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Abstract: The problem of blind adaptive channel estimation in code-division multiple ac-
cess systems is considered. Motivated by the iterative power method, used in Numerical
Analysis for estimating singular values and singular vectors, we develop RLS and LMS
subspace based adaptive algorithms in order to identify the impulse response of the multi-
path channel. The schemes proposed in this paper use only the spreading code of the user
of interest and the received data and are therefore blind. Both versions (RLS and LMS)
exhibit rapid convergence combined with low computational complexity. With the help of
simulations we demonstrate the improved performance of our methods as compared to the
already existing techniques in the literature.

Key-words: Channel estimation, CDMA, Blind adaptive algorithms, RLS, LMS.



Méthodes adaptatives de la puissance pour l’estimation aveugle
de canal dans des systèmes CDMA

Résumé : Nous traitons le problème de l’estimation aveugle adaptatif de canal pour le
système CDMA (Code Division Multiple Access). Motivé par la méthode itérative de
puissance, utilisée dans l’analyse numérique pour estimer des valeurs singulières et des
vecteurs singuliers, nous développons des algorithmes adaptatifs basés sur des sous-espaces
RLS et LMS afin d’identifier la réponse impulsionelle d’un canal à trajets multiples. Les
schémas proposés dans cet article utilisent seulement la signature de l’utilisateur d’intérêt
et les données reçues, et sont donc aveugles. Les deux versions (RLS et LMS) montrent une
convergence rapide, ainsi qu’une faible complexité de calcul. À l’aide de simulations nous
démontrons que l’exécution de nos méthodes est améliorée par rapport aux techniques déjà
existantes dans la littérature.

Mots-clés : Estimation de canal, CDMA, Algorithmes adaptatifs aveugles, RLS, LMS.
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Adaptive Power Techniques for Blind Channel Estimation in CDMA Systems 1

1 Introduction

Code-division multiple-access (CDMA) implemented with direct-sequence (DS) spread
spectrum constitutes one of the most important emerging technologies in wireless commu-
nications. It is well known that CDMA has been selected as the base for the 3-rd generation
mobile telephone systems. In a CDMA system users are capable of simultaneously trans-
mitting in time, while occupying the same frequency band, by using a unique signature
waveform assigned to each one of them. This important advantage also constitutes its prin-
cipal weakness since it is the main source of performance degradation. Indeed for every
user, all other users play the role of (multiuser) interference.

When no multipath is present numerous off-line as well as adaptive detection schemes
have been proposed and extensively analyzed in the literature [4, 7, 11, 12, 14]. These
detectors, in order to be practically implementable, require at least knowledge of the signa-
ture waveform of the user of interest. Assuming availability of this information, is in fact
quite reasonable. Whenever CDMA signals propagate through a multipath environment,
the received signal has the same form as in the non-dispersive case, only in place of the
signatures we now have their convolution with the channel impulse response (also known
as composite signature). This remarkable property allows for the employment of exactly
the same detection structures cited above, after simply replacing the signature of the user
of interest with its corresponding composite signature. Of course for this to be possible, we
need knowledge or efficient estimates of the channel impulse response.

Due to their selfsufficiency with respect to training, blind estimation methods tend to
be, nowadays, the most frequent candidates for channel estimation. The blind channel es-
timation literature for CDMA is rather limited. In [15, 9] the (practically off-line) methods
that are proposed involve a large SVD for estimating the noise subspace of the received
data. This part is computationally intense, not to mention the fact that SVD presents no
particular repetitive structure suitable for on-line processing. In [1] we proposed an alter-
native off-line scheme that replaces the SVD with a simple matrix power. This resulted in a
substantial computational gain as compared to the previous two methods, without any sig-
nificant performance loss. Another advantage of the method in [1] is the fact that it does not
require knowledge (or estimates) of the signal subspace rank, in contrast to [15, 9] where
such information is indispensable. A similar approach was presented independently in [17]
emphasizing its close connection to the subspace method of [15].

Blind adaptive channel estimation techniques were proposed in [18, 16, 17]. Specif-
ically in [18], based on the analytic results offered in [13], several RLS and LMS type
versions were developed, that will serve for comparison against our schemes in the sim-
ulations section. A variant of the work in [18], reported in [16], consists in using higher
order cumulants. This approach however suffers from slow convergence even for small

RR n° 4963



2 Doukopoulos and Moustakides

codes, while its success relies on the Gaussian noise assumption and in particular the fact
that higher order cumulants of Gaussian random variables are zero. Finally in [17] an RLS
algorithm is proposed for the adaptive implementation of the power method suggested in
[1, 17]. We should also mention that in this last work the channel estimates are obtained
through an SVD of the size of the channel impulse response length.

In this work we are going to extend the power method proposed in [1] and use it to
develop RLS and more importantly LMS adaptive algorithms. In particular we are going to
introduce two versions of the power method suitably tuned to the CDMA channel estima-
tion problem. With this theory at hand we will then develop RLS and LMS type adaptive
algorithms that are characterized by high performance even under very difficult signaling
conditions. Although our RLS version resembles the one proposed in [17], there is a sig-
nificant difference. We will be able to completely eliminate the SVD, of the size of the
channel, needed in [17], by replacing it with a simple matrix-vector multiplication of the
same size. This will result in the reduction of the corresponding computational complexity
by one order of magnitude. As far as our LMS scheme is concerned, when it is compared
to the corresponding version of [18], it can perform orders of magnitude better, at a similar
computational cost level.

