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Adaptive Pose Priors for Pictorial Structures

Benjamin Sapp Chris Jordan Ben Taskar
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Philadelphia, PA 19104, USA,
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Abstract

Pictorial structure (PS) models are extensively used

for part-based recognition of scenes, people, animals and

multi-part objects. To achieve tractability, the structure and

parameterization of the model is often restricted, for exam-

ple, by assuming tree dependency structure and unimodal,

data-independent pairwise interactions. These expressivity

restrictions fail to capture important patterns in the data.

On the other hand, local methods such as nearest-neighbor

classification and kernel density estimation provide non-

parametric flexibility but require large amounts of data to

generalize well. We propose a simple semi-parametric ap-

proach that combines the tractability of pictorial structure

inference with the flexibility of non-parametric methods by

expressing a subset of model parameters as kernel regres-

sion estimates from a learned sparse set of exemplars. This

yields query-specific, image-dependent pose priors. We de-

velop an effective shape-based kernel for upper-body pose

similarity and propose a leave-one-out loss function for

learning a sparse subset of exemplars for kernel regression.

We apply our techniques to two challenging datasets of hu-

man figure parsing and advance the state-of-the-art (from

80% to 86% on the Buffy dataset [8]), while using only 15%

of the training data as exemplars.

1. Introduction

Part-based models for recognition of articulated ob-

jects, proposed nearly forty years ago by Fischler and

Elschlager [10], represent an object as a collection of dis-

tinctive parts and geometric relationships between them.

The model characterizes local visual properties of object

parts and posits spring-like connections between pairs of

parts, which express variability of part locations. The

model determines an object match in an image by select-

ing part locations that minimize appearance matching costs

and deformation costs for pairs of connected parts. Im-

proved methods for estimating the model parameters from

data account for some of its current popularity. Recent

Figure 1. Overview of our system. For each test example, we es-

timate a subset of the pictorial structure parameters as a kernel-

weighted sum of training examples, based on their similarity to

the test image. The form of the model and inference remain the

same, but we gain more flexibility by adapting the model to the

image.

work [5, 7, 17, 8, 6, 1] has shown promising recognition

results for human figures, animals, faces and many other

multi-part objects.

However, a common problem in such models is poor lo-

calization of parts that have weak appearance cues or are

easily confused with background clutter (for example, state-

of-the-art accuracy for lower arms in human figures is al-

most half of that for torso or head [1]). This problem is

due in large extent to restrictions on the expressivity of

the model to achieve tractability of inference. For exam-

ple, [5] assume a tree structure of interactions between

parts and unimodal, data-independent pairwise deformation

costs. These expressivity restrictions fail to capture impor-

tant patterns in the data. Adding a latent “pose” variable

into the model [13] partially addresses this problem. Rea-

soning about occlusions of parts captures important non-

local dependencies, but leads to intractable inference [19].

Several recent works used iterative procedures which re-

estimate part-appearance models in terms of color and lo-

cation based on initial predictions of the model [17, 8].

1



In this paper, we propose to increase the expressivity

of pictorial structure models while maintaining efficiency

of inference by allowing a subset of model parameters to

be non-parametric functions of the input. Non-parametric

methods, such as nearest-neighbor classification and ker-

nel density estimation, provide expressive flexibility but

require large amounts of data to generalize well in high-

dimension. We take a semi-parametric approach that com-

bines the tractability of a part-based model representation

with the flexibility of non-parametric methods.

Given a query image, the parameters of the model are

produced by a kernel-weighted combination of a sparse

subset of labeled training poses. This allows for query-

adaptive, image-dependent PS parameters. In particular,

the pairwise parameters can now adapt to the query im-

age’s appearance, unlike in previous PS models in which the

means and covariances of relative part locations are fixed af-

ter training and do not use image cues. The adaptive model

is applied to the image using standard efficient inference

methods. Figure 1 shows an idealized overview of the pro-

cess.

Our kernel is based on shape information which is com-

plementary to texture and color cues used in previous PS

models [16, 8, 9, 3, 1]. It relies on contour similarity

and simple figure/ground information proposed by exem-

plar groundtruth information.

