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Abstract—The remaining useful life (RUL) of transformer
insulation paper is largely determined by the winding hot-
spot temperature (HST). Frequently the HST is not directly
monitored and it is inferred from other measurements.
However, measurement errors affect prediction models and
if uncertain variables are not taken into account this can
lead to incorrect maintenance decisions. Additionally, ex-
isting analytic models for HST calculation are not always
accurate because they cannot generalize the properties of
transformers operating in different contexts. In this con-
text, this paper presents a novel transformer condition as-
sessment approach integrating uncertainty modeling, data-
driven forecasting models and model-based experimental
models to increase the prediction accuracy and handle
uncertainty. The proposed approach quantifies the effect of
measurement errors on transformer RUL predictions and
confirms that temperature and load measurement errors
affect the RUL estimation. Forecasting results show that
the extreme gradient boosting (XGB) algorithm best cap-
tures the non-linearities of the thermal model and improves
the prediction accuracy amongst a number of forecasting
approaches. Accordingly, the XGB model is integrated with
experimental models in a Particle Filtering framework to im-
prove thermal modelling and RUL prediction tasks. Models
are tested and validated using a real dataset from a power
transformer operating in a nuclear power plant.

Index Terms—Condition assessment, forecasting, prog-
nostics and health management, sensitivity, transformers.

I. INTRODUCTION

POWER transformers are critical assets in the power

grid. Condition monitoring and maintenance planning of

transformers is crucial because their failure can lead to lack of

export capability or even to catastrophic failures [1], [2]. With

the increase of monitored parameters prognostics and health

management (PHM) strategies have emerged as effective solu-

tions to identify early indicators of anomalies, diagnose faults

and predict the remaining useful life (RUL) of power assets

[3]. The operation context of different transformers determines

the best PHM strategy for monitoring their health [4]. This

paper focuses on nuclear power plants (NPPs) and the aging

of transformers in this context is affected by NPP operation.
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Transformer loading capability and RUL depend on the

thermal conditions, and at the same time, thermal conditions

depend on the load, environmental conditions and transformer

parameters [5]. The winding hot-spot temperature (HST) is the

main factor that determines the RUL of the insulation paper.

The paper is comprised of polymers, in which the number

of monomers, also known as degree of polymerization (DP),

determines the strength and RUL of the paper [6]. A DP value

of 200 is considered the end of life (EOL) condition of the

solid paper [7]. The calculation of the HST is complex and it

can be affected by other accelerating factors such as moisture,

furans, carbon dioxide, or carbon monoxide [8]. For instance,

the presence of moisture under high loading conditions can

lead to bubble formation and potential catastrophic failure [8],

[9]. Underestimated HST may lead to reduced cooling system

operation and the transformer could be running hotter with an

accelerating aging rate and significant reduced lifetime.

The IEEE C57.91 standard presents an analytic model to

calculate the HST [7]. However, this model may not be

generally applicable for all transformers operating in different

contexts [10]–[12], and accordingly there have been pro-

posed different machine learning methods which create fit-for-

purpose thermal prediction models such as Artificial Neural

Networks (ANN) [13], the C57.91 model with error correction

via ANN [14], fuzzy logic with ANN [15], an evolving

Gaussian fuzzy system [16], genetic programming [10], and

ensemble of quantile regression models [17]. Temperature

predictions can refer to different time horizons including short

(few minutes), medium (few hours) or long term (few days)

and the prediction error increases with the prediction horizon

[14], [17]. The models mentioned above focus on short-to-

medium term predictions. This paper focuses on medium-

to-long term predictions because the proposed framework is

planned to operate in an NPP and the decision window needs

to be long enough to adopt timely decisions.

Additionally, none of these models go beyond thermal

modelling to quantify the transformer RUL. Among those that

model transformer RUL, some authors have used statistical

distributions, e.g. Perk’s model [18], Weibull distribution [19]

or lognormal distribution [20], while others have used exper-

imental models such as the Arrhenius equation in C57.91 for

transformer utilisation improvement through dynamic rating

[21] or RUL predictions [22]. The focus of this paper is on

the second group due to the interest in insulation paper. Among

those that consider experimental models and inspection data,
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there is no consideration of improved thermal models, and

default thermal equations in C57.91 are used for transformer

RUL calculation.