The rest of the paper is organized as follows. In Section II we introduce the signal
model for DS-CDMA in the presence of multipath, while in Section III we present two
subspace problems that constitute the heart of the blind channel estimation problem along
with a brief discussion on issues concerning identifiability. Section IV contains the power
method and in particular two variants that are suitable for the solution of the two subspace
problems introduced in Section III. In Section V we develop blind adaptive RLS and LMS
algorithms for the channel estimation problem. Simulations and comparisons are provided
in Section VI and finally, Section VII concludes our work.

2 System Model

Consider a K-user CDMA system with identical chip waveforms and signaling antipodally
through a multipath channel in the presence of additive white (but not necessarily Gaussian)
noise (AWN). Although CDMA systems are continuous in time, they can be adequately
modeled by an equivalent discrete time system. Specifically, no information is lost if we
limit ourselves to the output of a chip matched filter applied to the received analog signal
and sampled at the chip rate [14].

Let N be the processing gain of the code and L the length of the channel impulse re-
sponse. Moreover, let si = [si(0) si(1) · · · si(N−1)]t be the length N normalized signature
waveform of User-i (i.e. ‖si‖ = 1), and denote by si(n) the sequence corresponding to this

INRIA



Adaptive Power Techniques for Blind Channel Estimation in CDMA Systems 3

signature waveform zero-padded from both ends towards infinity. The transmitted signal
due to User-i is given by

zi(n) = ai

∞∑

k=−∞

si(n − kN − τi)bi(k), i = 1, . . . ,K, (1)

where ai is the amplitude of User-i; bi(n) the corresponding bit sequence; and τi its initial
delay that can take any value in the set {0, . . . , N − 1}. When zi(n) propagates through
a multipath AWN channel with impulse response fi = [fi(0) · · · fi(L − 1)]t, then the
received signal y(n) can be written as

y(n) =

K∑

i=1

zi(n) ? fi(n) + σw(n)

=

K∑

i=1

∞∑

k=−∞

ais̃i(n − kN − τi)bi(k) + σw(n), (2)

where ? denotes convolution; s̃i(n) = si(n)?fi(n) is the convolution between the sequence
si(n) and the channel impulse response fi (i.e. the composite signature of User-i zero-
padded from both ends); and w(n) is a unit variance i.i.d. noise sequence with σ2 denoting
the power of the AWN.

The model given in (2) fully describes the uplink (mobile to base station) scenario of a
multipath CDMA system. For the downlink we simply need to select f1 = · · · = fK = f

(since all users propagate through the same multipath channel) and τ1 = · · · = τK = τ
(since the users are completely synchronized). Although next we will consider the downlink
case, we should keep in mind that, with almost no modification, our methodology can be
applied to the uplink as well, in order to estimate the different channels one-by-one.

Without loss of generality, throughout this article, we will assume that the user of inter-
est is User-1. We will also assume that the initial delay τ is known and therefore we have
exact synchronization with the user of interest. A simple synchronization technique, based
on the same power method principle that we are going to use here, can be found in [2]. For
the presentation of our method it is more convenient to express the received signal in blocks
of data. In particular we are interested in blocks of size mN + L− 1, where m is a positive
integer. Consequently let us consider the block

r(n) = [y(nN) · · · y((n − m)N − L + 2)]t (3)

which, as we said, is assumed to be synchronized with the user of interest. Notice that, due
to synchronization, the block r(n) contains m entire copies of the composite signature of
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4 Doukopoulos and Moustakides

the user of interest. Specifically r(n) can be decomposed as follows

r(n) =

m∑

l=1





0(l−1)N×L

s̃1

0(m−l)N×L



 a1b1(n − l + 1)

+

K∑

i=2

m∑

l=1





0(l−1)N×L

s̃i

0(m−l)N×L



 aibi(n − l + 1) + ISI + σw(n), (4)

where s̃i = [s̃i(0) · · · s̃i(N + L − 2)]t is the composite signature of User-i. We observe in
(4) that the sum of the first m terms involves the entire composite signature of the user of
interest; then follows the multi-access interference (MAI) part that contains terms similar
to the first sum but coming from interfering users; then follows the part that includes the
inter-symbol interference (ISI) of all users and finally the last term is the AWN vector. All
terms in (4), except the last one, are of the form dlbi(n − j) where dl are deterministic
vectors corresponding to shifted versions of composite signatures coming from the user of
interest or MAI; or shifted sections of composite signatures coming from ISI; and bi(n) are
binary data that are mutually independent and independent from the noise vector.

One final point we should make, before proceeding with the presentation of the two
subspace problems, is the fact that the composite signature of User-1 can be written as

s̃1 = S1f (5)

where S1 is a convolution matrix of size (N + L − 1) × L, corresponding to the initial
signature of User-1 and defined as

S1 =















s1(0) 0 · · · 0
... s1(0)

. . .
...

s1(N − 1)
...

