for simplicity). 

A. Consistency of the Estimators 

On the one hand, note that the methods which apply the 
scheme in Figure 1(b) (i.e., those following Eq. (14)) can be 
converted to a static (i.e., non-adaptive) IS sampler by choos
ing all the means, {^n,t} for n = 1 , . . . , N and t = 1 , . . . , T, 
in advance, and then sampling all the x's. Therefore, if all the 
qn,t's have heavier tails than 7f and $„ j t is properly chosen, 
the consistency is always ensured using standard IS arguments. 
Namely, increasing the number of samples guarantees that the 
IS estimators converge to the integral value I. 

On the other hand, for the methods which apply the scheme 
in Figure 1(a) (i.e., those following Eq. (11)) the consistency 
must be studied carefully on a case by case basis. Indeed, 
the adaptation could jeopardize the consistency in this case 
(yielding a systematic bias, for instance). However, the special 
case in Eq. (13) is simpler and consistency is guaranteed 
if fJ>i-.N,t converges to a fixed vector as t —> oo. In this 
case the adaptation is virtually stopped after a certain number 
of iterations, and the method then becomes asymptotically 
equivalent to a non adaptive IS algorithm. More generally, 



important information about the dynamics of the algorithm is 
contained in the limiting distributions as t —> oo and N —> oo, 
which are analyzed in the following section. 

B. Limiting distributions 

In the previous section, we have described two gen
eral approaches for designing adaptation procedures in AIS. 
In both cases, a joint densities is implicitly defined, i.e., 
p(»i:N,i:t, xi-.N,i:t), for t = 1 , . . . , T. The marginal pdfs 

V t M = p W , and s„,t(x)=p(xn, t), (15) 

are particularly interesting for studying the dynamics induced 
by the algorithm. In all the algorithms (that we are aware), 
hnj{n) are g„ j t (x ) not dependent on n but to the total number 

(N) AN) of proposal pdfs N, i.e., we can write ht (p,) and g\ (x) 
The limiting densities (if exist) 

h^ifx) = lim h{
t
N\fx), h[00\fj,)= lim h[N\fj,), 

N—>oo 

i/oo (x) = lim <?t
(A°(x), 

t—>oo 

S°°h SN) g\ ;(x) = lim gY ;(x), 
TV—>oo 

are particularly important from a theoretical point of view. In 
LAIS [14], the density hoo (A<0 is pre-established in advance 
by the user, like a prior pdf in a hierarchical Bayesian 
procedure. The information provided by hoo (A0 , is crucial for 
ensuring the consistency of the IS estimators (controlling the 

(N) 
dynamics of the AIS method). In LAIS [14], hoo 
to the target 7f, i.e., 

ft-oo (A1) = 7f(/Lt). 

coincides 

(16) 

The pdf goo (x) can be considered as an equivalent proposal 
density [14]. Namely, after a certain number of iterations T, 
i.e., for t < T, one can consider 

Xn,( j W ( x ) , t > T, (17) 

Vn 
weights ^ ^ ( x 

1 , . . . , TV. For reducing the variance of the importance 
has to be as close as possible to the target 

7f(x). In PMC-type methods [8], [10] that apply resampling 
steps in the adaptation, we have 

(°°)i \ 
91 (*) 7T(X), (18) 

and additionally / i^ (AO = g^'di). Finally, when the 
adaptation follows Eq. (13) [11], [25], we have h^0(fi) = 
6(fi - £^-[X]), where £^-[X]) is expected value of X ~ 7f(x) 
and ipt in Eq. (13) is an estimator of £ ^ [X ] . A similar 
strategies is given in [24]. Table V summarizes the limiting 
distribution /I^(/LX) of different AIS schemes. 

Table V 
L I M I T I N G D I S T R I B U T I O N / i00(/x) W I T H DIFFERENT AIS SCHEMES . 

Stand. AIS approach [11] PMC [8], APIS [13] LAIS [14] 

S(fj> — En [X]) unknown (if/when exists) 

T¯(/A) 

Table V I 
M S E I N T H E E S T I M A T I O N OF T H E M E A N OF T H E TARGET. T H E BEST 

RESULTS FOR EACH V A L U E OF (7 ARE H I G H L I G H T E D I N BOLD-FACE. 

Algorithm < T = 1 <T= 5 er= 10 &i,j ~W( [1 , 10]) | 
PMC [8] 107.58 0.6731 0.0744 0.0732 | 

AMIS [11] 121.21 0.8640 0.0121 0.7328 1 

APIS [13] 2.45 0.2424 0.0185 0.0045 1 

LAIS [14] 0.0021 0.0075 0.0121 0.0049 1 

1 GAPIS [17] 0.0023 0.0104 0.0143 0.0040 1 

V . NUMERICAL RESULTS 

Let us consider a bivariate multimodal target pdf formed by 
a mixture of 5 Gaussians, i.e., 

7T(X) j^A/"(x; !/<,£<), X G R 2 , (19) 

with means u\ = [-10, -10] , V2 = [0,16]T, [13,8]T, 
î 4 = [-9, 7 ] T , and 1/5 = [ 1 4 , 1 4 ] T , and covariance ma
trices S i = [2, 0.6; 0.6, 1], - 2 = [2, - 0 .4 ; -0 .4 , 2], 
S 3 = [2, 0.8; 0.8, 2], £ 4 = [3, 0;0, 0.5], and S 5 = 
[2, - 0 . 1 ; - 0 . 1 , 2]. The goal is to estimate, via Monte Carlo, 
the mean of TY (the true value is [1.6,1.4]T), using different 
adaptive algorithms. For the sake of simplicity, we also con
sider Gaussian proposals. 

We have tested A P I S , A M I S , standard P M C , gradient A P I S 

(GAPIS) , and L A I S . At each run, the initial means of the 
proposals are selected uniformly within a square /J,\ ~ 
U(\-4,4] x [-4,4]). Initially, the same isotropic covariance 
matrix, C ^ = <r2l2, is used for every proposal. We test 
different values of<r e {1,5,10}. Then, different non-isotropic 
diagonal covariance matrices, C^ = diag(<TJ

2
1,<T2

2) with 
<Tjj ~ U ( [ l , 10]) for i = 1 , . . . N and j s { 1 , 2}, are also 
tested. In this example, all the algorithms adapt only the 
means of the proposals, except for A M I S , that also adapts 
the covariance matrix. We use N = 100 for all the methods, 
except for A M I S (we recall that N = 1 in this case). In order 
to obtain a fair comparison, for each method T is selected in 
such a way that the total number of evaluations of the target 
is always fixed to E = 2 • 105. Table V I shows the mean 
squared error (MSE) of the estimation of the first component 
of the mean (averaged over 500 runs). We have considered 
the best performance of each method after testing several 
combinations of parameters, as described in [13], [14], [17]. 
Note that G A P I S and L A I S provide the best results in general, 
whereas A M I S and A P I S are also competitive when a = 10 

and aij ~ U ( [ l , 10]), respectively. 

V I . CONCLUSION 

In this paper, we have introduced a unified generic frame
work for adaptive importance sampling (A IS) that encom
passes many well-known methods available in the literature. 
Several A I S algorithms have been described, their dynamics 
have been discussed, their consistency and limiting distribu
tions analyzed, and their performance compared on a multi
modal bivariate example. 
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