The estimation of transformer aging parameters is complex

and non-deterministic because the heat transfer process is

distributed over different surfaces in the winding and insulation

structures and there may be measurement errors. Accordingly,

uncertainty modelling is critical for well-informed predictions.

For instance, Jauregui-Rivera et al. [23] used bootstrapping

methods to quantify confidence intervals for thermal param-

eters. Some of the reviewed models consider uncertainties

corresponding to different measured values [8], [17], [20],

[22] and there are others which integrate different transformer

health assessment parameters through an uncertainty-aware

evidential reasoning framework [24]. However, to the best of

our knowledge, there is no approach which integrates data-

driven thermal forecasting models with model-based lifetime

experimental models to increase prediction accuracy and han-

dle uncertainty. This would help engineers in decision-making

with error measurements and predicting the effect of future

scenarios with varying conditions on RUL with more accurate

results than experimental models.

Accordingly, this work presents a Bayesian inference frame-

work to quantify the uncertainty-informed RUL and analyse

the effect of measurement errors on RUL estimation. Building

on this framework, an improved transformer RUL predic-

tion approach is proposed integrating machine learning and

experimental models in the Bayesian framework. Therefore

the contributions of this paper are (i) the evaluation of the

sensitivity of the effect of measurement errors on transformer

RUL estimation, and (ii) adaptive prognostics predictions

through the integration of uncertainty modelling, forecasting

models and IEEE lifetime models.

The rest of the paper is organized as follows. Section II

presents the IEEE thermal and lifetime models and analyses

the uncertainty sources. Section III presents the proposed

approach for uncertainty-aware predictive modelling. Section

IV presents case study results and finally, Section V concludes.

II. TRANSFORMER THERMAL & LIFETIME MODELLING

The IEEE C57.91 standard defines the insulation paper

aging acceleration factor at time t, FAA(t), as [7]:

F AA(t) = e
15000
383

−

15000
273+ΘH(t) (1)

where ΘH(t) is the transformer winding’s HST at time t in
◦C, which can be calculated from other measurements [7]:

ΘH(t) = ΘTO(t) + ∆ΘTO,H(t)

= ΘA(t) + ∆ΘA,TO(t) + ∆ΘTO,H(t)
(2)

where ΘA(t) and ΘTO(t) are the ambient temperature and top-

oil temperature (TOT) at time instant t and ∆ΘA,TO(t) and

∆TO,H(t) are the TOT and HST rise over ambient temperature

and TOT respectively at time t calculated through:

∆ΘA,TO(t)=(∆ΘA,TOu(t)−∆ΘA,TOi
(t))(1−e

−

∆t
τTO)+∆ΘA,TOi

(t)

∆ΘTO,H(t)=(∆ΘTO,Hu(t)−∆ΘTO,Hi
(t))(1−e

−

∆t
τH)+∆ΘTO,Hi

(t)
(3)

where τTO and τH are oil and winding time constants, ∆t is

the loading time interval, ∆ΘA,TOi
(t) and ∆ΘTO,Hi

(t) are the

initial TOT and HST rise over ambient and TOT respectively

at time t, and ∆ΘA,TOu
(t) and ∆ΘTO,Hu

(t) are the ultimate

TOT and HST rise over ambient and TOT respectively at time

t, defined as:

∆ΘA,TOu (t) = ∆ΘTO,R.[((i(t)/ir)
2γ + 1)/(γ + 1)]n

∆ΘTO,Hu (t) = ∆ΘH,R. (i(t)/ir)
2m

(4)

where γ is the ratio of load loss at rated load to loss at zero

load, i(t) is the transformer load at time t, ir is the rated

load, ∆ΘTO,R and ∆ΘH,R are the TOT and HST rise at rated

load respectively, and m and n are transformer parameters

determined through a lookup table depending on the cooling

system of the transformer [7].

