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For the problem of estimating a sparse sequence of coefficients of a para-
metric or nonparametric generalized linear model, posterior mode esti-
mation with a Subbotin(λ, ν) prior achieves thresholding and therefore
model selection when ν ∈ [0, 1] for a class of likelihood functions. The
proposed estimator also offers a continuum between the (forward/backward)
best subset estimator (ν = 0), its approximate convexification called
lasso (ν = 1) and ridge regression (ν = 2).

Rather than fixing ν, selecting the two hyperparameters λ and ν adds
flexibility for a better fit, provided both are well selected from the data.
Considering first the canonical Gaussian model, we generalize the Stein
unbiased risk estimate SURE(λ, ν) to the situation where the threshold-
ing function is not almost differentiable (i.e., ν < 1). We then propose
a more general selection of λ and ν by deriving an information criterion
that can be employed for instance for the lasso or wavelet smoothing.

We investigate some asymptotic properties in parametric and nonpara-
metric settings. Simulations and applications to real data show excellent
performance.

Keywords: extreme value theory, generalized linear model, Gumbel and Fréchet
prior, information criterion, lasso, `ν-penalized likelihood, model selection, sparsity,
Stein unbiased risk estimate, threshold, wavelet smoothing.

1



Adaptive sparse model selection 2

1 Introduction

1.1 Background

The central problem of this paper is that of estimating a sequence of P coefficients
α = (α1, . . . , αP ) from N noisy data Y = (Y1, . . . , YN) with the knowledge that the
sequence should be sparse: some unknown entries of α are null, while the relative
magnitude of the others with respect to the noise is also unknown. In a first stage,
we consider the canonical estimation problem of Johnstone and Silverman (2004)
who suppose that for P = N :

Yn
i.i.d.∼ N(αn, 1) n = 1, . . . , N (1)

The seminal thresholding approach of Donoho and Johnstone (1994) provides a
sparse estimate by applying the hard- or soft-thresholding to Yn:

η(hard)
ϕ (Yn) = Yn · 1{|Yn|≥ϕ}(Yn), (2)

η(soft)
ϕ (Yn) = sign(Yn)(|Yn| − ϕ)+, (3)

where ϕ is the threshold: for fixed ϕ, the estimate α̂n = ηϕ(Yn) is zero if |Yn| ≤ ϕ.
They proposed minimax and universal rules (ϕN =

√
2 logN) for the selection of ϕ,

and Donoho and Johnstone (1995) proposed minimizing the Stein unbiased risk
estimate over ϕ when using soft-thresholding. Recently Johnstone and Silverman
(2004) derived EBayesThresh, a posterior median estimate which offers a continuum
between the two thresholding functions, with the following methodology:

• an independent mixture distribution is assumed on each αn:

π(αn) = (1− w)δ0(αn) + waγ(aαn), (4)

where δ0 is the Dirac mass at zero, and the nonzero part γ is heavy-tailed
(e.g., Laplace or quasi-Cauchy) with scale parameter a;

• the posterior median estimate of each αn is calculated via a closed form ex-
pression that thresholds;

• the empirical Bayes selection of the hyperparameters w and a provides an
adaptive fit to the sparse sequence by maximizing over w and a the marginal
likelihood, which has a tractable form for Gaussian noise.

EBayesThresh provides excellent estimation of sparse sequences, both from empirical
and theoretical point of views, because it can adapt thresholding to the data, rather
than fixing it to hard or soft.

In a second stage, we consider in the spirit of generalized linear model (Nelder
and Wedderburn 1972) the estimation problem with sparsity constraints on α to
the more general model:

Yn
i.i.d.∼ F (y;µ0 + xT

nα, ψ) n = 1, . . . , N (5)
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where F is the distribution of continuous or discrete random variables Yn parametrized
by a location parameter µ0 + µn with µn = xT

nα and nuisance parameter ψ. For in-
stance, such models are used in regression, classification and inverse problems with
N×P matrix X = [x1 | . . . | xN ]T, where F could be Gaussian, Poisson or Bernoulli,
and xn = (xn,1, . . . , xn,P )T are covariates (parametric) or discretized basis functions
(nonparametric). For this general setting (5), the oldest way of seeking sparsity is
best subset variable selection driven by information criteria like AIC (Akaike 1973),
Cp (Mallows 1973) or BIC (Schwarz 1978). Variable selection is the generalization of
hard-thresholding to (5) and corresponds to `0-penalized likelihood. In the general
setting, EBayesThresh faces the problem of defining and calculating a multivariate
posterior median. More recently, lasso-type posterior mode estimators (Donoho and
Johnstone 1994; Tibshirani 1996; Park and Hastie 2007) alternatively provide spar-
sity by assuming a Laplace `1-prior for α; the hyperparameter is selected based on
an AIC-like criterion (Zou, Hastie, and Tibshirani 2007). Lasso-type selection is the
generalization of soft-thresholding to (5). So both best subset- and lasso-variable
selection are posterior mode estimators for `0 and `1 priors.

1.2 Proposal

To achieve model selection for the canonical model (1) and then its generalization
(5), we attain sparse sequence estimation by conjunction of using the Subbotin(λ, ν)
prior and of employing posterior mode estimation. The posterior mean or median
could be estimated for instance by means of Markov chain Monte Carlo methods,
but would not lead to a sparse estimation with the Subbotin prior. Likewise the
Subbotin prior does not have the prerogative of sparse posterior mode estimation:
for instance, Antoniadis and Fan (2001) give sufficient conditions on the prior for
sparse wavelet smoothing, and Griffin and Brown (2007) propose scale mixtures of
Gaussian distributions for the priors of a generalization of lasso. The reasons for
our choice of Subbotin posterior mode are the following. First, it links three essen-
tial posterior mode estimators: subset variable selection (`0), lasso (`1) and ridge
regression (`2) (Hoerl and Kennard 1970). Second, model selection is achieved by
posterior mode for `ν with ν ∈ [0, 1], not only for Gaussian likelihood, but for a
class of distributions. Third, since the Subbotin(λ, ν) prior can be seen as a contin-
uous approximation to EBayesThresh(w, a)’s priors (4), its empirical performances
are expected to be competitive with EBayesThresh in the canonical setting (1).
Fourth, Subbotin posterior mode entails solving a continuous optimization problem
which gives the possibility to extend the range of applicability of the estimator from
model (1) to model (5). The corresponding multivariate optimization, although
non-convex when ν < 1, is at least continuous.

The proposed Subbotin posterior mode aims at extending existing estimators
to the continuous choice of ν, to a class of likelihood functions, and to any linear
association. In Section 2, we first consider the canonical setting (1) where we can
calculate the exact Subbotin posterior mode in the nonconvex case ν < 1. We define
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the posterior mode estimator in Section 2.1, derive two methods for the adaptive
selection of the hyperparameters λ and ν in Section 2.2: by a generalization of Stein
unbiased risk estimate (Stein 1981), and by means of an information criterion. We
perform a Monte Carlo simulation in Section 2.3 to compare the finite sample per-
formance of the new estimator to that of EBayesThresh for the canonical model and
for Gaussian wavelet smoothing. We consider in Section 3 the more general setting
(5), we investigate existence, uniqueness and thresholding properties for a class of
distributions F and matrices X, and we generalize the information criterion. In
Section 4 we apply the method to various settings, where we can calculate the exact
Subbotin posterior mode: lasso regression in Section 4.1 (X is not the identity and
ν = 1), the Poisson canonical model in Section 4.2 (X is the identity, the likelihood
is non-Gaussian and ν is selected in (0, 1]), and Poisson wavelet smoothing in Sec-
tion 4.3 (X is not the identity, the likelihood is non-Gaussian and ν = 1). Section 5
explores some asymptotic properties of Subbotin posterior mode estimation, and in
particular its asymptotic minimaxity. Section 5 also shows that the adaptive lasso
(Zou 2006) can be seen as an approximation to Subbotin posterior mode estimation.
We make some final remarks in Section 6 and postpone technical derivations to the
appendices.

2 Subbotin(λ, ν) posterior mode estimate

2.1 Posterior mode with the Subbotin prior

The Subbotin (also called power exponential) distribution has density

π(αn | λ, ν) =
λ1/ν

2Γ(1 + 1
ν
)

exp(−λ|αn|ν)

parametrized by two hyperparameters λ and ν. The Subbotin can be seen as a
continuous approximation to EBayesThresh prior (4) since it tends to the point
mass at zero for instance with ν = 1/λ → 0 and to the Laplace when ν → 1, as
illustrated in the top row of Figure 1. Using Subbotin as prior for the canonical
model (1), the univariate posterior mode estimate α̂n,λ,ν of each αn solves

min
αn

1

2
(Yn − αn)2 + λ|αn|ν − log(

λ1/ν

2Γ(1 + 1
ν
)
), n = 1, . . . , N. (6)

Hence the multivariate version involves the penalty +λ‖α‖νν = +λ
∑N
n=1 |αn|ν by

assuming independent coefficients α. The simplicity of the `ν penalty contrasts
with the sum of logarithm of sums one obtains with EBayesThresh’s type priors (4).

The `ν penalized least squares function (6) is non-convex for ν < 1 and has at
most two local minima (always one at zero) among which the global one. Theo-
rem 1 of Antoniadis and Fan (2001) states that the posterior mode thresholds the
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Figure 1: Two examples of Subbotin(λ, ν) prior density (top row) and corresponding
posterior mode thresholding (bottom row) functions for ν = 0.2 (left) and ν = 1
(right), with λ such that ϕ(λ; ν) =

√
2 logN and N = 128 using (8).

maximum likelihood estimate α̂MLE = Yn for a class of penalties. We recall that an
estimator thresholds when there exists a threshold value ϕ(λ; ν) such that

α̂λ,ν(Yn) = 0 if and only if |Yn| ≤ ϕ(λ; ν). (7)

The result of Antoniadis and Fan (2001) applies in particular to the `ν penalty for
any ν ≤ 1. The bottom row of Figure 1 illustrates the thresholding property of the
posterior mode for ν = 0.2 (left) and ν = 1 (right), and the flexibility gained by
not fixing ν with our approach. In Section 3, Theorem 5 extends the thresholding
property of `ν-based posterior mode estimation to a class of likelihood functions.