. . . 0

0 s1(N − 1)
. . . s1(0)

...
...

. . .
...

0 0 · · · s1(N − 1)















. (6)

3 Two Subspace Problems

Let us first identify the channel impulse response f assuming availability of the data auto-
correlation matrix and the initial signature waveform of the user of interest, i.e. s1. The data
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Adaptive Power Techniques for Blind Channel Estimation in CDMA Systems 5

autocorrelation matrix satisfies

R
4
= E{r(n)rt(n)} = Q + σ2I, (7)

where
Q =

∑

l

dld
t
l (8)

is a symmetric, nonnegative definite matrix, of dimensions mN + L − 1, formed by the dl

vectors introduced in the signal model.
By applying an SVD on R we can write

R = [Us Uw]

[
Λs + σ2I 0

0 σ2I

]

[Us Uw]t, (9)

where Us,Uw are orthonormal bases for the signal and noise subspace respectively. In par-
ticular we should note that Uw spans the noise subspace which corresponds to the smallest
singular value of R (being equal to σ2). Due to the orthogonality of the two subspaces, for
any vector dl in the signal subspace, we have

Ut
wdl = 0. (10)

As we can see from our signal model in (4), our data block contains m shifted copies of the
composite signature of the user of interest that have the form

dl =





0(l−1)×1

s̃1

0(m−l)×1



 , l = 1, . . . ,m. (11)

These vectors, since they lie in the signal subspace, they satisfy the orthogonality relation
(10) and the same property is true for their sum. The latter fact can be expressed with the
following equation

Ut
wF1f = 0, (12)

where

F1 =
m∑

l=1





0(l−1)N×L

S1

0(m−l)N×L



 , (13)

and where we have used (5). F1 is a known matrix with a particularly simple structure. It is
a convolution matrix as in (6), but of dimensions (mN + L− 1) ×L, with the first column
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6 Doukopoulos and Moustakides

containing the signature s1 repeated m times, i.e. of the form [st
1 · · · st

1
︸ ︷︷ ︸

m times

01×L−1]
t. We

should note that when m = 1 then F1 reduces to S1. From (12) we can now conclude that

Ut
wF1f =

(
Ft

1UwUt
wF1

)
f = 0. (14)

Equ. (14) suggests the recovery of f as the singular vector corresponding again to the small-
est singular value (which here is equal to zero) of the matrix Ft

1UwUt
wF1.

As it becomes clear from the preceding discussion, there are two subspace problems
involved in (14). The first concerns the estimation of Uw and the second the recovery of the
channel impulse response f . Let us present these two problems more explicitly.

Problem 1: If R satisfies the decomposition in (9), we are interested in estimating the
projection UwUt

w where Uw is an orthonormal basis for the (noise) subspace corresponding
to the smallest singular value σ2 of R.

Problem 2: If R and Uw are as in Problem 1 and F1 the matrix defined in (13), we are
interested in estimating the singular vector f corresponding to the smallest singular value of
the matrix

W = Ft
1UwUt

wF1. (15)

In [15] both problems are solved by direct SVD, while in [9] the first with SVD and the
second with QR. It is clear that applying SVD on R (or more accurately to its estimate) to
recover Uw is computationally intense and disqualifies these methods from on-line process-
ing. We should also mention the need of these approaches in knowing the noise subspace
rank. It turns out [1] that even slight errors in the estimate of this parameter, can produce
significant performance degradation in the schemes proposed in [15, 9]. In [1, 17] a power
method was proposed to replace the large SVD of Problem 1 used in [15, 9]. This idea
will be fully exploited in the next section in a direction that is suitable for both subspace
problems introduced previously. But before raising this subject let us first briefly discuss
the consistency of the estimates provided by (14).

3.1 Consistency

Let rs, rn denote the signal and noise subspace ranks respectively, then the matrix Ut
wF1

in (15) is of dimensions rn × L. If Uw is the exact noise subspace then, due to (12), we
conclude that the column rank of Ut

wF1 can, at most, be equal to L − 1. In order for (14)
to have a unique solution (modulo a multiplicative constant-ambiguity) the column rank of
Ut

wF1 must be exactly equal to L − 1. Since the column rank of a matrix is equal to its
row rank (and also equal to the rank of the matrix) in order to have a row rank equal to
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Adaptive Power Techniques for Blind Channel Estimation in CDMA Systems 7

L − 1 a necessary condition is to have at least L − 1 rows, that is, rn ≥ L − 1. Since
rs + rn = mN + L − 1 this yields

rs ≤ mN. (16)

Let us now specify, more precisely, the signal subspace rank. Notice that the number of
columns of Us is equal to rs. In fact Us is an orthonormal basis for the subspace spanned
by the vectors dl introduced in (8). For the sake of clarity we present these vectors in Fig. 1
for the downlink scenario. We recall that in this case all K users are synchronized. As

(L − 1) × K

(N+L−1)×K

(N+L−1)×K

•
•

•

(N+L−1)×K

(L − 1) × K

Figure 1: Representation of the vectors composing the signal subspace.