We also address the inherent issues with nearest-

neighbor methods by learning a sparse set of exemplars

from our training set. This adds robustness to the non-

uniform sampling of the example space when using a finite

training set and to outliers which can hurt kernel regression

estimates. In practice we can discard 85% of the training

data and significantly increase the performance and compu-

tational efficiency of our method.

Our contributions are (1) the Adaptive Pictorial Struc-

tures model (APS) (2) a simple greedy procedure to obtain

a sparse set of exemplars minimizing a leave-one-out loss

function (3) the design of an effective kernel based on shape

information (4) state-of-the-art performance on two chal-

lenging upper body human pose estimation datasets, with-

out post-processing the output of our model.

2. Related Work

The literature on human pose estimation is vast, as well

as the variation in settings: applications range from highly-

constrained MOCAP environments (e.g. [13]) to extremely

articulated baseball players (e.g. [15]) to the recently popu-

lar “in the wild” datasets Buffy [8] and the PASCAL person

layout challenge [4].

We focus our attention here on the work most similar

in spirit to ours, namely, pictorial structures models. First

proposed in [10], efficient computation methods were intro-

duced in [5]. Advancements were made by Ramanan [17]

who proposed learning PS parameters discriminatively by

maximizing conditional likelihood. Further improvements

were made using iterative parsing [16]—the model is run

once using generic detectors, and then image-specific ap-

pearance terms are included based on the first parse, and

the model is run again. Further gains have been made by

restricting the state space [8, 9], adding additional pairwise

terms that break the tree-structured assumption [9], and esti-

mating color distributions using a priori estimates of where

the parts should be [3].

We differ from this progression of PS-based models [17,

16, 8, 9, 3] in several ways: (1) We do not employ multiple

iterations of parsing, or loopy belief propagation. Instead

we perform inference once with a tree-structured model. (2)

We do not use color information 1—the driving force behind

our kernel is shape information from regions and contours.

(3) We perform no post-processing of the beliefs of our in-

ference; rather we trust them to be our final answer. Our

basic PS implementation most closely resembles [1], but

our parameters are discriminitively trained.

3. Adaptive Pictorial Structures

The main contribution of this paper is the Adaptive Pic-

torial Structures model, which we will refer to as APS. This

framework is a modular extension to the classic Pictorial

Structures model (PS) and can easily be incorporated into

existing implementations. We begin by describing the ba-

sic PS model in the next section, and describe APS in Sec-

tion 3.2.

3.1. Basic PS Model

Pictorial Structures are a class of graphical models where
the nodes of the graph represents object parts, and edges be-
tween parts encode pairwise geometric relationships. For
modeling human pose, the PS model decomposes as a
tree structure into unary potentials (also referred to as ap-
pearance terms) and pairwise potentials between pairs of
physically-connected parts. Figure 2 shows a PS model for
6 upper body parts, with lower arms connected to upper
arms, and upper arms and head connected to torso. In previ-
ous work [17, 5, 8, 9, 1], the pairwise terms do not depend
on data and are hence referred to as a spatial or structural
prior. The state of part Li, denoted as li ∈ Li, encodes
the joint location of the part in image coordinates and the
direction of the limb as a unit vector: li = [lix liy liu liv]T .
The state of the model is the collection of states of M parts:
p(L = l) = p(L1 = l1, . . . , LM = lM ). The size of the
state space for each part, |Li|, is the number of possible
locations in the image times the number of pre-defined dis-
cretized angles. The standard PS formulation (see [5]) is

1Modulo what is used to compute superpixels and Pb, described in Sec-

tion 4.1



Figure 2. Basic PS model with Gaussian parameters.

usually written

p(l|x) ∝
Y

ij

exp(−
1

2
||Σ

−1/2
ij ((li − lj) − µij)||

2) (1)

×
M
Y

i=1

exp(µT
i ψi(li, x)) (2)

where the parameters of the model are µi, µij and Σij , and

ψi(li, x) are features of the (image) data x at location li.
The PS model can be interpreted as a set of springs at rest

in default positions µij , and stretched according to tight-

ness Σ−1

ij and displacement ψij(l) = li − lj . The unary

terms pull the springs toward locations with higher scores

µT
i ψi(li, x) which are more likely to be a location for part

i.
This log-quadratic form allows inference to be

performed faster than O(|Li|
2): MAP estimates

arg maxl∈L p(L = l|x) can be computed efficiently

using a generalized distance transform for max-product

message passing in O(|Li|) time. Marginals of the

distribution, p(Li|x), can be computed efficiently using

FFT convolution for sum-product message passing in

O(|Li| log |Li|) [5].