The non-zero part of the thresholding function must be found numerically, except
when ν = 0+ (hard (2)) and ν = 1 (soft (3)). Moreover, the thresholding function
has a discontinuity at ±ϕ(λ; ν) with jump κ(λ; ν) given by

ϕ(λ; ν) = (2− ν)[λ{2(1− ν)}ν−1]1/(2−ν), (8)

κ(λ; ν) = ϕ(λ; ν)
2(1− ν)

(2− ν)
, (9)
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both of which are found by solving system (17) for Gaussian likelihood (for details
see Appendix C). The expression for the threshold (8) can also be found in Knight
and Fu (2000) after reparametrization; Antoniadis and Fan (2001, p0 formula p. 944)
found a lower bound for it. For ν = 0, the threshold formula ϕ(λ; ν) =

√
2λ reveals

that BIC= ‖α̂ − α‖2
2/2 + λBIC · (#n : {α̂n 6= 0}) with λBIC = (logN)/2 is less

conservative than the universal rule ϕN =
√

2 logN since the universal penalty is
λN(ν) = logN = 2λBIC.

Computationally, posterior mode requires no calculation when |Yn| < ϕ(λ; ν),
since the solution is zero in this case. An iterative method finds the unique mode
in the interval [sign(Yn) · κ(λ; ν), Yn] otherwise.

2.2 Hyperparameter selection

Flexibility of the prior leads to good estimation of sparse sequences, provided the
two hyperparameters can be efficiently selected to adapt to the degree of sparsity.
Gao and Bruce (1997) with minimax rules, Antoniadis and Fan (2001) with universal
rules, and Fan and Li (2001) and Fan and Peng (2004) with approximate generalized
cross validation considered priors with two hyperparameters and ways to select them.

2.2.1 Extension of SURE

Stein (1981) considered model (1) and estimates of the form α̂ = Y + g(Y), where
g : IRN → IRN. For almost differentiable functions g, he derived an unbiased
estimate of the `2 risk between α̂ and the true α. Donoho and Johnstone (1995)
observed that the soft shrinkage (ν = 1) is almost differentiable and used the Stein
unbiased risk estimate (SURE) to select the threshold ϕ. The two hyperparameters
of SCAD thresholding (Fan and Li 2001) could also be selected using SURE. The
Subbotin thresholding function g̃ is not almost differentiable when ν < 1 because of
the jump κ at ±ϕ. In fact g̃ can be written as the sum of an almost differentiable
function g and two Heaviside functions at the discontinuity points ±ϕ(λ; ν) with
jump κ(λ; ν) given by (9). Since Stein’s derivation is essentially based on integration
by part, we generalize his formula by means of the Heaviside function H and its
derivative, the Dirac measure δ.

Theorem 1 Consider model (1) and the estimate α̂ = Y + g̃(Y), where g̃ = g−κ ·
(1−H−ϕ)+κ·Hϕ with g satisfying the conditions of Stein (1981, Theorem 1), namely
g : IRN → IRN is almost differentiable in Stein’s sense and Eα

∑N
n=1 |∇Yngn(Y)| <

∞, Hϕ is the Heaviside function at ϕ applied componentwise to Y and κ > 0 is the
height of the jump of g̃ at its discontinuity points ±ϕ. Then

Eα‖α̂−α‖2
2 = N + Eα

{
‖g̃(Y)‖2

2 + 2
N∑
n=1

∇Yngn(Y) + 2κ
N∑
n=1

(δ−ϕ(Yn) + δϕ(Yn))

}

= N + Eα

{
‖g̃(Y)‖2

2 + 2
N∑
n=1

∇Yngn(Y)

}
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+2κ
N∑
n=1

(φ(ϕ− αn) + φ(−ϕ− αn)). (10)

Proof: for each n ∈ {1, . . . , N}, from Stein (1981)

Eα(Yn + g̃n(Y)− αn)2 = 1 + Eα{g̃2
n(Y) + 2∇Yn g̃n(Y)}.

And the last expression is ∇Yn g̃n(Y) = ∇Yngn(Y) + κ(δ−ϕ(Yn) + δϕ(Yn)) since,
integrating by parts,

Eα{(Yn − αn)Hϕ(Yn)} = −φ(y − αn)Hϕ(y)|∞−∞ +
∫ ∞
−∞

φ(y − αn)δϕ(y)dy,

where the Gaussian density φ belongs to Schwartz space of rapidly decreasing func-
tions, so that the last integral term is well defined and equal to φ(ϕ− αn).

The last term with the Dirac measure in (10) cannot be estimated empirically with
no bias however. Indeed for any Gaussian datum yn, we have δϕ(yn) = 0 with
probability one, while Eαn{δϕ(Yn)} = φ(ϕ − αn) > 0. We propose to estimate
this term by replacing αn in φ(ϕ − αn) with estimates α̃ that achieve minimax or
asymptotically minimax risk (Donoho and Johnstone 1994), for instance

α̃ = η(hard)
ϕN

(Y) with ϕN =
√

2 logN. (11)

Arguing heuristically, one expects that for large N , the formula will provide a nearly
unbiased estimate of the risk, as shown on Figure 2 for a sparse sequence of length
N = 128 with 33 non-zero coefficients. On this figure, the true loss of α̂λ,ν defined
by (10) is estimated with the extension of SURE for three values of ν ∈ {0, 0.6, 1}.

In practice, we select the two hyperparameters of the posterior mode estimate
α̂λ,ν defined in (6) by solving

min
λ>0, ν>0

SURE(λ, ν),

where, from Theorem 1,

SURE(λ, ν) = N +
N∑
n=1

(α̂n,λ,ν − yn)2 + 2
N∑
n=1

∇Yngn(yn)

+2κ(λ; ν)
N∑
n=1

(φ(ϕ(λ; ν)− α̃n) + φ(−ϕ(λ; ν)− α̃n)), (12)

with threshold ϕ(λ; ν) given by (8) and discontinuity jump κ(λ; ν) given by (9) for
ν ≤ 1 and equal to zero for ν > 1, α̃ given by (11) and gradient ∇Yngn(Yn) =
(1 + λν(ν − 1)|α̂λ,ν(Yn)|ν−2)−1 · 1[ϕ(λ;ν),∞)(|Yn|) − 1. The Monte Carlo simulation
of Section 2.3 reveals good performance of SURE to select both λ and ν, except
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Figure 2: Illustration of the estimation of the true `2 loss (line) with the extension
of SURE (dotted line) as a function of λ for three values of ν: 0 (hard), 0.6 and 1
(soft). Both axes are on a log-scale. For a given ν, the values of λ plotted on the
horizontal axis are obtained from (8) using the order statistics |y(n)| for ϕ.

in situations of extreme sparsity as found by Donoho and Johnstone (1995, Section
2.4) in the case ν = 1.

The case ν = 0 (best subset variable selection) is interesting since, with ϕ(λ; 0) =√
2λ = κ(λ; 0) and ∇Yngn(Yn) = 1[ϕ(λ;0),∞)(|Yn|)− 1,

SURE(λ, 0) = N + ‖α̂λ,0 −Y‖2
2 + 2(#n : {α̂n,λ,0 6= 0} −N)

+2
√

2λ
N∑
n=1

(φ(−
√

2λ− α̃n) + φ(
√

2λ− α̃n))

= AIC(λ) + 2
√

2λ
N∑
n=1

(φ(−
√

2λ− αn) + φ(
√

2λ− αn))−N

reveals the bias of AIC for estimating the risk.

2.2.2 Information criterion

Alternatively, we propose an information criterion that not only applies to the canon-
ical model (1), but also applies to more general models (5). It is based on the two
following properties.

Property 1 Suppose Yn
i.i.d.∼ N(cαn, 1), where c is known (e.g., equal to one). Con-

sider the Subbotin posterior mode estimate α̂λ,ν solution to

min
α

1

2
‖Y − cα‖2

2 + λ‖α‖νν .



Adaptive sparse model selection 9

For any ν ∈ (0, 1] and when the true model is αn = 0 for n = 1, . . . , N , then the
estimated model is consistent,

P(α̂λN (ν),ν = 0)→ 1,

provided λN(ν) satisfies ϕ(λN(ν)/cν ; ν) =
√

2 logN , where the threshold ϕ(λ; ν) is
given in (8). Its explicit expression is

λN(ν) = cν
(√

2 logN

2− ν

)2−ν

(2(1− ν))1−ν . (13)

This result is a direct consequence of:

• the thresholding property (7) that α̂λ,ν = 0 if and only if ϕ(λ; ν) ≥ ϕY :=
maxn=1,...,N(|Yn|), where ϕ(λ; ν) is the threshold (8);

• the universal rule (Donoho and Johnstone 1994) that ϕN =
√

2 logN controls
the extremal behavior of N i.i.d. standard Gaussian,

so that P(α̂λN (ν),ν = 0) = P(ϕN ≥ ϕY)→ 1 when Yn
i.i.d.∼ N(0, 1).

More than a bound ϕN , the following property derives the distribution of the
threshold ϕY that sets all estimated coefficients to zero for a given sample Y, based
on an asymptotic pivot for ϕY under the assumptions of Property 1.

Property 2 Suppose Yn
i.i.d.∼ N(cαn, 1), where c is known. Let G0(x) = exp(− exp(−x))

be the Gumbel distribution, dN = ϕN − (log logN + log 4π − 2 log 2)/(2ϕN) and
ϕN =

√
2 logN be normalizing constants. Then an asymptotic pivot for ϕY :=

maxn=1,...,N(|Yn|) is
ϕN (ϕY − dN)→d G0

when the true model is αn = 0 for n = 1, . . . , N .

The proof is given in Appendix D. This pivot gives the asymptotic distribution,
πϕ(ϕ) = G′(ϕ) with G(ϕ) = G0(ϕN(ϕ− dN)), of the threshold ϕ to reconstruct the
true zero sequence with a probability tending to one. Equivalently, since ϕ(λ; ν) in
(8) is strictly increasing in λ for a given ν, the pivot gives the asymptotic distribution
of the penalty λ | ν: from Property 1, Fλ|ν(λ) = G0(ϕN(ϕ(λ/cν ; ν)− dN)).