In order to determine the RUL at time t, RUL(t), Eq. (1)

can be converted into a Markovian recurrence relation form,

where the insulation paper health state depends only on its

previous state and current conditions:

RUL(t)=RUL(t−1)−FAA(t)=RUL(t−1)−e

(

15000
383

−

15000
273+ΘH(t)

)

(5)

At instant t=0, RUL(t − 1) equals to the initial lifetime

estimation RUL0. In subsequent iterations RUL0 is updated

with the most up-to-date RUL estimation to reflect the previous

state at t−1. Eq. (5) relates the insulation paper RUL with

temperature and load measurements and it guides the loading

capability of the transformer by examining the effect of

different load profiles on the transformer RUL. However, the

application of (5) gives a single RUL value at time t and it

does not consider the effect of different uncertainties such as

measurement errors that affect the RUL estimation.

A. Sources of uncertainty
The HST is inferred from indirect measurements [cf.

Eq. (2)]. Assuming that the TOT is measured, then HST

calculated from TOT measurements may include measurement

errors of TOT and load sensors. Additionally, the initial health

state and the paper consumption process [cf. Eq. (5)] may

not be accurate due to lack of knowledge and other factors

involved in the paper degradation process.

If these uncertainty-surrounded values are not considered,

the HST estimation may lead to erroneous results. Therefore,

the effect of measurement errors requires to be explicitly

considered. Accordingly, (2) including measurement errors and

assuming steady-state [∆t=0 in (3)] is converted into:

ΘH(t) = (ΘTO(t) + ϕTO) + ∆ΘH,R.[(i(t) + ϕi)/ir]
2m

(6)

where ϕTO denotes the top-oil measurement error and ϕi

designates the load measurement error.

Similarly, the paper degradation process in (5) is not a

deterministic process, and it also needs to integrate uncertainty

information corresponding to this process [22]:

RUL(t)=RUL(t− 1)+wRULt-1
−e

(15000+wt)(
1

383
−

1
273+ΘH(t)

)
(7)

where wRULt-1
denotes the uncertainty of the lifetime estimation

at t−1, wt denotes the degradation process uncertainty and

ΘH(t) is defined in (6). Initially wRULt-1
will denote the initial

lifetime estimation error, wRUL0
, which will be propagated
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in subsequent iterations through the recurrence relation form

of (7). Comparing (5) with (7) it is possible to see that

the different uncertainty sources may affect the HST and

RUL predictions. The proposed framework below effectively

integrates these sources of uncertainty.

III. PROPOSED APPROACH FOR ANALYTICS-UPDATED &
UNCERTAINTY-AWARE LIFETIME ANALYSIS

The goal of the proposed framework is to estimate the cur-

rent transformer insulation health state given inspection data

up to now (diagnostics) and predict the likely future remaining

lifetime given hypothetical future profiles (prognostics). Fig. 1

shows the PHM analysis framework where {z1,. . . ,zi,. . . ,zk}
is the inspection data up to the current time instant tk and EOLi

denotes end of life due to to the i-th degradation trajectory.

Fig. 1. Transformer insulation paper PHM framework

The generalization and accuracy of the HST model in (2)

can be enhanced by complementing the equation with forecast-

ing models. The analytic equations used to quantify ΘTO(t)
are not always accurate [10], [14] because it is difficult to

generalize with an analytic relation the properties of different

transformers operating in different contexts and this affects

transformer lifetime estimation. Accordingly, a novel RUL

prediction framework is proposed shown in Fig. 2.

Fig. 2. Proposed remaining paper lifetime framework

The inspection data is not directly processable because

it may include outliers and noisy measurements. The data

preprocessing step denoises and filters the data. Subsequently

the segmentation step divides the time series into different

equidistant time periods. The preprocessed and segmented

data is then connected with a feature extraction step so

that a number of time-domain features are extracted. Finally,

this stage is completed by selecting the most representative

features for subsequent thermal and lifetime modelling steps

(see Subsection III-A).