3.2. APS Model

Our APS model has the following canonical form

p(l|x) ∝ p0(l|x) exp

(

−
1

2
||Σ−1/2(µ(x)− φ(l))||2

)

(3)

We treat p0(l|x) as a fixed portion of our model learned

discriminatively a priori. The remaining term contains vec-

tors µ(x) and φ(l) which include both the unary and pair-

wise factors. The key to this formulation is that all param-

eters (unary and pairwise) can have a dependence on data

x. We assume that we always have access to a training set,

which comes in image data/labels pairs {(xt, lt)}Tt=1
, and

define each component of µ as a kernel regression estimate

of features of the labels in the training set:

µi(x) =

∑

t∈T Ki(x, (x
t, lt))φi(l

t)
∑

t∈T Ki(x, (xt, lt))
(4)

The kernel Ki(x, (x
t, lt)) ≡ Kt

i (x) denotes the similar-

ity between x and training example t, which is a function

of the data x and data and labels from the training set. At

run-time, no learning is required—discriminative parame-

ters in p0 are fixed, and kernel-estimated parameters are

computed simply via a weighted summation, assuming the

kernel function is known2.

Exemplar selection

Sparse kernel methods, e.g., SVM or RVM, which keep

a subset of training data to use for prediction, have been

shown theoretically and empirically to lead to better gen-

eralization than their dense counterparts [12, 20]. In ad-

dition, they require much less computational effort at test

time. In real applications, choosing a sparse set of exem-

plars addresses common training set issues: For one, the

distribution of examples does not evenly cover the param-

eter space—in our setting, for example, there are many re-

dundant poses with arms straight down. Furthermore, out-

liers which have erroneous high similarity may hurt regres-

sion estimates.

For our model, we would like to select a subset of train-

ing examples which can provide good kernel regression es-

timates to the whole training set:

s⋆ = arg min
s∈{0,1}T

J (s) (5)

J (s) ,

T
∑

t=1

err

(

f(lt),

∑

t′ K
t′(xt)st′f(lt

′

)
∑

t′ K
t′(xt)st′

)

(6)

where err(·) is some error function between features of the

groundtruth, f(lt) and their kernel regression estimate. Se-

lection vector s is a binary vector whose components indi-

cate whether corresponding training examples are selected

or not. We constrain Kt(xt) = 0, thus this can be viewed

as a type of leave-one-out-error loss function on the train-

ing set. This binary optimization/subset selection problem

is NP-hard. Even a relaxation of the problem to s ∈ [0, 1]
with a convex err(·) function is still non-convex. We in-

stead approximately solve the original problem with a sim-

ple greedy, forward selection of training examples: (1) Start

with s ← 0. (2) Find an example t′ from the set of unse-

lected examples which reduces J (s) the most when added

to the selected set. Set st′ ← 1. (3) Repeat until s = 1. (4)

Choose s⋆ from all vectors s seen during the algorithm as

the one with the smallest value J (s).

As a simple, efficiently computable surrogate to an error

function induced by PS inference, we choose err(·) to be

the L1-distance between groundtruth and kernel-estimated

arm joint locations.

2 Throughout the paper, we use the term “kernel” in the statistical sense

of a weighting function, as in kernel density estimation—not in the sense of

the positive semi-definite matrices used in kernel methods to map features

to higher-dimensional spaces.