The universal threshold ϕN has nice statistical properties. For wavelet smoothing
for instance, Donoho, Johnstone, Kerkyacharian, and Picard (1995) showed that ϕN
provides nearly minimax results for a class of loss functions and smoothness classes.
Based on this property, we use the Gumbel-based prior for λ | ν to estimate non-zero
sequences belonging to the considered smoothness classes. Because it is based on the
universal rule, we call it the universal prior. Other priors could be employed, but the
Gumbel-based prior has the property to match the distribution of the sample-based
threshold ϕY under the null model that all coefficients are zero.
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Hence, assuming a prior πν for ν, Bayes theorem leads to the posterior distri-
bution of (α, λ, ν) given the data Y. We can then take its expectation or mode to
estimate and select jointly α and (λ, ν). We consider in this paper the former alter-
native that has the advantage to threshold. The posterior mode estimate is defined
by taking the negative posterior likelihood and minimizing it as a joint optimization
problem, which defines the following information criterion derived in Appendix A.

Definition 1 Suppose Yn
i.i.d.∼ N(cαn, 1) for n = 1, . . . , N , and c is known. The

sparsity `ν information criterion for estimation of α and selection of (λ, ν) is

SLνIC(α, λ, ν) =
1

2
‖Y − cα‖2

2 + λ‖α‖νν −
N

ν
log λ+N log Γ(1 +

1

ν
)

− log πλ|ν(λ | ν; τN(ν))− log πν(ν), (14)

where πλ|ν(λ | ν; τ) = F ′λ|ν(λ; τ) with Fλ|ν(λ; τ) = G0(ϕN(ϕ( λ
cν

; ν)/τ − dN)), and τ

is calibrated to τN(ν) = νϕ2
N/(N(2− ν)) to match the asymptotic model consistency

of Property 1 when α = 0 is the true sequence.

In practice, in the spirit of AIC and BIC, one minimizes SLνIC to select the hy-
perparameters (λ, ν) and estimate the sequence α. We know from Section 2.1 that
the solution in α is unique with probability one for a given set of hyperparameters.
The following property states the uniqueness in λ selected with SLνIC for a given
α and ν. We will see in Section 5 that the choice of the universal prior for α will
also guarantee asymptotic minimaxity of the estimator with SLνIC.

Property 3 For a given sequence α and a given hyperparameter ν ∈ (0, 1], the
minimum of SLνIC(α, λ, ν) in λ exists and is unique.

Proof: penalty λ and threshold ϕ are one to one for a given ν ∈ (0, 1] from (8).
The information criterion (14) writes up to a constant as a function of ϕ as

SLνIC(ϕ) =
{2(1− ν)}1−ν

(2− ν)2−ν ϕ2−ν‖α‖νν−
N

ν
(2−ν) logϕ+exp(−ϕN(

ϕ

τN
−dN))+ϕN(

ϕ

τN
−dN).

The function is strictly convex and limϕ→0 SLνIC(ϕ) = limϕ→∞ SLνIC(ϕ) = ∞ on
the open interval (0,∞), therefore admits a unique minimum.

2.2.3 Other approaches

Empirical Bayes approaches could also be used. The one employed by EBayesThresh,
which maximizes the marginal likelihood over the hyperparameters, would require
here an expression for, or at least fast computation of, the convolution of the Sub-
botin with the Gaussian. Instead of integrating with respect to the prior, a method
of moment-based empirical Bayes approach would use the tractable first two even
moments Eαrn = λ−r/νΓ((r + 1)/ν)/Γ(1/ν) of the symmetric Subbotin distribution
to select the hyperparameters. We tried this approach with little success, owing to
the fact that higher moments are not taken into account.
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2.3 Gaussian Monte Carlo simulation

2.3.1 Direct sequence estimation

We consider the simulation of Johnstone and Silverman (2004) to estimate sparse
sequences of length N = 1000 and of varying degrees of sparsity, as measured by
the number of nonzero terms taken in {5, 50, 500} and by the value of the nonzero
terms taken in {3, 4, 5, 7}. Table 1 reports `1 and `2 losses, as well as type I and
type II errors. We observe empirically that the posterior mode Subbotin estimator
is competitive with the posterior median EBayesThresh estimator, which possesses
optimal asymptotic rates for wide classes of sparse sequences. And both outperform
estimators such as False Discovery Rate, soft- and hard-shrinkage using SURE and
universal rule, based on the results reported in Johnstone and Silverman (2004, Ta-
ble 1). Looking at the average number of type I and type II errors, we observe that
SLνIC tends to select a higher threshold than SURE and EBayesThresh. We also ob-
serve empirically that the selection of the two hyperparameters of the Subbotin(λ, ν)
posterior mode estimator is good with SLνIC when the sequence is sparse and be-
comes better with SURE when the sequence becomes more dense, as observed by
Donoho and Johnstone (1995, Section 2.4) in the case ν = 1. This suggests a hybrid
method for the selection of the hyperparameters to take advantage of both. Finally
the `1 performance measure is favorable to the posterior mode estimator.

2.3.2 Wavelet smoothing

Gaussian orthonormal wavelet smoothing falls back into the canonical model (1). We
consider the nonparametric regression problem of estimating a function µ sampled
with noise at N equispaced locations tn according to

Yn = µ(tn) + εn,

where the εn are independent Gaussian N(0, σ2). Note that the equispaced assump-
tion can be relaxed by employing isometric wavelets (Sardy, Percival, Bruce, Gao,
and Stuetzle 1999), or equivalently warped wavelets (Kerkyacharian and Picard
2004). The standard deviation of the noise can be well estimated by the median ab-
solute deviation of the least squares fine scale wavelet coefficients at the highest level
(Donoho and Johnstone 1995), so we assume in the following that σ = 1. Wavelet-
based smoothers assume that µ can be well represented by a linear combination of
approximation φ and fine scale ψ wavelets. Standard wavelets are a set of orthonor-
mal multi-resolution functions that are locally supported and indexed by a location
parameter k and a scale parameter j. A father wavelet φ such that

∫ 1
0 φ(t)dt = 1

generates P0 = 2j0 approximation wavelets by means of the dilation and translation
relation φj0,k(t) = 2j0/2φ(2j0t− k), k = 0, 1, . . . , 2j0 − 1; they capture the coarse fea-
tures of the signal. Similarly, a mother wavelet ψ such that

∫ 1
0 ψ(t)dt = 0 generates

N−P0 fine scale wavelets ψj,k(t) = 2j/2ψ(2jt−k), j = j0, . . . , J ; k = 0, 1, . . . , 2j−1,
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Table 1: Gaussian Monte Carlo simulation. Average total squared (`2 loss) and
absolute (`1 loss) errors, average number of type I and II errors of EBayesThresh
(Laplace and Cauchy-like γ) and the Subbotin(λ, ν) posterior mode estimator with
hyperparameters selected either with SLνIC or SURE on a mixed signal of length
1000. In bold, the best between all methods for each loss.

Number nonzero 5 50 500
Value nonzero 3 4 5 7 3 4 5 7 3 4 5 7
EBayesThresh

Laplace (w, a)
`2 loss 35 33 19 9 211 154 102 72 856 873 782 661
`1 loss 13 11 8 5 95 74 59 49 709 721 620 502
Type I 2 1 1 0.5 16 12 8 4 500 500 310 98
Type II 3 1 0.3 0 14 3 0.6 0 0 0 0 0

Cauchy w
`2 loss 37 37 20 9 266 174 105 77 923 898 828 745
`1 loss 13 11 7 5 102 73 58 52 703 683 656 628
Type I 0.2 0.3 0.3 0.4 3 6 7 7 500 500 500 500
Type II 4 2 0.4 0 26 6 0.6 0 0 0 0 0

Posterior mode (λ, ν)

SLνIC
`2 loss 38 37 19 9 354 293 130 60 848 830 835 861
`1 loss 13 10 7 5 125 88 53 43 634 653 670 697
Type I 0.2 0.3 0.2 0.2 0.3 0.4 0.3 0.5 268 329 361 400
Type II 4 2 0.5 0 37 17 3 0 4 0 0 0

SURE
`2 loss 38 37 28 26 231 165 110 97 1243 798 604 535
`1 loss 16 14 13 12 95 71 59 56 590 468 430 410
Type I 5 4 3 3 9 7 6 5 18 14 10 4
Type II 2 1 0.2 0 18 5 0.8 0 94 19 2 0

where J = log2(N)− 1. Because they are locally supported and orthogonal to poly-
nomials, only a few fine scale wavelets are necessary to approximate µ well: this is
known as the sparse wavelet representation. Moreover, while the number Nj = 2j

of wavelets within level j increases exponentially with j, the number of fine scale
wavelets needed to reproduce local features typically decreases with j: the sparsity
models should therefore be level dependent . In other words, assuming µ expands
on N orthonormal wavelets, µ(t) =

∑2j0−1
k=0 α0kφj0,k(t) +

∑J
j=j0

∑Nj−1
κ=0 αj,kψj,k(t), the

proportion of (near) non-zero wavelet coefficients αj,k is small, and the larger j the
smaller the proportion.

To estimate the wavelet coefficients (α0,α) from the data, an orthonormal ma-
trix [X0 X] can be extracted from the continuous expansion to write the sampled
µ = (µ(t1), . . . , µ(tN)) as µ = X0α0+Xα, where X0 is the N×P0 matrix of approx-
imation wavelets, X is the N × (N − P0) matrix of fine scale wavelets, and (α0,α)
are the corresponding coefficients. Owing to the fact that the `2 loss is isometric
to an orthonormal transform and that the wavelet matrix [X0 X] is orthonormal,
wavelet smoothing falls back into to the canonical model (1), with the difference
that the sparse estimation is employed levelwise, so that hyperparameters (λj, νj)
are selected independently at each level j = j0, . . . , J . Using the Monte Carlo sim-
ulation of Donoho and Johnstone (1994) with signal-to-noise ratio equal to seven,
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we adaptively select the smoothness and the sparsity levelwise with:

• six methods for Waveshrink: BIC and SURE for ν = 0 (hard), SL1IC and
SURE for ν = 1 (soft), and SLνIC and SURE for free ν ∈ (0, 1];

• two methods for EBayesThresh: Laplace (with the default value aj = 0.5) and
Cauchy-like prior.

When using SLIC levelwise, the prior πλj of Definition 1 is used with N = Nj = 2j

the number of coefficients at level j. We draw the following conclusions from the
results of the simulation reported in Table 2:

• Whether using the information criterion SLIC or the extension of SURE (12),
selecting ν ∈ [0, 1] is often better than, or at least as good as, fixing it to ν = 0
or ν = 1. The gain of additional flexibility leads to a gain of goodness-of-fit
showing good behavior of the proposed selections of the two hyperparameters;

• SLIC and SURE lead to comparable performance for wavelet smoothing;

• `ν penalized least squares is competitive with EBayesThresh (Johnstone and
Silverman 2005) that works particularly well in this setting.