we can see there are m big rectangles of dimensions (N + L − 1) × K , containing the
entire composite signatures of all K users. The first such rectangle corresponds to the n-th
user-bits whereas the last to the (n− m + 1)-st. The two smaller rectangles, of dimensions
(L− 1)×K , contain ISI coming from the (n +1)-st and (n−m)-th user-bits respectively.
Each rectangle has a rank that cannot exceed its smallest dimension. Assuming that the
number of users K is smaller than the processing gain N we conclude that

rs ≤ mK + 2min{L − 1,K}. (17)
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8 Doukopoulos and Moustakides

We therefore deduce that if we select m such that mK + 2min{L− 1,K} ≤ mN then the
validity of the necessary condition (16) is guaranteed. This yields the following estimate
for the number of blocks m

m ≥
2min{L − 1,K}

N − K
. (18)

Equivalently, for a given number of blocks m, we can obtain an upper bound for the maxi-
mum load of the system

K ≤ N − 2min

{
N

m + 2
,
L − 1

m

}

. (19)

If we like to follow the same analysis for the uplink scenario then, due to lack of syn-
chronization, relation (17) becomes rs ≤ (m + 2)K , yielding

m ≥
2K

N − K
or K ≤

m

m + 2
N (20)

as a possible estimate for m (for given K) or an upper bound for K (for given m). We
must stress that the bounds introduced in (18) and (19) are by no means strict and must
therefore be used with caution. We recall that they simply ensure validity of the neces-
sary condition (16) and are thus not sufficient for identifiability. In numerous simulations,
however, they turned out to be very accurate. In other words whenever they were satisfied
the channel estimation was correct, whereas in the opposite case there appeared examples
where identification failed. Unfortunately we were not able to prove their sufficiency.

Finally, in a situation where the channel length is not available, we can assume that L
plays the role of a known upper bound for the true parameter. In such a case, similarly to [6],
an additional necessary condition for identifiability is needed. Specifically the difference be-
tween the upper bound L and the true filter length L′ must be strictly less than the processing
gain N , that is, L−L′ < N . This is so because in the opposite case one can easily produce
two different solutions for (14), namely [f t 01×(L−L′)] and [01×N f t 01×(L−L′−N)], where
f is the true channel impulse response and L′ its corresponding length. Since any linear
combination of these two solutions is also a solution of (14) we conclude that there is an
infinite number of candidates for the role of the channel impulse response. We are now
ready to proceed with the presentation of our blind adaptive schemes.

4 Power Method Variants

The power method [3] is an iterative technique that is used to provide estimates of the
subspace corresponding to the largest singular value of a matrix. Let us present two variants

INRIA



Adaptive Power Techniques for Blind Channel Estimation in CDMA Systems 9

of this method, appropriate for solving the two subspace problems of interest, that will also
serve as a starting point for developing our adaptive algorithms.

Lemma 1 Let R be as in (7) with an SVD as in (9) and ρ ≥ 0 a nonnegative scalar, we
then have

lim
k→∞

(
ρI + R

ρ + σ2

)−k

= UwUt
w. (21)

Proof: The proof is straightforward. Using the decomposition of R defined in (9) we
have the following limit as k → ∞

(
ρI + R

ρ + σ2

)−k

= [Us Uw]

[(

I + Λs

ρ+σ2

)−k

0

0 I

]

[Us Uw]t

→ [Us Uw]

[
0 0

0 I

]

[Us Uw]t = UwUt
w, (22)

with the last limit being true since I + Λs

ρ+σ2 is a diagonal matrix with diagonal elements
strictly greater than unity. �

It is clear that Lemma 1 contributes to the solution of the first subspace problem, i.e. the
estimation of the product UwUt

w required in (14). The form of the power method stated
in Equ. (21) is slightly more general (due to the existence of the parameter ρ) than the one
used in [1, 17]; the latter corresponds to ρ = 0. The extra degree of freedom provided by ρ
will turn out to be very helpful in the development of our adaptive algorithms.

As seen from (14), the channel vector f is the singular vector corresponding to the
smallest singular value (zero in the ideal case) of W, consequently we can apply again the
power method for its estimation. We propose the following variant.

Lemma 2 Let W be the matrix defined in (15); suppose that the vector f which satisfies
(14) is unique and of unit norm, then with α = 1/tr{W} the sequence of vectors f(n)
defined by the recursion

f(n) =
(I− αW) f(n − 1)

‖(I− αW) f(n − 1)‖
(23)

converges to the channel impulse response ±f (modulo a sign ambiguity), provided that
f(0) is not orthogonal to f .

Proof: Again the proof presents no particular difficulty. Using induction we can show
that

f(n) =
(I− αW)nf(0)

‖(I − αW)nf(0)‖
. (24)
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10 Doukopoulos and Moustakides

Since Wf = 0 this means that f is a singular vector for the matrix I − αW corresponding
to the unit singular value (which is the largest since αW is nonnegative definite with all
singular values smaller than unity). Using singular value decomposition, as in Lemma 1,
we can show that

lim
n→∞

(I− αW)n = ff t, (25)

which yields
lim

n→∞
f(n) = sgn(f tf(0))f . (26)

This concludes the proof. �

Lemma 2 contributes to the solution of the second subspace problem and will provide
the necessary channel impulse response estimates. From (23) we realize that, this time we
did not apply the power method to the inverse of W, but rather to its difference from the
identity matrix. With this idea we reduced the corresponding computational complexity by
an order of magnitude since inversion, like direct SVD, requires O(L3) operations while the
proposed scheme O(L2). As we will see this simplification exhibits no significant perfor-
mance loss when compared to direct SVD methods. At this point we can make the following
important remarks.