Pairwise potentials

We define pairwise features φij(l) = li − lj = [lix −
ljx liy − ljy liu − lju liv − ljv]T , for each pair of

connected parts. This captures the displacement in po-

sition and angle between part i and part j. We express

the parameters µij(x) in a locally-parametric form as a

weighted sum of displacements in the training set: µij(x) =
∑T

t=1
Kt

ij(x)φij(l
t)/
∑T

t=1
Kt

ij(x).
The pairwise term in the APS thus takes the same form

as the standard PS pairwise term exp(− 1

2
||Σ

−1/2

ij (φij −

µij)||
2). In the standard PS framework, the means are di-

rectly learned either discriminatively by maximizing condi-

tional log-likelihood (e.g. [17]) or generatively by maximiz-

ing joint likelihood (e.g., [1]). In our framework, we instead

estimate the position and angle of limbs by taking a sum of

training instance displacements, weighted by how similar

the test and training images appear via Kt
ij(x). These pro-

duce an example-specific structural prior/part skeleton, as

illustrated in Figure 1. If the weights Kt
ij(x) are uniform,

this is similar to maximizing the joint likelihood of the data

with respect to the pairwise parameters.

Unary potentials

We define unary feature φil′(l) for each state location l′

in each part i. Let binuv(l) denote which angular bin l falls

into. Then

φil′(l) = 1(|lix − l
′
ix| < ωx) · 1(|liy − l

′
iy| < ωy)· (7)

1(|binuv(li)− binuv(l′i)| < ωuv) (8)

We set each component of ω to be 15% of the corresponding

image dimension. In words, unary feature φil(l) is “on”

when li is close to location l′i.
Our corresponding unary parameters are

µil′(x) =
∑T

t=1
Kt

i (x)φil′(l
t)/
∑T

t=1
Kt

i (x). Intu-
itively, this is a weighted sum of labeled joint locations
in the training set, with smoothing and robustness to
labeling error by incorporating a neighborhood of locations
defined by ω. When the weights are uniform, µil′(x) is
simply a smoothed empirical average of joint locations in
the training set. This type of uniform-weighted location
prior is key to the success of the best results to date [3].
We will also refer to this as a “global” location prior. A
well-weighted µil′(x), on the other hand, has the potential
to be much more informative than a global location prior
because it can adapt to the appearance of test image x.
Figure 3 shows examples of a global location prior and a
particular image’s adaptive location prior. We can write the
unary terms as:

exp
“

−
1

2
||Σ

−1/2
i (φi − µi)||

2
”

(9)

= exp
“

−
1

2

“

φ
T
i Σ−1

i φi + µ
T
i Σ−1

µi

””

exp(φT
i Σ−1

i µi) (10)

∝ exp(φT
i Σ−1

i µi) (11)

because, for a particular image x, both φT
i Σ−1

i φi and

µT
i Σ−1

i µi are constant, and can be folded into the normal-

ization factor of the overall probability distribution. Thus

we see that the unary term can be written in the form of

Equation 2 taking ψi = φiΣ
−1, allowing us to use the usual

efficient PS inference methods.

Figure 3. Left: Global location prior learned with uniform weights

for the right lower arm, i.e. smoothed empirical average of joint

locations in the training set. Each tile shows all image coordi-

nates for a single discretized angle, whose orientation is indicated

by the magenta vector. We see that the mode lower arm position

is pointing straight down. Right: Location prior parameter esti-

mated adaptively for the query image shown in inset. The adaptive

location prior has considerably more mass in the correct location

than the global prior. The correct location is marked by an orange

circle in the left and right plots, which corresponds to the loca-

tion/direction of the vector in the inset image.

4. Kernels for human pose estimation

Recent advances in PS performance have come from ei-

ther improving local appearance models ([1, 3]), iteratively

constraining the state space ([8, 9]), and/or adding pairwise

terms—the model in [9] adds an edge between the left and

right arms which encodes a repulsive force between the

limbs. In the APS model on the other hand, we shift the

focus from improving appearance or adding pairwise terms

to instead finding good training examples via the kernels

Kt
i (x) and Kt

ij(x), which can lead to query-specific im-

provements in unary and pairwise terms.