3 Generalized Subbotin(λ, ν) posterior mode esti-

mate

We now extend the methodology to the general model (5) for a class of continuous or
discrete distributions F and matrices [X0 X] with Q0 +Q columns; Q is the number
of covariates or the number of basis functions. Let the likelihood be lN(µ, ψ; Y) =∑
n l(µn, ψ;Yn) with l(µn, ψ;Yn) = logF (Yn;µn, ψ); we write Ωµ for the domain of l,

so the domain of lN is the product space ΩN
µ . Let the location parameters of F be

µ = X0α0 + Xα; we write Γα0,α for the corresponding domain of the coefficients
(α0,α). Hence the Subbotin(λ, ν) posterior mode estimate solves

min
(α0,α)∈Γα0,α

−lN(X0α0 +Xα, ψ; Y) + λ‖α‖νν −
Q

ν
log λ+Q log Γ(1 +

1

ν
), (15)

where we do not penalize parameters α0, as it is done for instance with the inter-
cept or father wavelets in regression, and where X must have rescaled columns as
described in Section 3.2 below.
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Table 2: Results of Monte Carlo simulation to compare wavelet smoothers and
hyperparameter(s) selection (average MISE ×100). From left to right: BIC and
SURE levelwise for ν = 0, SL1IC and SURE for ν = 1, SLνIC and SURE for
ν ∈ (0, 1], EBayesThresh with Laplace and Cauchy priors. (least asymmetric wavelet
of order 8 with j0 = 4 are used.)

Waveshrink EBayesThresh
levelwise levelwise

`0 (hard) `1 (soft) `ν
N BIC SURE SL1IC SURE SLνIC SURE Laplace Cauchy
blocks
256 73 77 68 66 64 68 63 65

1024 39 37 43 36 34 35 32 32
4096 18 15 21 16 15 15 14 13
bumps
256 88 124 75 83 90 92 87 91

1024 40 47 52 44 44 40 40 39
4096 17 15 18 16 15 14 14 13
heavisine
256 35 22 23 22 22 22 22 22

1024 19 11 8.9 9.5 9.5 9.9 8.7 8.6
4096 10 3.6 3.6 3.7 3.3 3.8 3.1 3.1
Doppler
256 38 49 69 52 45 47 49 50

1024 21 19 25 19 19 18 18 18
4096 10 4.9 8.1 6.4 5.3 5.0 4.5 4.3
zero
256 29 15 6 11 9 12 8 8

1024 16 4.1 1.7 3.8 2.8 4.3 2.4 2.3
4096 8.5 1.1 0.4 1.0 0.8 1.2 0.6 0.6

3.1 Existence, uniqueness and thresholding

We establish conditions for existence, uniqueness and thresholding of the Subbotin
posterior mode estimate (15). We also prove the important monotonicity of the
threshold ϕ(λ; ν) for a given ν. Proofs are postponed to Appendix B. In the
following K(A) stands for kernel of the matrix A and Rg(A) for its range.

Theorem 2 (Existence) Suppose that in (15) each univariate likelihood −l(·, ψ;Yn)
contributing to lN is a continuous and finite-valued function on the interval Ωµ ⊆ IR,
that −l is coercive (i.e., limµ→inf Ωµ −l(µ, ψ;Yn) = limµ→sup Ωµ −l(µ, ψ;Yn) = +∞),
and that Rg([X0 X])

⋂
ΩN
µ 6= ∅. Then a solution (α̂0, α̂)λ,ν to (15) exists.

A sufficient condition for Rg([X0 X])
⋂

ΩN
µ 6= ∅ is that X0 contains a column of

one (i.e., an intercept). Indeed in that case, the inverse image Γα0,α = {(α0,α) :
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X0α0 + Xα ∈ ΩN
µ } of ΩN

µ , is not empty (for instance set all entries of α0 and α
to zero except that corresponding to the intercept column in X0 which is set to
any value in Ωµ). For instance the Gaussian and Poisson distributions satisfy the
conditions of Theorem 2. For distributions that are not negative log-convex, a link
function can make it convex.

Uniqueness of the estimate cannot be guaranteed for any X matrix when ν < 1
because the Subbotin penalty is not convex. The case ν = 1, studied in detail by
Osborne, Presnell, and Turlach (2000) for the Gaussian distribution, still does not
guarantee uniqueness because the level set of the `1 norm is a subspace that can
potentially intersect the null space of [X0 X] in an infinite number of points, as
stated in the following theorem.

Theorem 3 (Uniqueness, case ν = 1) Additionally to the assumptions of Theo-
rem 2, suppose that −l(·, ψ;Yn) is strictly convex on Ωµ. If K([X0 X]) = {0}, then
(α̂0, α̂)λ is the unique strict minimizer of (15). Otherwise, let K(α̂0,α̂)λ([X0 X]) be
the affine space parallel to K([X0 X]) going through (α̂0, α̂)λ and let Lα̂λ be the
subspace of points (α0,α) ∈ IRP0+P such that α belongs to the boundary of the `1

ball of IRP of radius ‖α̂λ‖1. Then K(α̂0,α̂)λ([X0 X])
⋂

Γ(α0,α)
⋂
Lα̂λ is the set of strict

minimizers of (15).

The following theorem states a general sparsity result for any X matrix, when
ν = 1 and when α0 is known in (15). This sparsity property forms the basis for
deriving the universal threshold and universal prior.

Theorem 4 Suppose that ν = 1 and, in addition to the existence assumptions
of Theorem 2, −l(·, ψ;Yn) is convex and α0 is known and such that (α0,0) ∈
int(Γ(α0,α)), the interior of Γ(α0,α). Let g(α0,α; Y) be the gradient of −lN(X0α0 +
Xα, ψ; Y) with respect to α at (α0,α). Then, for any (α0,0) ∈ Γ(α0,α), if λ is at
least as large as λY = ‖g(α0,0; Y)‖∞ < ∞, then the sparse estimate (α0, α̂)λY

=
(α0,0) is a global minimum of (15).

The assumption that (α0,0) ∈ int(Γ(α0,α)) is a mild restriction since the sequence
α represents a deviation around the null model µ0 = X0α0 which belongs to the
interior of the domain of the objective function. Thresholding still holds when α0

is estimated independently, as long as (α̂0,0) ∈ int(Γ(α0,α)).
The penalty parameter λ = λY of Theorem 4 guarantees complete sparsity when

solving the multivariate problem (15) for a general matrix X in the Gaussian case
for ν = 1, but to analyze how the hyperparameters λ and ν can progressively control
the proportion of null entries in the posterior mode estimate we must study the case
X = I and X0α0 = α01, where α0 is a fixed scalar. In this case, the multivariate
posterior mode problem (15) separates into N univariate problems:

min
αn
−l(α0 + αn, ψ;Yn) + λ|αn|ν − log(

λ1/ν

2Γ(1 + 1
ν
)
) n = 1, . . . , N. (16)
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We now set the conditions on the likelihood l to guarantee thresholding. We first
give a definition of thresholding that also applies to asymmetrical distributions.

Definition 2 (Shrinking and thresholding) Let α̂MLE(Y ) be a scalar maximum like-
lihood estimate. An estimator α̂λ,ν(Y ) indexed by the hyper-parameters (λ, ν) is a
shrinking estimator if |α̂λ,ν(Y )| ≤ |α̂MLE(Y )| for all Y , λ and ν, and is a thresh-
olding estimator if for all Y there exists a lower ϕl(λ; ν) and an upper ϕu(λ; ν)
thresholds such that

α̂λ,ν(Y ) = 0 if and only if − ϕl(λ; ν) ≤ α̂MLE(Y ) ≤ ϕu(λ; ν).

Thresholding induces a sparser estimate the larger the thresholds ϕl(λ; ν) and ϕu(λ; ν).
Theorem 5 below establishes conditions for the posterior mode (16) to shrink and
threshold, and proves the useful monotonicity of the lower and upper thresholds as
a function of λ. To deal with both continuous and discrete distributions at once, we
require the discrete distribution (originally defined for ordered data in the count-
able set ΩY ) to be prolonged on the interval ΩI

Y = [inf ΩY , sup ΩY ] (e.g., for Poisson
ΩI
Y = [0,∞) and l(α0 + α, ψ;Y ) exists as a function of Y in ΩI

Y ). The following
theorem remains true when α0 is unknown and estimated independently of α.

Theorem 5 Suppose that α0 is known and that, in addition to the existence assump-
tions of Theorem 2, −l(α0 + ·, ψ;Y ) in (16) is differentiable and strictly convex with
−l̈αα(α0 + ·, ψ;Y ) > 0 on Γα. Then the posterior mode estimate (16) shrinks the
MLE. If moreover the penalized likelihood (16) has at most one local maximum and
one local minimum on either side of zero, and if l̇α(α0 +α, ψ; ·) is differentiable and
monotone on ΩI

Y for all α ∈ Γα, then it also thresholds the MLE. And the thresholds
ϕl(λ; ν) and ϕu(λ; ν) are non-decreasing with λ for a given ν.

Note that a unique solution is defined by taking the solution at zero when the two
local minima have the same objective function (which happens with probability zero
for continuous distributions). For Gaussian likelihood, we saw that the conditions of
Theorem 5 are satisfied, that the entire thresholding function for |Yn| ≥ ϕl(λ; ν) =
ϕu(λ; ν) must be found numerically when 0 < ν < 1, and that the function has
a jump κ(λ; ν) at the threshold. The threshold and jump values are given by (8)
and (9) for the Gaussian likelihood with α0 = 0 (see Appendix C). More generally
for distributions satisfying the assumptions of Theorem 5, the threshold and jump
values (ϕl(λ; ν), κl(λ; ν)) and (ϕu(λ; ν), κu(λ; ν)) solve in (α, y) = (κ, ϕ) the system
of equations {

f(0; y) = f(α, y)
∇αf(α; y) = 0

, (17)

where f(α, y) = −l(α0 + α, ψ; y) + λ|α|ν is the penalized likelihood.