Remark 1: In Lemma 1 the convergence in (22) is exponential and we observe that the
corresponding rate is maximized when ρ = 0. Regardless of this fact, the employment of a
ρ > 0 in the scheme will turn out to be particularly useful in the case of the LMS version
since it will allow the algorithm to forget past data much more rapidly than the usual LMS
with ρ = 0. In the exponentially windowed RLS version, on the other hand, we can select
ρ = 0 since in this case we can efficiently control the forgetting of past data through the
forgetting factor of the RLS algorithm.

Remark 2: A subtle and very important remark regarding Lemma 1 concerns power k.
Notice that the limit is correct, i.e. we obtain the projection UwUt

w, only when the singular
values corresponding to the noise subspace are exactly equal. Unfortunately in a realistic
situation, when only estimates of R are available, this is rarely the case. This has a grave
consequence since the corresponding limit instead of being the desired product will become
just the rank-one matrix uut where u is the singular vector corresponding to the smallest
singular value of the estimate of R. This in turn will make W a rank-one matrix as well
and thus f will no longer be the only vector satisfying (14).

Fortunately, for CDMA signals, there is a simple solution to this problem. In [1] it
was observed that, for off-line processing, it was sufficient to use powers up to k = 3 and
practically match the performance of the direct SVD based techniques. We are going to
follow the same idea here. In other words we propose to approximate the product UwUt

w

INRIA
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as follows

ÛwUt
w =

(
ρI + R

ρ + σ2

)−k

, k = 1, 2, 3. (27)

Remark 3: Our final remark concerns the usage of (27). Notice that in approximating
UwUt

w this way, we do not need any knowledge of the noise subspace rank. This is particu-
larly convenient since the slightest erroneous rank estimate can produce drastic performance
degradation in the subspace channel estimation methods [1].

5 Blind Adaptations for Channel Estimation

As stated in Problem 2, the channel impulse response can be recovered as the singular vector
corresponding to the smallest singular value of the matrix W = Ft

1UwUt
wF1. Using the

approximation proposed in (27) we have the following estimate for this matrix

Ŵk = Ft
1(ρI + R)−kF1, (28)

where we have discarded the scalar quantity (ρ + σ2)k since it does not affect the subspace
determination problem.

When the autocorrelation matrix R is not available, we are interested in producing,
adaptively, estimates Ŵk(n) of the matrix Ŵk defined in (28). There are different possi-
bilities that we exploit next. Notice however that with the help of any such estimate Ŵk(n)
the power method presented in Lemma 2 (which provides the final channel impulse response
estimates) can be modified as follows

f̂(n) =

(

I− α(n)Ŵk(n)
)

f̂(n − 1)
∥
∥
∥

(

I− α(n)Ŵk(n)
)

f̂(n − 1)
∥
∥
∥

, (29)

where α(n) = 1/tr{Ŵk(n)}. In other words, at every time step, we first apply a time
adaptation of Ŵk(n) and then a single iteration of the power method. Let us now examine
what possibilities exist for the estimate Ŵk(n).

5.1 Channel Estimation via RLS

As was mentioned previously here we select ρ = 0 and for the adaptive estimate Ŵk(n) of
the matrix Ŵk we propose

Ŵk(n) = Ft
1P

k(n)F1, k = 1, 2, 3. (30)
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12 Doukopoulos and Moustakides

where P(n) = R̂−1(n) and R̂(n) is the exponentially windowed sample autocorrelation
matrix of the data r(n), i.e. R̂(n) =

∑n
i=0 λn−ir(i)rt(i), with 0 < λ < 1, a forgetting

factor. We recall the well known RLS adaptation for P(n)

k(n) = P(n − 1)r(n) (31)

γ(n) = 1/(λ + rt(n)k(n)) (32)

P(n) =
1

λ

(
P(n − 1) − (γ(n)k(n))kt(n)

)
, (33)

that has an overall complexity of 5(mN + L − 1)2 + 3(mN + L − 1) + O(1) (counting
together multiplications and additions). If we now compute Ŵk(n) as

Ŵk(n) = Ft (P(n) · · · (P(n) (P(n)F1)) · · · ) (34)

then this part requires 2kL(mN +L−1)2 +2L2(mN +L−1)+O(1) operations. Finally,
once Ŵk(n) is available, the adaptation in (29) requires 2L2 + 5L + O(1) operations. It is
clear that the most computationally intense part is the computation of Ŵk(n) in (34).

We should mention that our RLS version is similar to the adaptive algorithm presented
in [17] and when k = 1 to the RLS version of [18]. The advantage here is that we avoid the
SVD on Ŵk(n) proposed in [17, 18], since we replace it with one iteration of the power
recursion (29). As far as the RLS version of [18] is concerned we are going to see in our
simulations that higher values of the power k can ameliorate performance significantly.