One natural choice for an ideal kernel is one that re-

flects the true similarity between the groundtruth pose of

the query x and the groundtruth pose of training example t,
for example Kt

i,gt(x) = exp(−||lxi − l
t
i ||

2

2
/σ2

i,gt) for part i.
Results in Section 5 show that using such an oracle kernel

within the APS framework significantly beats any known

method (going from 85.9% to 92.3% average part detection

accuracy), as one might expect. We want our constructed

kernel to be as close as possible to Kt
i,gt, but without ac-

cess to lx. Thus we require a representation that is indepen-

dent of the tremendous amount of variation between im-

age x and model xt: differences in skin and clothing color,

lighting conditions, background clutter, and deformations

due to articulation and projective distortion. These require-



ments motivate our reliance on shape information as a ro-

bust indicator of pose similarity. We found that kernels

based on dense appearance information such as HoG de-

scriptors failed to capture the right information, most likely

due to the large amount of clutter. A similar conclusion can

be reached from the pose-retrieval experiments in [9].

In the construction of our kernel, we specifically focus

on correct retrieval of upper and lower arms, since these are

the most challenging parts to detect, and where almost all

variation occurs after the initial localization.

4.1. Shapebased pose kernel

Consider a query image x which we wish to compare to

a single training instance (xt, lt). To handle minor defor-

mations, we expand (xt, lt) into a set of examples, all gen-

erated from example t by a set affine transformations a ∈ A
varying scale and location of points: (xt, lt) 7→ {(xt

a, l
t
a)}

(Figure 4h).

To compute our kernel, we first filter the set of affine

transforms using a quick, coarse region support distance

dregion to get a shortlist of plausible affine transforma-

tions, A′. We then use a distance based on contour in-

formation, dcontour, to define our kernel value. Define

d
⋆
contour(x, t) = mina∈A′ dcontour(x, (x

t
a, l

t
a)) to be the

best-matched affine transformation in the shortlist, based

on our contour distance. Then our kernel similarity value

between image x and example t is

Kt(x) = exp
(

−d
⋆
contour(x, t))/σ

2

K

)

(12)

We chose σ2

K = 40 via cross-validation. We next explain

dregion and dcontour. Figure 4 illustrates the concepts.

Contour distance dcontour(x, (x
t
a, l

t
a)): Salient contours

in each image are extracted using the Probability of bound-
ary detector (Pb) [14]. We discard contours which con-
tain less than 15 points and are left with a set Cx for the
query image and affinely-mapped contours Ct

a for the test
image. We enforce rough figure/ground consistency by fur-
ther removing contour points in Cx that are inconsistent
with the foreground hypothesized by the affinely-mapped
groundtruth lta

3. The remaining contour sets are lists of
points with corresponding orientations discretized into 8 an-
gular bins: C = [c1 . . . c|C|], ci = [cix ciy ciθ]

T . We build

histograms over orientations hθ(C) ≡ hθ(C;x, y, r) =
∑

c∈C 1(cθ = θ) ·1(||[cx; cy]− [x; y]||2 < r), placed at dif-

ferent coordinates (x, y) and over varying radii of support r.
In practice we place 18 histograms spaced uniformly along
the affinely-transformed groundtruth arm axes at 2 different
radii, yielding 36 histograms with 8 bins each. We define

3In detail, if the contour points are a distance 0.25 times the image

width away from the groundtruth line segment inferred from lta, they are

discarded.

Figure 4. Construction of a shape based kernel; see Section 4.1 for de-

tails.(a, b) Test image x and its superpixelization. (c) Training example xt

with labeled pose lllarm and lluarm shown. We render the groundtruth

arm with various affine transformations to produce binary masks Mt
a

shown in (h). We then count how much of the mask Mt
a overlaps each

superpixel—(d) shows counts of a bad affine alignment of the groundtruth,

(f) shows counts of good alignment. The counts are thresholded to pro-

duce corresponding binary masks Mx
a in (e) and (g), and we use their

intersection-over-union as a region distance. (i,left) shows the default

alignment (no affine transform) of the groundtruth contours (black) with

the test image contours (blue), and (i,right) shows a good candidate. In

(j) we show a placement of one histogram hθ(·; x, y, r) at a particular

location [x; y] and radius r.

our contour distance to be

dcontour(x, (x
t
a, l

t
a)) =

X

x,y,r

χ
2(hθ(C

x), hθ(C
t
a)).4 (13)

Figure 4j depicts an example histogram at a particular lo-

cation and radius.