Adaptive sparse model selection 17

3.2 Information criterion and rescaling

With the prior πϕ derived by controlling the extremal behavior of maxn=1,...,N |α̂MLE(Yn)|
using results from extreme value theory, and assuming the threshold ϕ(λ; ν) is mono-
tone for a given ν based on Theorem 5, then the sparsity `ν information criterion

SLνIC(α0,α, λ, ν) = −lN(X0α0 +Xα, ψ; Y) + λ‖α‖νν −
Q

ν
log λ+Q log Γ(1 +

1

ν
)

− log πλ|ν(λ | ν; τQ(ν))− log πν(ν)

can be employed, where τQ(ν) is calibrated to achieve asymptotic model consistency
for a zero-sequence.

Importantly the columns of X0 and X must be rescaled for the following two
reasons. First since α0 is not penalized in (15), the Q columns of the regression
matrix X must be adjusted to remove collinearity with the columns of X0; this is
called mean-centering when X0 = 1 is the intercept. Second, since the `ν penalty
in (15) is isotropic, the columns of X must also be rescaled. Indeed the isotropic
penalty intrinsically assumes equal variance in the estimation of the coefficients, in
particular for the maximum likelihood estimate when λ = 0. The homoscedasticity
of the MLE of the Gaussian canonical model (1) is in general no longer true when
the matrix X is not orthonormal or when the distribution is not Gaussian. We
adopt Σ-rescaling (Sardy 2008) based on the diagonal elements of the covariance
matrix Σ of the MLE. For Gaussian data for instance, the rescaled matrix XDΣ

with D2
Σ = diag(Σ) has the required homoscedasticity property since the diagonal of

the covariance matrix, diag((DΣX
TXDΣ)−1) = I, is constant. Another commonly

used rescaling divides each column of X by its standard error, but it does not seem
appropriate for isotropic penalties. With Σ-rescaling, it makes sense to use the
isotropic Subbotin penalty +λ‖α‖νν and to generalize the sparsity `ν information
criterion to the non-canonical model.

4 Subbotin posterior mode, information criterion

and rescaling in practice

The three situations considered below illustrate sparse estimation beyond the canon-
ical model to the extend that we can solve exactly the corresponding posterior mode
estimation problems.

4.1 Gaussian parametric regression

We consider the case when the regression matrix X in (15) is not the identity, nor
an orthonormal wavelet matrix, but a matrix of measured covariates. Assuming
Gaussian noise with variance one, the Subbotin posterior mode estimator solves

min
α

1

2
‖Y −Xα‖2

2 + λ‖α‖νν −
P

ν
log λ+ P log Γ(1 +

1

ν
),
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where response and covariates have been mean-centered to avoid dealing with an
intercept, and Σ-rescaled as discussed in Section 3.2. For the selection of the hyper-
parameters (λ, ν), consider the following proposition.

Proposition 1 Suppose Y = cXα + ε, where X is the N ×P matrix of Σ-rescaled
covariates, c is known and ε ∼ N(0, IN). The sparsity `ν information criterion for
estimation of α and selection of (λ, ν) is defined as

SLνIC(α, λ, ν) =
1

2
‖Y − cXα‖2

2 + λ‖α‖νν −
P

ν
log λ+ P log Γ(1 +

1

ν
)

− log πλ|ν(λ | ν; τP (ν))− log πν(ν),

where πλ|ν(λ | ν; τ) = F ′λ|ν(λ; τ) with Fλ|ν(λ; τ) = G0(ϕP (ϕ(λ/cν ; ν)/τ − dP )), dP =

ϕP − (log logP + log 4π − 2 log 2)/(2ϕP ), ϕP =
√

2 logP , and τ is calibrated to
τP (ν) = νϕ2

P/(P (2− ν)).

We show in Section 5 that this selection of the penalty provides
√
N -consistency for

lasso (ν = 1). Another possibility is to calibrate the prior with a diverging threshold
ϕN =

√
2 logN , in the spirit of BIC.

Our application consists of P = 8 clinical measures on N = 97 men who were
about to receive a radical prostatectomy (Tibshirani 1996). The goal is to employ a
linear model and to select significant variables among the eight to predict a response
value Y , the level of prostate specific antigen. Minimizing SLνIC over α for given
(λ, ν) entails solving a multivariate non-convex optimization that goes beyond the
scope of this paper. Moreover the number of covariates P = 8 is too small to hope
for a gain in prediction by selecting the second hyperparameter ν. So we illustrate
this proposition in the lasso case ν = 1. We consider six estimators: least squares
(MLE), stepwise, three versions of lasso, and boosting (see Buehlmann and Hothorn
(2007) for a review). The first version of lasso employs the information criterion
SL1IC, Σ-rescaling and a relaxation algorithm (Sardy, Bruce, and Tseng 2000) to
solve lasso for a few λ’s. The second and third versions of lasso (using glmpath

function available in R) employ standard rescaling and selects λ based on BIC and
AIC (Zou, Hastie, and Tibshirani 2007). The noise variance is estimated with the
unbiased estimate using the residuals of the least squares fit. Table 3 reports the
estimated coefficients for the six methods. In the last column we report the mean of
prediction errors estimated by 500 repeated two-fold random partitioning of the data
into training and test sets; the 500 values are visualized in the box plots of Figure 3.
Note that the difference of prediction errors between paired-samples reveals even
more significant (not reported here). Stepwise-BIC (ν = 0) estimates the sparsest
sequence and provides the best prediction. Boosting and Lasso-SL1IC come next
with very similar coefficient estimates and predictive performance. Lasso-BIC and
AIC do not perform as well.
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Table 3: Prostate cancer data. Coefficient values estimated with six methods, and
corresponding estimated prediction squared error P̂E (standard error 0.004).

lcavol lweight age lbph svi lcp gleason pgg45 P̂E
MLE 0.587 0.454 -0.020 0.107 0.766 -0.105 0.045 0.005 0.630
Stepwise `0 0.552 0.509 0 0 0.666 0 0 0 0.557
Lasso-SL1IC `1 0.532 0.397 -0.009 0.078 0.604 0 0.005 0.003 0.606
Boosting 0.532 0.405 -0.010 0.082 0.610 0 0.008 0.003 0.600
Lasso-BIC `1 0.516 0.346 0 0.051 0.567 0 0 0.002 0.619
Lasso-AIC `1 0.529 0.392 -0.008 0.075 0.601 0 0 0.002 0.618

MLE stepwise−BIC lasso−SLIC lasso−BIC boosting

0.
4
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Figure 3: Prostate cancer data. Box plots of estimated prediction errors.

4.2 Poisson likelihood

The model of Johnstone and Silverman (2004) extends to Poisson data as

Yn
i.i.d.∼ Poisson(α0 + αn),

where α0 is a known positive background intensity. For this distribution, Theorem 2
guarantees existence of the posterior mode estimate for all ν ≤ 1, and Theorem 3
guarantees uniqueness for ν = 1 since −l(α, ψ;Y ) = α0 + α − Y log(α0 + α) is
strictly convex on Γα = (−α0,∞) and limα→−α0 α − Y log(α0 + α) = limα→+∞ α −
Y log(α0 + α) = +∞ (perturbing null observations to a small positive ε). Finally
since the Poisson posterior distribution has at most two inflection points on either
side of zero and l̇α is monotone with respect to Y (l̈αY = 1/(α0 + α) > 0 for all
α ∈ Γα), Theorem 5 guarantees thresholding.

To derive the information criterion for Poisson likelihood, consider first the case
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ν = 1: the posterior mode has a closed form expression

α̂λ =


(α̂MLE+ϕl)−

1−λ when Y ≤ α0
(α̂MLE−ϕu)+

1+λ
when Y ≥ α0

,

where α̂MLE = Y−α0, and the lower and upper thresholds are ϕl(λ; 1) = min(α0, λα0)
and ϕu(λ; 1) = λα0. The Poisson distribution has a positive skewness and the
domain of Y has a bounded lower endpoint, so we consider the upper thresh-
old to derive the universal prior and control the asymptotic behavior of a sam-

ple Y = (Y1, . . . , YN)
i.i.d.∼ Poisson(α0). A well known result in extreme value theory

states that the Poisson distribution, like other discrete distributions, does not belong
to the domain of attraction of an extreme value distribution. To cope with discrete-
ness, a possibility suggested by a referee is to use the fact that P(‖Y−α0‖∞ ≤ ϕ)

·
=

P(‖U‖∞ ≤ 1), where Un
i.i.d.∼ IΓ(ϕ+ α0, 1/α0) (i.e., inverse Gamma), n = 1, . . . , N .

One can show that IΓ(α, β) is in the maximum domain of attraction of the Fréchet
Φα distribution, but, for large α, here large ϕ + α0, our findings show that conver-
gence is too slow for practical use as a prior for ϕ. Another possibility is to use

Anscombe transform Ỹn = 2
√
Yn + 3/8

·∼ N(2
√
αn, 1) to Gaussianize the data. We

use instead the approximation (Yn − α0)/
√
α0

·∼ N(0, 1) which is good when α0 is
large to establish that

P(α̂λ = 0) = P(‖Y − α0√
α0

‖∞ ≤
ϕ(λ; 1)
√
α0

) ≈ P(‖Z‖∞ ≤
ϕ(λ; 1)
√
α0

),

where Z = (Z1, . . . , ZN) is a standard Gaussian sample. So the universal threshold
is
√
α0ϕN with ϕN =

√
2 logN . More generally for all ν ≤ 1, Theorem 5 guarantees

that the upper threshold ϕu(λ; ν) is strictly increasing in λ, so the universal penalty
λN(ν) is uniquely defined as the solution in λ to ϕu(λ; ν) =

√
α0ϕN , which leads to

the following information criterion for Poisson data.

Definition 3 Suppose Yn
i.i.d.∼ Poisson(α0 + αn) for n = 1, . . . , N . The sparsity `ν

information criterion for estimation of α and selection of (λ, ν) is defined as

SLνIC(α, λ, ν) =
N∑
n=1

α0 + αn − yn log(α0 + αn) + λ‖α‖νν −
N

ν
log λ+N log Γ(1 +

1

ν
)

− log πλ|ν(λ | ν; τN(ν))− log πν(ν),

where πλ|ν(λ | ν; τ) = F ′λ|ν(λ; τ) with Fλ|ν(λ; τ) = G0(ϕN(ϕ(λ; ν)/(τ
√
α0) − dN)),

and τ is calibrated to τN(ν) = νϕNλN(ν)(ϕ′(λN(ν); ν))2/
√
α0/(Nϕ

′(λN(ν); ν) +
νλN(ν)ϕ′′(λN(ν); ν)).