5.2 Channel Estimation via Leakage LMS

This is the most practically important part of our work. The LMS scheme we are going to
present is computationally simple with performance that can be orders of magnitude better
than the corresponding LMS adaptation of [18].

An alternative means to generate estimates for Ŵk consists in writing

Ŵk = Ft
1V̂k (35)

where
V̂k = (ρI + R)−kF1 (36)

and produce estimates V̂k(n) for V̂k. It turns out that LMS is particularly suited for this
task. Consider first k = 1 and define the recursion

V̂1(n) = λV̂1(n − 1) + µ
(

F1 − r(n)rt(n)V̂1(n − 1)
)

(37)
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where 0 < λ < 1 is a leakage factor. By taking expectations and evoking the Independence
Assumption, i.e. assuming that V̂1(n− 1) is independent from the data vector r(n), we can
verify that

lim
n→∞

E[V̂1(n)] =

(
1 − λ

µ
I + R

)−1

F1 (38)

which is exactly (36) with ρ = (1 − λ)/µ and k = 1. Estimates for higher powers can be
obtained with the following time and order recursion

V̂l(n) = λV̂l(n− 1) + µ
(

V̂l−1(n − 1) − r(n)rt(n)V̂l(n − 1)
)

, l = 1, 2, . . . , k, (39)

where V̂0(n) = V̂l(0) = F1. With our next theorem we analyze the mean behavior of the
recursion in (39) thus generalizing (38).

Theorem 1: Let V̂l(n), l = 1, . . . , k, be as in (39), define ρ = (1 − λ)/µ and let
V̂l = (ρI + R)−lF1 be the expression defined in (36) corresponding to the power l then,
under the Independence Assumption, we have

E[V̂l(n)] = V̂l +

l−1∑

j=0

µj

(
n

j

)
(
λI− µR

)n−j
(

V̂l−j(0) − V̂l−j

)

, l = 1, . . . , k. (40)

Proof: The proof can be found in the Appendix. �

Although the Independence Assumption, strictly speaking, is erroneous, it has become
a popular tool for analyzing adaptive algorithms. It turns out that the conclusions obtained
by using it are correct at least up to a second order approximation in the step size µ, this
being true for a great variety of adaptive algorithms (that includes LMS and Leakage LMS)
and rich classes of data models [8, 5].

From Theorem 1 we observe that, due to the term (λI−µR
)n−j

we have an exponential

convergence of E[V̂l(n)] towards the desired quantity V̂l = (ρI+R)−lF. In fact the speed
of convergence is governed by the largest eigenvalue of the matrix λI− µR which is equal
to λ − µσ2. Notice that by using the Leakage LMS recursion in (39) with 0 < λ < 1, we
assure an exponential convergence with a factor that is at least equal to λ, independently of
the SNR level. If on the other hand one uses the regular LMS with λ = 1 the corresponding
factor becomes 1−µσ2 which can induce an extremely small convergence rate in medium to
high SNR. Unfortunately here we cannot ameliorate the LMS convergence speed by simply
increasing the step size µ (as it is the usual practice in adaptive algorithms). The reason is
that, when we increase µ, LMS becomes unstable well before we can reach any satisfactory
convergence rate levels. It is therefore through Leakage LMS that we can bypass this serious
handicap of the classical LMS algorithm.
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Since with Theorem 1 we have established that the recursion in (39) can provide proper
estimates for V̂k, using V̂k(n) we can now obtain estimates for Ŵk following (35) as

Ŵk(n) = Ft
1V̂k(n). (41)

Finally we apply one iteration of the power method in (29) to obtain the estimate f̂(n) of
the channel impulse response.

The computational complexity of the proposed scheme is as follows. We need 7kL(mN+
L − 1) + O(1) operations for the adaptation in (39); 2L2(mN + L − 1) + O(1) for the
computation of Ŵk(n) = Ft

1V̂k(n) and finally 2L2 + 5L + O(1) operations for the itera-
tion in (29). As in the case of RLS the most computationally heavy part is the one needed
for Ŵk(n). It turns out that we can reduce this complexity by a factor which can be impor-
tant. If we multiply the recursion in (39) from the left by Ft

1, we obtain a time and order
recursion for Ŵl(n), l = 1, . . . , k

Ŵl(n) = λŴl(n − 1) + µ
(

Ŵl−1(n − 1) − Ft
1r(n)rt(n)V̂l(n − 1)

)

. (42)

Since all vectors rt(n)V̂l(n − 1) are available from (39) we only need to compute Ft
1r(n)

once and then form the L×L matrices Ft
1r(n)rt(n)V̂l(n− 1) appearing in (42). The total

complexity for computing Ŵk(n) with this scheme is 2kL(mN + L − 1) + 5kL2 + O(1)
operations which should be compared to 2L2(mN +L−1)+O(1) required by (41). Since
usually k < L this can result in a nonegligible computational gain. The price we pay for
using (42) is the need to store the matrices Ŵl(n), l = 1, . . . , k. This is clearly unnecessary
when we use (41).