The thermal modelling approach is comprised of top-oil and

HST calculations. For a number of utilities it is common not to

have HST measurements because the required sensors are not

cost-effective. Accordingly, machine learning (ML) techniques

have been used to learn a predictive model which is able to

predict the top-oil temperature, Θ̂TO, given a number of input

parameters (see also Subsection III-B). Then this model is used

along with the IEEE experimental model to estimate the HST:

Θ̂H(t) = Θ̂TO(t) + ∆ΘTO,H(t) (8)

The only difference between (8) and (2) is that the TOT is

predicted using ML models and not using analytic equations.

After implementing the HST prediction model, it is possible

to embed it into the lifetime modelling framework through the

PF approach for a more accurate lifetime estimation which

includes different uncertainty criteria (see Subsection III-C).

A. Data pre-processing & feature selection

After denoising and filtering the measurements performed

on-site (see Section IV), Fig. 3 shows the correlation of the

top-oil temperature (vertical axis) with cooling water tempera-

ture, load and ambient temperature (horizontal axis), where the

grey points are the actual data samples. The higher the density

(plotted in red) the more likely is the correlation and vice-versa

(plotted in green). For instance, the most likely condition for

water temperature versus top-oil temperature (Fig. 3 left) is

that for water temperature between 0◦C and 5◦C the top-oil

temperature is concentrated at 25◦C with a probability density

value of 0.015. As the water temperature increases up to 10◦C,

the top-oil temperature fluctuates between 20◦C and 35◦C with

a probability density value of 0.001 (green area in Fig. 3 left).

It can be seen in Fig. 3 that there is a non-linear relationship

among the measured variables and the top-oil temperature.

This indicates that these variables may be good predictors

for top-oil temperature because they add new information to

the forecasting model. This confirms expert knowledge [7]

which states that for water-cooled transformers, the relevant

parameters to estimate top-oil temperature are cooling water

temperature, ambient temperature and load.

In order to improve the prediction capability of forecasting

models, it is possible to infer additional time-domain features

from water temperature, ambient temperature and load time-

series. To this end, first the time series is divided into seg-

ments, and then features are inferred. Different state-of-the-art

features have been extracted (listed in Table I [25], [26]) which

results in a total of 18 features plus the three time series.

TABLE I
TIME-DOMAIN FEATURES OF THE k-TH SEGMENT OF THE INPUT DATA

CONTAINING A TOTAL OF N DATA SAMPLES, xi,k , PER SEGMENT k

Feature Definition Feature Definition

Mean X1 =
ΣN
i=1xi,k

N

Impulse

factor
X2 =

max(|xi,k|)

1
N

ΣN
i=1

|xi,k|

Skewness X3 =
ΣN
i=1(xi,k−µk)

3

(N−1)σk
3

Kurtosis X4 =
ΣN
i=1(xi,k−µk)

4

(N−1)σk
4

Root

mean

square
X5 =

√

ΣN
i=1

x2
i,k

N

Crest

factor
X6 =

max(|xi,k|)
√

1
N

ΣN
i=1

x2
i,k

The thermal properties of the oil suggest that there may be

a delay in the heat transfer process and accordingly lagged

signals may be useful to improve the accuracy of predictions.

However, in this case, the use of lagged signals for each of

these temperatures does not improve the accuracy of top-oil

temperature predictions. The prediction tasks of this work

are focused on a long term horizon with highly non-linear

signals (see Subsection IV-B2). Then the use of e.g. a top-oil

lagged signal involves feeding back the top-oil predictions.

This recursive mechanism has a negative effect over a long-

term prediction window by accumulating and propagating the

prediction errors and worsening the final prediction. In any

case, one of the implemented ML models explicitly takes into
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Fig. 3. Top-oil temperature correlated with cooling water temperature, load and ambient temperature

account lagged signals and their effect on the prediction (see

LSTM models in Subsection III-B4).

The feature selection process is implemented in Section

IV-B1 using the case study datasets. Accordingly, the design

of the subsequently introduced machine learning algorithms

are based on these datasets and extracted features.