To test the Subbotin posterior mode estimate and the information criterion on
Poisson data, we consider the following Monte Carlo simulation indexed by the un-
derlying known background Poisson intensity α0 ∈ {1, 3, 10}, the number of nonzero
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parameters K ∈ {10, 50} and the ‘standard deviation’ σ
√
α0 with σ ∈ {5, 7, 10}

added or subtracted to α0 to define the nonzero part of the sequence. For very low
background α0 ∈ {1, 3}, we consider adding non-zero signal αn = α0 + σ

√
α0, n =

1, . . . , K, and for higher background α0 = 10, half of the K nonzero added signal
is αn = α0 + σ

√
α0, n = 1, . . . , K/2 and the remaining is set to αn = 0.01, n =

K/2 + 1, . . . , K. EBayesThresh is applied to the Anscombe transformed Poisson
data. The results of the simulations are reported in Table 4: as expected, the Sub-
botin posterior mode estimate is better than EBayesThresh on the Gaussianized
data when the background intensity is low.

Table 4: Poisson Monte Carlo simulation. Average negative log-likelihood crite-
rion for Anscombe-EBayesThresh and Subbotin(λ, ν) posterior mode estimate on a
mixed signal of length 1000. In bold, the best between both.

Number nonzero 10 50
Value nonzero: σ 5 7 10 5 7 10
Background: x0 = 1

Anscombe-EBayesThresh 969 916 833 765 527 150
Posterior mode (λ, ν) 931 890 817 714 506 153

Background: x0 = 3
Anscombe-EBayesThresh -452 -537 -703 -1142 -1588 -2342
Posterior mode (λ, ν) -471 -547 -709 -1135 -1583 -2341

Background: x0 = 10
Anscombe-EBayesThresh -13204 -13289 -13533 -13854 -14392 -15183
Posterior mode (λ, ν) -13208 -13291 -13499 -13852 -14398 -15195

4.3 Poisson wavelet smoothing

The burst and transient source experiment (BATSE) instruments on board of NASA’s
Compton Gamma Ray Observatory measure arrival times of high energy gamma
rays. Using a partition of time, the data consists of counts of gamma rays in each
bin; for details see Meegan, Fishman, Wilson, Paciesas, Pendleton, Horack, Brock,
and Kouveliotou (1992). We focus on particular on the trigger 551 data used by
Besbeas, De Feis, and Sapatinas (2004): the signal recorded during 0.94 seconds has
length N = 1024, but as pulses occurred in the first half (until 0.47 seconds), we
show only this half on Figure 4 to zoom on the relevant area.

To preserve the sharp features of the underlying signal, we employ a wavelet-
based `1-penalized Poisson likelihood estimator (Sardy, Antoniadis, and Tseng 2004)
defined as the solution to

min
α0,α
−l(X0α0 +Xα; Y) +

J∑
j=j0

λj
2j−1∑
k=0

|αj,k|,
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where l is the Poisson likelihood, Y are the Poisson counts and [X0 X] is the Σ-
rescaled Haar orthonormal wavelet matrix with j0 = 4 levels and with associated
coefficients (α0,α) (see Section 2.3.2 for details on wavelet matrices). To select the
hyperparameters λj levelwise, we employ SL1IC with the prior πλj of the previous
section. Figure 4 shows the raw data (top left) and the estimated signal (bottom
left): the two dips at times 0.22 and 0.24 are preserved, as well as a few bursts. The
wavelet coefficients (top right) along with their corresponding hyperparameters λj
selected by the information criterion (bottom right) are plotted on the right side
of Figure 4. We observe that as the level j increases, the λj sequence increases,
because the higher the level j, the sparser the corresponding wavelet sequence.
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Figure 4: Poisson wavelet smoothing. Top left: BATSE trigger 551 data until 0.47
seconds. Bottom left: estimated intensities. Top right: estimated wavelet coefficient
by level. Bottom right: hyperparameters λj selected levelwise with SL1IC.
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5 Asymptotic properties

We investigate some asymptotic properties of the Subbotin posterior mode estima-
tor for Gaussian data when the hyperparameters are selected using the sparsity `ν
information criterion. We consider first the parametric case and recall the definition
of Fan and Li (2001) that a parametric sparse estimator is called asymptotically
oracle if it identifies the correct model and if the non-zero coefficients estimates be-
have like standard maximum likelihood estimate (i.e., asymptotically unbiased and
Gaussian with root-N convergence). The case ν = 1 has been well studied (Knight
and Fu 2000; Fan and Peng 2004; Meinshausen and Bühlmann 2006; Zou 2006). In
particular lasso cannot simultaneously achieve the two properties at once. Either
λ(N)/

√
N → λ0 ≥ 0, then the convergence rate is root-N , but the model estimate

cannot be consistent. Or λ(N)/N → λ0 ≥ 0 and λ(N)/
√
N → ∞, then the model

estimate is consistent, but the convergence is slower than root-N . The selection of
λ with the sparsity `1 information criterion of Proposition 1 falls in the first case.

Property 4 Let X̃ be the original matrix of P mean-centered explanatory variables
(P is fixed but large enough for exp(−P ) � 1) and let X = X̃DΣ be the rescaled
matrix, where D2

Σ = diag(Σ) and Σ = (X̃TX̃)−1. We assume moreover that XTX →
C as N tends to infinity, where C is a positive definite matrix. Then the SL1IC-lasso
estimate α̂SL1IC is

√
N-consistent, as solution to

min
α,λ

1

2
‖Y −

√
NXα‖2

2 + λ‖α‖1 − P log λ− log πλ(λ; τP ),

where πλ(λ; τ) = F ′λ|ν(λ; τ) with Fλ(λ; τ) = G0(ϕP (λ/(τc) − dP )), dP = ϕP −
(log logP + log 4π − 2 log 2)/(2ϕP ), ϕP =

√
2 logP , c =

√
N , τ is calibrated to

τP = ϕ2
P/P .

Proof: The Σ-rescaled matrix has the property that diag((XTX)−1) = I by def-
inition of DΣ: the least squares coefficients are homoscedastic with unit variance.
Based on Property 1 with c =

√
N , the universal penalty is λP,N =

√
NϕP . From

Knight and Fu (2000),
√
N -consistency is therefore guaranteed if we can show that

λSL1IC = O(
√
N). The SL1IC first order optimality condition in λ is

‖α̂SL1IC‖1 −
P

λ
− π′

π
(λ; τP ) = 0 (18)

with π′

π
(λ; τ) = ϕP/(cτ) ·(exp(−ϕP (λ/(τc)−dP ))−1). Following similar derivations

as Appendix A, the choice τP = ϕ2
P/P guarantees that the universal penalty is

selected when the true coefficients are null (i.e., ‖α̂SL1IC‖1 = 0) and the number of
covariates is large enough for exp(−P )� 1. Moreover (18) writes explicitly as

‖α̂SL1IC‖1 +
P

ϕP
√
N

=
P

λ
+
P exp(ϕPdP )

ϕP
√
N

exp(− P

ϕP
√
N
λ), (19)
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which right hand side is strictly decreasing in λ ∈ (0,∞) from +∞ to 0. Since τ
has been calibrated for λP,N =

√
NϕP to be the root when ‖α̂SL1IC‖1 = 0, then the

root to (19) is bounded by λP,N = O(
√
N).

Since lasso cannot be asymptotically oracle, Zou (2006, equation (4)) proposed
the adaptive lasso which uses a weighted `1 penalty, +λwp|αp|, with weights wp
inversely proportional to the magnitude of the corresponding coefficient, so as to
bias less large coefficients; in practice the weights must be estimated, for instance by
least squares. He then showed that the adaptive lasso is asymptotically oracle. The
Subbotin posterior mode aims at a similar behavior by adapting the penalty with a
single parameter ν rather than weighting each `1 term with a random variable: the
smaller ν, the less bias is introduced when shrinking non-zero coefficients. In fact
a potential algorithm to find the non-zero Subbotin solutions is to use the adapted
lasso iteratively with weights wp = ν/|α(i)

p |1−ν , where α(i)
p is the current iterate.

In that sense the adaptive lasso can be seen as an approximation to the Subbotin
posterior mode.

The advantage of the adaptive selection of ν becomes apparent for large P , in
particular in the nonparametric situation where P grows with N . For the canonical
model and in Gaussian wavelet smoothing, Antoniadis and Fan (2001) showed that
penalized least squares is comparable with the oracle estimator within a logarithmic
factor for the universal threshold and for a class of penalties. Since the `ν penalty
satisfies the conditions of their theorem, the same result applies to the Subbotin
posterior mode estimator if the penalty is set to the conservative universal penalty
λN(ν) in (13) such that ϕ(λN(ν); ν) =

√
2 logN for any ν. The sparsity `ν informa-

tion criterion seeks a less conservative thresholding by selecting and adaptive λ and
ν for a better fit. Since SLνIC is calibrated with respect to the universal threshold
(22), then the selected penalty λSLIC(ν) is always bounded by the universal penalty
λN(ν) for any given ν. Moreover the universal penalty is asymptotically minimax
(Johnstone and Silverman 2004; Donoho, Johnstone, Kerkyacharian, and Picard
1995), and the following property proved in Appendix E states that the selected
penalty λSLIC(ν) converges in probability to the universal penalty.

Property 5 Suppose that ν is fixed and that the true sequence is `ν-bounded (i.e.,
‖α‖νN,ν ≤ C, where C is a constant). Then the penalty λSLIC(ν) selected by spar-
sity `ν information criterion tends in probability to the universal penalty in that
λN(ν)/λSLIC(ν)→p 1 as N →∞.

Since ν is also selected adaptively we expect improvement compared to fixing it
to a pre-set value in (0, 1]. Section 2.3 confirms the intuition in direct sequence
estimation and wavelet smoothing. Theoretical grounds supporting these empirical
results need to be studied in more details.
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6 Conclusion

Subbotin posterior mode estimation is a way to achieve model selection. The asymp-
totic minimaxity result proved in the canonical setting should be generalizable to
more general settings and could be made more precise with respect to a class of loss
functions and Besov spaces. In particular it is interesting to investigate in what the
adaptive selection of the parameter ν through SLνIC or SURE improves on exist-
ing theoretical results. The generalization of Stein unbiased risk estimate beyond
the canonical model also remains a challenging problem, to which Zou, Hastie, and
Tibshirani (2007) contributed for ν = 1. Finally the connection to the adaptive
lasso could be pursued as a potential algorithm to solve, with multiple starts, the
non-convex `ν penalized likelihood with ν < 1.