6 Simulations - Comparisons

In this section, we provide several simulation results to demonstrate the performance of the
blind adaptive schemes developed previously. In particular we compare our RLS and LMS
implementations with the corresponding schemes proposed in [18]. Before getting into our
simulations we must point out that we are going to examine the behavior of our algorithms
under diverse signaling conditions with the received signal exhibiting drastic changes in
its power. In such cases it is advisable to use a normalized version of the data in order to
account for the signal power changes and obtain an algorithm which is relatively insensitive
to them. We propose the following simple modification of (39)

V̂l(n) = λV̂l(n−1)+µ

(

V̂l−1(n − 1) −
r(n)rt(n)

β(n)
V̂l(n − 1)

)

, l = 1, 2, . . . , k; (43)
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where β(n) is an estimate of the received signal power. A possible adaptive scheme for
β(n) is

β(n) = νβ(n − 1) + (1 − ν)‖r(n)‖2, n > 1 (44)

where 0 < ν < 1 and β(1) = ‖r(1)‖2. We can now proceed with our simulations.
Randomly generated sequences of length N = 128 are used as spreading codes. Once

generated, the codes are kept constant for the whole simulation set. Moreover, all graphs
presented in the figures are the result of an average of 100 independent runs. In each run
we apply three different abrupt changes in order to observe the ability of the corresponding
algorithms to follow them. Specifically at bit 5000 we change the channel, and at bits
10000 and 15000 the number of users. For the multipath channel we start with the length 3
“difficult” channel and at 5000 we switch to the length 10 “easy” channel of [10]. For our
estimation on the other hand we assume that we have available only an upper bound for the
channel length which is L = 10. In other words even the length 3 channel is identified as
being of length 10. We use only one data block, that is, m = 1.

The signaling conditions are as follows: we start with K = 55 users, under perfect
power control. At bit 10000, 10 additional users enter the channel, 5 of them having power
equal to the user of interest and the remaining 5 being 10 db stronger. Finally, at bit 15000
the last 10 users along with 5 more exit the channel. As we can verify, the constraint in (19)
is always satisfied.

Fig. 2 depicts the mean square channel estimation error of the RLS schemes when the
SNR of the user of interest is equal to 20 db. We can see that our k = 1 version practically
matches the RLS of [18] without needing an SVD on the matrix W(n) at each step. By
employing higher powers k = 2, 3 there is a slight performance improvement only in the
beginning. After the channel changes at bit 5000 all RLS algorithms converge quickly
to their new steady state. Moreover, the behavior of the RLS schemes is not affected by
changes in the number of users (i.e. bits 10000 and 15000). It is clear that in this high SNR
environment selecting k = 1 is sufficient.

We continue with the presentation of the LMS schemes. We apply the LMS adaptation
in (43) with λ = 0.998, µ = 1 and ν = 0.99. We also apply the LMS algorithm of [18] after
selecting its step size so that its steady state performance matches our k = 1 version. Fig. 3
depicts the performance of all competing LMS schemes. The LMS algorithm of [18], as
we can see, has similar performance to our k = 1 version, but exhibits a smaller robustness
to abrupt changes in the number of users. Furthermore, in contrast to RLS, here we obtain
substantial performance gains by employing higher powers in k. The difference between
our k = 3 version and our k = 1 version (and therefore the LMS version of [18]) reaches
almost 20 db at steady state.
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Figure 2: Performance of the proposed RLS channel estimation scheme and the RLS version
of [18]; noise power 20 db.
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Figure 3: Performance of the proposed LMS channel estimation scheme and the LMS ver-
sion of [18]; noise power 20 db.
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Figure 4: Performance of the proposed RLS channel estimation scheme and the RLS version
of [18]; noise power 10 db.

Next we consider the same signaling scenario but with a significantly lower SNR.
Specifically we set the desired user’s SNR at 10 db. The performance of the RLS schemes
is presented in Fig. 4. Again the method of [18] is identical to our RLS k = 1 version.
Here however, in this low SNR environment, employing higher orders of k ameliorates the
overall RLS performance significantly especially in the initial part, i.e. in the case of the
“difficult” channel.

Finally in Fig. 5, the LMS schemes are presented for an SNR of 10 db. Again the LMS
algorithm of [18] has similar performance to our LMS version with k = 1, exhibiting the
same sensitivity to changes in the number of users as in the previous example. As before,
our k = 3 version outperforms our k = 1 version, and consequently the LMS algorithm of
[18], by more than 10 db.

A point that should be mentioned concerns the initial performance (up to bit 5000) of
all channel estimation schemes. In fact, if we had exact knowledge of the filter length,
that is, if we had used L = 3 instead of L = 10, both LMS and RLS versions would
have attained better performance levels than the ones depicted in the corresponding figures.
Finally, comparing the RLS with the LMS schemes we clearly observe the considerably
more robust behavior of the former to changes in the number of users. A performance
which, unfortunately, comes at a much greater computational cost.
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Figure 5: Performance of the proposed LMS channel estimation scheme and the LMS ver-
sion of [18]; noise power 10 db.