Region distance dregion(x, (xt
a, l

t
a)): This distance is in-

spired by template matching methods over superpixels, e.g.

[2]. We convert the groundtruth into a binary template mask

M t
a by rendering the upper and lower arms as rectangles,

with length and position given by groundtruth lta, and width

set to one-third of the length. Figure 4h shows binary masks

for all warpings (minus translations) of the groundtruth that

we use.

Superpixels are an over-segmentation of the image into
perceptually coherent regions, as in Figure 4b. We use
publicly available code from [18], set to obtain about 125
superpixels per image. If at least 10% of the limb mask
M t

a is contained in a superpixel, that superpixel is consid-
ered as supporting the groundtruth hypothesis. The union
of all such supporting superpixels yield a binary mask
Mx

a . Figure 4d,f show superpixel counts and Figure 4e,g
show supporting binary masks Mx

a . We score how well
the groundtruth mask and superpixel mask agree using the
intersection-over-union measure to obtain our region dis-

4The χ2-distance measures similarity between histograms:

χ2(h1, h2) = 1
2

P#bins
b=1 (h1(b) − h2(b))2/(h1(b) + h2(b)).



tance:

dregion(x, (xt
a, l

t
a)) =

P

(r,c)M
x
a (r, c) ∩M t

a(r, c)
P

(r,c)M
x
a (r, c) ∪M t

a(r, c)
(14)

where (r, c) index all (row, column) pairs in the masks.

In essence, this method proposes many different hy-

potheses for model t to match x, and these hypotheses must

be consistent with coherent regions in the image to have a

small distance. We obtain the shortlist A′ by taking the top

k closest matches according to dregion. In experiments, we

fix k = 30.

Discussion: Distances dregion and dcontour each have

strengths and weaknesses. dregion is robust to foreground

and background clutter, but is coarse and does not discrim-

inate well between matches. dcontour, on the other hand, is

susceptible to noise from extraneous contours in clutter, but

works well to refine what is the best match from a small set

of good choices. These tradeoffs motivate our use of these

distances: dregion is used as a quick, coarse filtering step

that keeps only a shortlist of reasonable candidates. We then

use the more discriminative dcontour for a final distance.

5. Experiments

We apply various of PS and APS models to baselines and

previous work on two challenging upper-body human pose

estimation datasets.

5.1. Implementation Details

Unary potentials: Individual part detectors were learned

separately for all 6 parts: head, torso, upper and lower arms.

For each part, we learn a Gentleboost classifier [11] on His-

togram of Gradient (HoG)-based features [6]5. We learn

a discriminative weight for each part detector to determine

how to balance the detector output with the jointly-learned

means and covariances of the parts discriminatively by max-

imizing the conditional likelihood of the training set. We

consider these unary terms part of the fixed, non-adaptive

portion of our model, p0 (see Section 3.2).

Pairwise potentials: As mentioned above, we learn Σij’s

discriminatively and keep them fixed. We set scalars Σi for

the location prior (Section 3.2) using cross-validation data.

All other parameters µij(x) and µi(x) were estimated us-

ing our kernel regression framework for APS (Section 3),

with respect to the kernel described in Section 4. We have

a separate kernel for the left and right side which are ex-

actly the same up to a horizontal flip (see Figure 1), and set

Khead = Ktorso = 1

2
(Kleft +Kright).

Inference: We perform forward-backward sum-product

message passing using FFT in O(M · |Li| log |Li|) time.

5We train detectors using a dataset of hand-labeled body parts (916
arms, 1, 386 torsos and heads) from TV shows and a movie (Lost, Friends

and Good Will Hunting), available on our website.

In practice |Li| = 110 × 122 × 24 = 322, 080 possible

labelings for each part.