7 Acknowledgment

I would like to thank an Associate Editor and two referees for valuable comments
that helped improved the quality of the paper, Paul Tseng for help about optimiza-
tion issues, and my colleagues Fred Dumas, Lionel Pournin, Olivier Renaud and
Yvan Velenik for interesting discussions. This work was partially funded by FNS
grant 100012-109532 and the Office du placement du Canton de Vaud.

References

Akaike, H. (1973). Information Theory and an Extension of the Maximum Likeli-
hood Principle. In 2nd International Symposium on Information Theory, pp.
267–281. Budapest: Akademiai Kiado: Eds. B.N. Petrov and F. Csaki.

Antoniadis, A. and J. Fan (2001). Regularization of wavelet approximations (with
discussion). Journal of the American Statistical Association 96, 939–967.

Besbeas, P., I. De Feis, and T. Sapatinas (2004). A Comparative Simulation Study
of Wavelet Shrinkage Estimators for Poisson Counts. International Statistical
Review 72, 209–237.

Buehlmann, P. and T. Hothorn (2007). Boosting algorithms: regularization, pre-
diction and model fitting (with discussion). Statistical Science 22, 477–505.

Donoho, D. L. and I. M. Johnstone (1994). Ideal spatial adaptation via wavelet
shrinkage. Biometrika 81, 425–455.

Donoho, D. L. and I. M. Johnstone (1995). Adapting to unknown smoothness via
wavelet shrinkage. Journal of the American Statistical Association 90, 1200–
1224.



Adaptive sparse model selection 26

Donoho, D. L., I. M. Johnstone, G. Kerkyacharian, and D. Picard (1995). Wavelet
shrinkage: Asymptopia? (with discussion). Journal of the Royal Statistical
Society, Series B 57, 301–369.

Embrechts, P., C. Kluppelberg, and T. Mikosch (1997). Modelling Extremal
Events: For Insurance and Finance. Springer-Verlag Inc.

Fan, J. and R. Li (2001). Variable Selection via Nonconcave Penalized Likelihood
and Its Oracle Propoerties. Journal of the American Statistical Association 96,
1348–1360.

Fan, J. and H. Peng (2004). Nonconcave penalized likelihood with a diverging
number of parameters. The Annals of Statistics 32 (3), 928–961.

Gao, H.-Y. and A. Bruce (1997). Waveshrink with firm shrinkage. Statistica
Sinica 7, 855–874.

Griffin, J. E. and P. J. Brown (2007). Bayesian adaptive lassos with non-convex
penalization. http://www.kent.ac.uk/ims/personal/jeg28/BALasso.pdf .

Hoerl, A. E. and R. W. Kennard (1970). Ridge regression: biased estimation for
nonorthogonal problems. Technometrics 12, 55–67.

Johnstone, I. M. and B. Silverman (2004). Needles and straw in haystacks: Em-
pirical Bayes estimates of possibly sparse sequences. Annals of Statistics 32,
1594–1649.

Johnstone, I. M. and B. Silverman (2005). Empirical Bayes selection of wavelet
thresholds. Annals of Statistics 33, 1700–1752.

Kerkyacharian, G. and D. Picard (2004). Regression in random design and warped
wavelets. Bernoulli 10, 1053–1105.

Knight, K. and W. Fu (2000). Asymptotics for lasso-type estimators. The Annals
of Statistics 28 (5), 1356–1378.

Mallows, C. L. (1973). Some comments on Cp. Technometrics 15, 661–675.

Meegan, C. A., G. J. Fishman, R. B. Wilson, W. S. Paciesas, G. N. Pendleton,
J. M. Horack, M. N. Brock, and C. Kouveliotou (1992). The Spatial Distribu-
tion of Gamma Ray Bursts Observed by BATSE. Nature 355, 143–145.
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A Derivation of the information criterion

Given priors πλ|ν(λ | ν; τ) and πν(ν), the posterior distribution is f(α, λ, ν | Y) =

f(Y | α)πα(α | λ, ν)πλ|ν(λ | ν; τ)πν(ν). With Yn
i.i.d.∼ N(cαn, 1), the negative log-

posterior distribution is

1

2
‖Y−cα‖2

2 +λ‖α‖νν−
N

ν
log λ+N log Γ(1+

1

ν
)− log πλ|ν(λ | ν; τ)− log πν(ν). (20)

Minimizing it over (α, λ, ν) defines the posterior mode estimate α̂λ̂,ν̂ for selected

posterior modes λ̂ and ν̂. To guarantee the universal property that P(α̂λ̂,ν̂ = 0)
N→∞−→

1 when the true sequence is α = 0, we calibrate τ such that the universal penalty
λN(ν) is the root to the first order optimality condition of (20) with respect to λ:

‖α‖νν −
N

νλ
−
π′λ|ν(λ | ν; τ)

πλ|ν(λ | ν; τ)
= 0 with

{
‖α‖νν = 0
λ = λN(ν)

. (21)
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Since πλ|ν(λ | ν; τ) = F ′λ|ν(λ; τ) with Fλ|ν(λ; τ) = G0(ϕN(ϕ(λ/cν ; ν)/τ − dN)) and
G0(ϕ) = exp(− exp(−ϕ)), then (21) is equivalent to

−N
νλ
− ϕN

τ
{exp(−ϕN(

ϕN
τ
− dN))− 1}ϕ

′(λ/cν ; ν)

cν
− ϕ′′(λ/cν ; ν)

cνϕ′(λ/cν ; ν)
= 0, (22)

with λ = λN(ν) and ϕN =
√

2 logN . With ϕ′′(λ; ν)/ϕ′(λ; ν) = (ν − 1)/(2 − ν)/λ
and ϕNdN = o(N), the asymptotic solution to (22) is τN(ν) = νϕ2

N/(N(2−ν)) since
exp(−ϕN(ϕN/τN(ν)− dN)) = o(1).

B Proof of Theorems

Proof of Theorem 2: (Existence) We consider a more general assumption where
the penalty function $(α) is coercive and continuous, for instance the Subbotin
negative log-likelihood. The assumption on the univariate negative log-likelihood
implies that −lN(µ, ψ; Y) → +∞ whenever µ approaches a boundary point of ΩN

µ

or ‖µ‖ → ∞. Moreover (15) has a feasible solution since Rg([X0 X])
⋂

ΩN
µ 6= ∅.

Since the penalty $(α) is coercive and continuous, then variant of Weierstrass’ the-
orem ensures that a solution (α̂0, α̂) to (15) exists.

Proof of Theorem 3: (Uniqueness, case ν = 1) When K([X0 X]) = {0}, then
−l ◦ [X0 X] is strictly convex. So is the objective function (15), since the sum of
the strictly convex −l ◦ [X0 X] and the convex `1-norm is strictly convex. Moreover
Γ(α0,α) = {(α0,α) : X0α0 + Xα ∈ ΩN

µ }, the inverse image of ΩN
µ , is a convex set

in IRP0+P. Therefore (α̂0, α̂)λ is the unique strict global minimizer of (15).
When K([X0 X]) 6= {0}, then another solution must write as (α̂0, α̂)λ + (k0,k)
for (k0,k) ∈ K([X0 X]). Indeed the objective function is convex, so any convex
combination of two solutions (α̂0, α̂)λ and (ẑ0, ẑ)λ is in Γα0,α and is another solution;
moreover −l is strictly convex on Γ(α0,α), so it is necessary that X0α̂0λ + Xα̂λ =
X0ẑ0λ +X ẑλ, i.e., (α̂0, α̂)λ = (ẑ0, ẑ)λ + (k0,k) with (k0,k) ∈ K([X0 X]), otherwise
the convex combination would attain a smaller objective, which contradicts the
hypothesis. Hence, the objective does not change at the minimum if and only if
‖α̂λ‖1 = ‖α̂λ + k‖1. So if k is moreover a vector generator of the boundary of the
`1 ball containing α̂λ, then the overall objective function keeps the same minimal
value.

Proof of Theorem 4: Let g(α0,α; Y) be the gradient of −lN(X0α0 +Xα, ψ; Y)
with respect to α. The `1 norm is not differentiable at 0, but let the modulus
of the generalized gradient with respect to α of the objective function (15) be
r(α0,α; Y) = (r1(α0,α; Y), . . . , rP (α0,α; Y)) with

rp(α0,α; Y) =

{
|gp(α0,α; Y) + λ αp

|αp| | if |αp| 6= 0;

min0≤|η|≤λ |gp(α0,α; Y) + η| if |αp| = 0.
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If (α0,0) ∈ int(Γ(α0,α)), then a necessary and sufficient condition for (α0, α̂) =
(α0,0) to be a global minimizer is that r(α0,0; Y) = 0. Hence, if

λ ≥ max
p=1,...,P

|gp(α0,0; Y)| =: λY,

then (α0,0) is a global minimizer. Finally to prove the universal rule λY is finite,
note that the log-likelihood is convex and (α0,0) is in the interior of the domain.

Proof of Theorem 5: We treat the case α̂MLE(Y ) > 0 and l̇α(α0+α, ψ; ·) monotone
increasing w.r.t. Y (i.e., l̈αY > 0). For fixed ν ∈ (0, 1) and λ > 0, let

f(α;Y ) = −l(α0 + α, ψ;Y ) + λ|α|ν . (23)

be the function to minimize w.r.t. α in (16).
Shrinkage: Note that the second term in (23) is an even function increasing in α
on (0,∞) and independent of Y . Since ḟα(0+;Y ) = −ḟα(0−;Y ) = +∞, then the
point ξ0 = 0 is always a local solution. If α̂λ,ν = ξ0 is the global solution then the
estimator shrinks since α̂MLE(Y ) > 0. Otherwise, since f(·;Y ) is decreasing on the
left side of zero and increasing on the right side of α̂MLE(Y ), the global minimum
can only be α̂λ,ν ∈ (0, α̂MLE(Y )).
Thresholding : The estimate α̂MLE(Y ) is strictly increasing in Y . To see that, observe
that l̇α(α0 + α̂MLE(Y ), ψ;Y ) = 0 by definition of the MLE. This implies in particular
that∇Y l̇α(α0+α̂MLE(Y ), ψ;Y ) is null, so l̈αα(α0+α̂MLE(Y ), ψ;Y ) ˙̂αMLE(Y )+l̈αY (α0+
α̂MLE(Y ), ψ;Y ) = 0 for all Y ∈ ΩY , where−l̈αα(α0+α̂MLE(Y ), ψ;Y ) > 0 and l̈αY > 0
by assumption. So ˙̂αMLE(Y ) > 0 for all Y ∈ ΩY .