6.1 Other Comparisons

Let us now compare the recursion in (43) for 0 < λ < 1 (Leakage LMS) with the case λ = 1
(normal LMS). The signaling scenario depicted in Fig. 6 is similar to our first example. We
start with the “difficult” channel and at bit 25000 we switch to the “easy” channel. We
run the simulation long enough to allow both algorithms to converge. We present only
the case k = 3. The parameters of the algorithms are as before µ = 1; leakage factor
λ = 0.998; ν = 0.99 and SNR level equal to 20 db. The difference in convergence speed
between the two versions is noticeable, accompanied by an equivalent difference (in the
opposite direction) in steady state behavior. As was mentioned previously, it is not possible
to trade between steady state performance and convergence speed in the normal (λ = 1)
LMS algorithm by simply increasing the step size µ. In fact the value µ = 1, used here, is
rather limiting since even the slightest increase in this parameter leads LMS to instability.
Consequently the performance of LMS depicted in Fig. 6 is the best this algorithm can offer,
as far as convergence speed is concerned. It is through Leakage LMS we can therefore
obtain an improvement in the convergence speed of the algorithm with the analogous, of
course, loss in steady state behavior.

Finally in Fig. 7 we depict the channel estimates of the RLS scheme with the power
parameter set to k = 3. The dashed line corresponds to channel estimates obtained by
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Figure 6: Convergence characteristics of Leakage LMS (solid) and normal LMS (dashed)
after an abrupt change in the channel, SNR=20 db.
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Figure 7: Performance of the proposed RLS scheme when the channel is estimated by
applying one step of the power method (solid) and by SVD (dashed).
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applying an SVD at every time step on the matrix Ŵk(n) as suggested in [18, 17], whereas
the solid to our method, that is, by applying the iteration in (29) only once. We can see that
the two estimates become indistinguishable after very few steps with our method requiring
an order of magnitude less operations than the direct SVD (O(L2) versus O(L3)).

7 Conclusion

In this work we examined the blind adaptive channel estimation problem for CDMA in mul-
tipath additive white noise channels and considered a similar to [15, 9] two-step method-
ology for its solution. The novelty of our approach consists in specifying two subspace
problems, which we solve via two different variants of the power method. RLS and LMS
algorithms are subsequently developed that implement adaptively the two power method
variants providing efficient estimates for the channel impulse response. With a number of
simulation we demonstrate the satisfactory performance of our adaptive schemes in a dy-
namic environment that exhibits abrupt changes in the channel impulse response and the
number of users. Compared to the adaptive methods proposed in [18] our schemes offer
substantial performance gains at similar computational cost. Finally the adaptive scheme
of [17], although it is similar to our RLS version, it still requires an SVD of the size of the
channel length. In our case this part is replaced by a single iteration of the power method
that has an order of magnitude smaller computational complexity.

Appendix

Proof of Theorem 1: We will prove the validity of (40) by induction in the power l. Let us
first show that (40) is true for l = 1. Taking expectation in (39), using the independence
assumption and recalling that V̂0(n) = F1, we obtain the following recursion

E[V̂1(n)] = (λI− µR)E[V̂1(n − 1)] + µF1 (45)

which readily leads to

E[V̂1(n)] = µ

n−1∑

j=0

(λI − µR)jF1 + (λI− µR)nV̂1(0). (46)

Using the fact that
∑n−1

j=0 Aj = (I−An)(I−A)−1 the previous equality becomes

E[V̂1(n)] = (λI− µR)nV̂1(0) +
(
I−

(
λI− µR

)n)
(ρI + R)−1

F1
︸ ︷︷ ︸

V̂1

(47)
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which is exactly (40) for l = 1.
Let us now assume that (40) is true for l = κ, that is,

E[V̂κ(n)] = V̂κ +

κ−1∑

j=0

µj

(
n

j

)

(λI− µR)n−j
∆V̂κ−j, (48)

where ∆V̂i is defined as
∆V̂i = V̂i(0) − V̂i. (49)

We will then prove that it is also true for l = κ + 1. Consider the recursion in (39) for
l = κ + 1. After taking expectation and applying the independence assumption, i.e. that
V̂κ+1(n − 1) is independent from the received data r(n), we obtain the recursion

E[V̂κ+1(n)] = (λI − µR)E[V̂κ+1(n − 1)] + µE[V̂κ(n − 1)] (50)

which yields

E[V̂κ+1(n)] = µ

n−1∑

i=0

(λI− µR)iE[V̂κ(n − i − 1)] + (λI− µR)nV̂κ+1(0). (51)

Substituting E[V̂κ(n − i − 1)] with its equal from (48) we have

E[V̂κ+1(n)] = µ

n−1∑

i=0

(λI− µR)iV̂κ + (λI− µR)nV̂κ+1(0) (52)

+

n−1∑

i=0

κ−1∑

j=0

µj+1

(
n − i − 1

j

)

(λI− µR)n−j−1
∆V̂κ−j. (53)

The sum of the two terms in the right hand side of (52), using the fact that (ρI+R)−1V̂κ =
V̂κ+1, is equal to

V̂κ+1 + (λI− µR)n
∆V̂κ+1. (54)

Changing the order of summation in (53), using the property that
∑m

i=0

(
j+i
j

)
=

(
j+m+1

j+1

)

and changing variables p = j + 1, the double summation in (53) yields

κ∑

p=1

µp

(
n

p

)

(λI− µR)n−p
∆V̂κ+1−p. (55)

By adding this to (54) we obtain the desired result.
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