This inference results in marginal distributions p(Li =
li|x) for all parts. We make a hard decision of the loca-

tion and direction of each limb by taking the max-marginal:

l⋆i = maxli∈Li
p(Li = li|x), and infer the skeleton pose

configuration by assuming each part has length set a priori

as the average part length in the training set.

Data and code for our experiments are available at:

http://www.vision.grasp.upenn.edu/video

5.2. Datasets

Buffy. We use the dataset described in [8], 400 frames

from Buffy the Vampire Slayer, 100 images from 4 episode.

Other results reported on this dataset [8, 9, 1, 3] test on a

subset of 235 frames that were correctly localized (within

50% overlap of the groundtruth) using a detector from [8].

It is important in our system that test examples have sim-

ilar training examples to use to locally estimate parameters.

This is an issue with the standard test/train protocol because

certain poses in this dataset are rather sparse: In the whole

dataset there are only 4 shots of people with arms folded,

with none in episode 2, and only 2 shots of people with arms

raised above their heads. In light of this, we use 3 out of 4

episodes for training, and test on the remaining episode. We

do this 4 times, each episode taking its turn as the test data.

To facilitate comparison to previous work, we report aver-

age test results on the standard test set of 235 frames, but

we are assured that no (test,train) image pair comes from

the same episode.

ETHZ PASCAL Stickmen. This more challenging test

set of real-world images is a subset of the PASCAL VOC

2008 [4]. We use all 400 images from Buffy as a training

set of exemplars, keeping all parameters fixed from the ex-

periments on Buffy, and report results on all 360 images in

this test set.

5.3. Methods

We compare the following variations of the PS and APS

framework and a template match baseline to previous work.

Quantitative results are shown in Table 1 and Figure 5.

PS: A baseline pictorial structure model trained discrimina-

tively as described in Section 5.1.

PS+global lp: PS model with an additional global location

prior unary potential, described in Section 3.2 and shown in

Figure 3/left.

APS: Variations of the APS models which include either

kernel estimation of the means (µ), kernel estimation of the

location prior (lp), or both (µ,lp). All variations use the

kernel described in Section 4.

sparse APS: This is the APS(µ,lp) model along with the

exemplar selection explained in Section 3.2.

http://www.vision.grasp.upenn.edu/video
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Figure 5. Results on Buffy. Left: PCP curves of our method versus

previous work [8, 3, 9]. Right: Normalized joint error.

Normalized Joint Error (NJE), Buffy [8] totals

sho. elb. wrists torso head NJE PCP

sparse APS .132 .218 .659 .080 .165 .238 85.9

APS(µ,lp) .130 .224 .721 .079 .163 .250 83.5

APS(µ) .135 .231 .728 .082 .167 .257 83.3

APS(lp) .140 .239 .748 .080 .158 .267 83.3

PS+glbl lp .138 .241 .782 .082 .162 .272 83.3

template .150 .251 .798 .112 .217 .294 83.0

PS baseline .175 .251 .775 .110 .220 .298 81.5

Andril. [1] - - - - - - 78.8

Eichner [3] .174 .304 .731 .132 .177 .307 80.1

APS+Kgt .128 .178 .351 .086 .190 .179 92.3

Normalized Joint Error (NJE), PASCAL Stickmen [3] totals

sho. elb. wrists torso head NJE PCP

sparse APS .263 .334 .848 .138 .432 .353 79.0

PS baseline .290 .358 .896 .156 .482 .386 75.7

Eichner [3] .304 .401 1.010 .118 .181 .416 72.3

Table 1. Results of different methods on Buffy and PASCAL Stick-

men. Numbers reported are a trimmed average normalized joint

error, throwing out the worst 5% of matches for each method. PCP

totals are computed using the publicly available code from [3].