By assumption, the penalized likelihood (23) has at most one local maximum
ξ1(Y ) and one local minimum ξ2(Y ). The latter ξ2(Y ) ∈ (ξ1(Y ), α̂MLE(Y )) is the
potential global minimum. With l̈αY > 0, −l̇α(α0+α, ψ;Y ) is decreasing in Y for any
given α > 0, so let Y1 = inf{Y ∈ ΩY : minα∈(0,sup Γα]−l̇α(α0+α, ψ;Y )+λναν−1 = 0}.
Hence for Y = Y1, the penalized likelihood (23) has a saddle point. If Y1 does not
exists in ΩY , then the estimator always thresholds since f(·;Y ) is always increasing
in α in that case. Note that Y1 plays the role of p0 in Antoniadis and Fan (2001).
Define on [Y1, sup ΩY ]×(0,∞) the difference δ(Y, λ) = f(ξ2(Y );Y )−f(0;Y ) between
the values of the objective function (23) at the two local minima ξ2(Y ) and ξ0 for a
given λ. Clearly δ(Y1, λ) > 0 since ḟα(0+;Y ) = +∞. When δ(Y, λ) < 0, then ξ2(Y )
becomes the global minimum: the estimator shrinks without thresholding. Suppose
we can show that δ(Y, λ) is strictly decreasing on [Y1, sup ΩY ] for a given λ, then
the estimator thresholds. Indeed, define

Yλ = sup{Y ∈ [Y1, sup ΩY ] : δ(Y, λ) ≥ 0}, (24)

then

α̂λ(Y ) = 0 ⇐⇒ Y ≤ Yλ

⇐⇒ α̂MLE(Y ) ≤ α̂MLE(Yλ) =: ϕu,
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since we showed that α̂MLE(Y ) is strictly increasing.
It remains to prove that δ(Y, λ) is decreasing on [Y1, sup ΩY ] for a given λ. Since

the local minimum ξ2(Y ) satisfies by definition that ḟα(ξ2(Y ), Y ) = 0, then

ḟY (ξ2(Y ), Y ) = (ḟα(α, Y ), ḟY (α, Y ))
∣∣∣
(α,Y )=(ξ2(Y ),Y )

(ξ′2(Y ), 1)T

= −l̇Y (α0 + α, ψ;Y )
∣∣∣
α=ξ2(Y )

.

So δ̇Y (Y, λ) = −l̇Y (α0 + ξ2(Y ), ψ;Y ) − (−l̇Y (α0 + 0, ψ;Y )), which is negative since
ξ2(Y ) > 0 and −l̈αY (α0 + α, ψ;Y ) < 0. In the discrete case, the fact that δ(Y, λ) is
decreasing on ΩI

Y implies that it is decreasing on ΩY for a given λ. This completes
the proof that Subbotin posterior mode thresholds.
Monotonicity of the threshold ϕu(λ; ν) in λ for a given ν: δ(Y, λ) increases in λ
for a given Y , and decreases in Y for a given λ. So Yλ in (24) is non-decreasing
in λ. Consequently, since the MLE is strictly increasing in Y , the upper threshold
ϕu = α̂MLE(Yλ) is non-decreasing in λ.

C Threshold and jump formulae (8) and (9)

We consider the case of a strictly positive jump α > 0, and consequently of a strictly
positive threshold y > 0; the strictly negative case can be derived likewise for the
left threshold and jump. System (17) for α0 = 0 writes:{

f(0; y) = f(α, y)
∇αf(α; y) = 0

⇔
{

1
2
y2 = 1

2
(α− y)2 + λαν

(α− y) + λναν−1 = 0

⇔
{

0 = ν
2
(α− 2y) + λναν−1

0 = (α− y) + λναν−1

⇔
{
α = y 2(1−ν)

2−ν
y = y 2(1−ν)

2−ν + λν(y 2(1−ν)
2−ν )ν−1

⇔
{

α = y 2(1−ν)
2−ν

y2−ν = λ(2(1− ν))ν−1(2− ν)2−ν .

D Asymptotic pivot

With the assumption that αn = 0 for n = 1, . . . , N , the distribution of Xn = |Yn|
with Yn ∼ N(0, 1) is F (x) = 1−2Φ(−x) on [0,∞), where Φ is the standard Gaussian
cumulative distribution function. The distribution of ϕY = maxn=1,...,N(|Yn|) is
degenerate, but results from extreme value theory guarantee a non-degenerate limit
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law under a proper affine transformation c−1
N (ϕY−dN) that we now derive following

Embrechts, Kluppelberg, and Mikosch (1997, Example 3.3.29).
The distribution F has right endpoint xF = ∞, is twice differentiable on its

domain and F ′′(x) = −2xϕ(x) < 0, where ϕ is the standard Gaussian density.
Moreover

F̄ (x)F ′′(x)/f 2(x) = 2Φ(−x)(−2ϕ′(−x))/(4ϕ2(−x))

∼ (−1/x)ϕ′(−x)/ϕ(−x) = −1

using Φ(−x) ∼ ϕ(x)/x as x → ∞. So F is a von Mises function with auxiliary
function a(x) = F̄ (x)/f(x) = 2Φ(−x)/(2ϕ(x)) ∼ 1/x. Consequently F belongs to
the maximum domain of attraction of the Gumbel distribution. A possible choice of
norming constants is dN = F−1(1−1/N) and cN = a(dN). Since F̄ (x) ∼ 2ϕ(x)/x =:
Ḡ(x) as x→∞, then we look for a solution of − log Ḡ(dN) = logN , i.e.,

1

2
d2
N + log dN +

1

2
log(2π)− log 2 = logN.

Then a Taylor expansion around ϕN =
√

2 logN yields

dN = ϕN − (log logN + log 4π − 2 log 2)/(2ϕN)

and cN = a(dN) ∼ 1/ϕN .

E Asymptotic minimaxity

Consider ν fixed in (0, 1]. Property 3 states the uniqueness of λ; its first order opti-
mality condition (21) obtained by differentiating with respect to λ the information
criterion for the calibrated τ = τN(ν) leads to the equation

λ =
ϕN

ν‖α̂λ,ν‖νN,νϕN/N + (2− ν)ϕ′(λ; ν)
,

to which λSLIC(ν) is the root. Note first that ϕ′(λN(ν); ν) = ϕν−1
N ((2− 2ν)/(2− ν))ν−1

and that ϕN/((2−ν)ϕ′(λN(ν); ν)) = λN(ν) is the universal penalty from Property 1
with c = 1. Since λN(ν)/λN,SLIC(ν) = 1+ν(2(1−ν))1−ν(2−ν)ν−2ϕ2−ν

N ‖α̂λN (ν),ν‖νN,ν/N ,

then λN(ν) is the asymptotic root chosen by SLIC provided ϕ2−ν
N ‖α̂λN (ν),ν‖νN,ν/N =

op(1).

With Yn
i.i.d.∼ N(αn, 1), the `ν-Subbotin coefficients estimate are α̂n,λ,ν = ηλ,ν(Yn)

for n = 1, . . . , N , where ηλ,ν is the thresholding function. By definition of the
universal penalty λ = λN(ν), the threshold is ϕN(ν) =

√
2 logN for all ν. Moreover

outside ±ϕN the datum Yn is shrunk toward zero for all ν > 0 and unshrunk if ν = 0
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(the hard thresholding function (2)). Consequently |α̂n,λN (ν),ν |ν ≤ |α̂n,λN (0),0|ν =
|Yn · 1{|Yn|≥ϕN}(Yn)|ν , and

‖α̂λN (ν),ν‖νN,ν ≤
N∑
n=1

Xν
n , (25)

where Xn = |Yn| · 1{|Yn|≥ϕN}(Yn).
Let X = |Y | · 1{|Y |≥ϕ}(Y ), where Y ∼ N(α, 1). Its density is fX(x) = (φ−α(x) +

φα(x))1{x≥ϕ}(x) + δ0(x)Aϕ, where Aϕ =
∫ ϕ
−ϕ φα(u)du and φα is the Gaussian density

with mean α and variance one. Its moment generating function MX(t) = exp(t2/2−
tα)(1 − Φ(−t + α + ϕ)) + exp(t2/2 + tα)(1 − Φ(ϕ − α − t)) + Aϕ. Consequently
E(X) = α(Φ(α+ ϕ)−Φ(ϕ− α)) + φ(ϕ+ α) + φ(ϕ− α), which is an even function
of α, so that we consider the case α ≥ 0 to majorate the expected value using Mill’s
ratio:

E(X) <
ϕ

α + ϕ
φ(ϕ+ α) +

ϕ

ϕ− α
φ(ϕ− α) +

α

(α + ϕ)3
φ(ϕ+ α) (26)

for all α ≥ 0 and ϕ. Hence the distribution of each Xn is parametrized by αn and
ϕ = ϕN =

√
2 logN . Since limN→∞ ϕN =∞ and αn is bounded by C by assumption,

then for N large enough, αn is negligible compared to ϕN , so the expected value
EXn is bounded from (26) as N →∞ by 2φ(ϕN) = 2/(N

√
2π) for all n = 1, . . . , N .

For any ε > 0, using (25) and Markov’s inequality,

P(‖α̂λN (ν),ν‖νN,ν
ϕ2−ν
N

N
> ε) ≤ ϕ2−ν

N

Nε

N∑
n=1

EXν
n .

Since ν ≤ 1, Jensen’s inequality on a concave function guarantees that

P(‖α̂λN (ν),ν‖νN,ν
ϕ2−ν
N

N
> ε) ≤ ϕ2−ν

N

Nε

N∑
n=1

(EXn)ν = (
2√
2π

)ν
(2 logN)1−ν/2

εNν

which tends to zero as N →∞.