APS+Kgt: This is the APS(µ,lp) model, but using an or-

acle kernel defined on the left side (right is symmetric) by

Kt
gt/left(x) = exp

(

−||lxlarm − l
t
larm||

2

2
/σ2

gt

)

which mea-

sures the distance between groundtruth (gt) arm locations

in the test and training examples. We choose σgt opti-

mally, and found that the best σgt gave significant weight

to about 10 to 20 nearest training examples for each test

example. Using a nearest-neighbor type oracle—taking the

top k closest matches and giving them equal weight to learn

adaptive parameters—did not perform as well. This method

serves as a realistic upper bound on how well our method

could perform.

template:. We can make use of the affine transform a⋆ from

our kernel construction (Section 4.1), which is the best de-

termined alignment of the groundtruth to the test example.

Let lta⋆ be the best affinely-mapped groundtruth found of

training example t. Then the template method guesses a

configuration ltemplate =
∑T

t=1
Kt(x)lta⋆ , a weighted sum

of template matches from all training poses.

Evaluation measures: In previous work there has been

some discrepancy in evaluation measures—[1] uses a

stricter criterion than [3] in defining a limb as correctly

matched. Thankfully, the authors of [3, 1] have provided

their predictions and/or evaluation code publicly available,

allowing us to compare performance accurately. In [3],

a part is considered matched if the distance from the

groundtruth part endpoints is less than some fraction of the

length of the groundtruth part. By varying this fraction a

curve of matching thresholds versus percentage of correct

parts (referred to as PCP) can be generated—Figure 5/left.

We also report Euclidean distance to groundtruth end-

points, divided by the length of the groundtruth segments.

We refer to this as Normalized Joint Error, and obtain a

curve in Figure 5/right by varying a threshold on this value,

and report average results in Table 1. Qualitative results are

shown in Figure 6. More qualitative results are included in

the supplemental material, and on our website 6.

5.4. Discussion

There are several interesting trends in the results (Fig-

ure 5 and Table 1). First, all variations of our APS are bet-

ter than the state-of-the-art. Using our simple exemplar se-

lection strategy results in selecting only 16% of the training

examples, and gives a significant boost in performance. Fig-

ure 7 shows the top sparse exemplars. In variations of APS,

estimating location priors and means both improve results.

Our basic PS model performs comparably to the previ-

ous state-of-the-art [3, 1] on this dataset in both measures of

performance. This may be because our part detectors were

trained with a large, outside training set using more pow-

erful features (HoG) and classifier (Gentleboost)—similar

to [1], except trained discriminatively—whereas previous

works [8, 9, 3] only use linear filters on edge maps (at least

in their first inference pass).

Using our kernel construction method as a form of tem-

plate matching also works well—close to the basic PS

model. This suggests that it is feasible to apply more sophis-

ticated shape-matching and exemplar-distance based meth-

ods to the problem of articulated pose estimation. In addi-

tion, the huge gains in performance using an oracle kernel

suggest that better kernel design is a worthwhile endeavor.

Finally, our significant improvement when applying our

method to a new environment (i.e., using exemplars from

Buffy and applying them to the real-world photographs in

PASCAL) makes a strong case for the generalization capa-

bilities of APS.

6. Conclusion

We have presented the Adaptive Pictorial Struc-

tures framework which combines the flexibility of non-

6http://www.vision.grasp.upenn.edu/video/

http://www.vision.grasp.upenn.edu/video/


Figure 6. (a) Test image (b) Top 5 nearest neighbors retrieved via

our kernel function for the left (top) and right (bottom) half-poses.

(c) Belief in the APS model before running inference, i.e. based

solely on image adaptive means and location prior. (d) Marginals

of APS(µ,lp) model. (e) Marginals of baseline PS model. Rows

2-6 show examples where our model outperformed the baseline.

Rows 8-9 show failures—sweater lines confusing shape distances

in row 8; occluding arm confusion in row 9.

Figure 7. Top sparse exemplars selected, in order.

parametric methods with the tractability of PS models. The

keys to success of our method are (1) data-dependent unary

and pairwise terms, which allow our model to adapt param-

eters to each test query and (2) learning a sparse exemplar

set. The framework is modular, and one can plug in kernel

estimates of parameters into existing PS implementations.

We develop an effective shape-based kernel, and raise our

method’s performance to state-of-the-art in two challenging

upper-body pose datasets.
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