B. Thermal modelling through machine learning methods

So as to forecast the top-oil temperature, different ML

models have been designed and tested including Random

Forests (RF) [27], Artificial Neural Networks (ANN) [28] and

Support Vector Regression (SVR) [29], and also improved

versions of RF (Extreme Gradient Boosted Regression Tree,

XGB [30]) and ANN (Long Short Term Memory, LSTM [31]).

The rationale for choosing these models is to compare the

predictive power of XGB and LSTM with their counterpart

models (RF, ANN) and other classical models (SVR).

1) Random Forests (RF): RF is an ensemble of recursive

trees [27]. Each tree is generated from a bootstrapped sample

and a random subset of descriptors is used at the branching of

each node in the tree. RF creates a large number of trees by

repeatedly resampling training data and averaging differences

through voting.

The RF model has been implemented through the

randomForest package in R. The hyperparameters include

the number of trees (ntree) and the number of variables

randomly sampled as candidates at each split (mtry). These

parameters have been optimized through a 10 repeated 5 fold

cross-validation (CV) process searching the best parameters

from a predefined grid of parameters (see Subsection IV-B2 for

more details of the CV process): ntree=[100, 500, 1000, 1500]

and mtry=[1:15]. Best results were obtained with ntree=500

and mtry=2.

2) Extreme Gradient Boosted Regression Tree (XGB): XGB

[30] is a faster and more efficient implementation of gradient

boosting [32] which creates an accurate learner by combining

many regression trees. The objective of training an XGB model

is to minimize the training loss and avoid overfitting through

regularization terms. This process is based on additive training

implemented through a second order gradient algorithm [30].

The XGB model has been implemented through the

xgbtree package in R. The hyperparameters include the

maximum depth of the tree (max depth) and learning rate (η).

The more complex the tree, the more complicated patterns

it will learn, but it will be more prone to over-fitting. The

learning rate models the error generalization. These hyper-

parameters have been optimized through a 10 repeated 5-

fold CV process searching the optimal parameters from a

predefined grid of parameters: η=[0.001, 0.003, 0.01, 0.1, 0.3],

max depth=[1, 2, 4, 6, 10]. The best parameters for this work

are η=0.3 and max depth=2.

3) Artificial Neural Network (ANN): ANNs are widely used

for classification and regression tasks [28]. The multilayer

perceptron (MLP) feedforward model was used in this work.

The MLP is a three-layer network (input, hidden, output)

comprised of fully connected neurons. Each neuron performs

a weighted sum of its inputs and passes the results through

an activation function. All the designed ANN models use a

sigmoid activation function for the hidden layer and linear

activation function for output nodes.

Model training is performed using a back-propagation al-

gorithm. The goal is to learn the neuron weights to generate

the network output from the sample input, which minimizes

the error with respect to the target output. 10 repeated 5

fold CV was used to select an optimal number of hidden

nodes. A number of networks were trained for each fold

varying the number of hidden nodes from 1 up to 30. Of

the trained networks, the one with the highest accuracy was

selected and was comprised of 13 hidden nodes. The ANN

was implemented using the nnet R package.

4) Long Short Term Memory (LSTM): Is a type of recurrent

neural network which can capture correlations among signals

which involve long or short term time lags [31]. An LSTM

model is comprised of one input layer, one or more recurrent

hidden layers, and one output layer. The recurrence loop

allows layers to store information. Instead of using nodes

for the hidden layer as in ANN models, the basic units of

LSTM models are cells, which can perform complex logic

operations (sometimes resembling finite state machines). The

LSTM model is trained through back-propagation of errors

using stochastic gradient descent.

The LSTM model has been implemented through the

Keras package in Python. The hyperparameter tuning process

consists of selecting the next parameters: number of layers,

number of LSTM units, batch size, learning rate, and number

of epochs. Batch size denotes the subset size of the training

data. The LSTM model is not trained in a single trial, but takes

subsets of the data and learning correlations between subsets.

Each batch trains a network in successive order taking into

account the updated weights coming from the previous batch.

Number of epochs is the number of forward and backward

passes of all the training data.

The number of hidden layers was fixed to a maximum of

three layers and a number of different configurations with
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different hyperparameters were tested through 10 repeated

5-fold CV and grid search with parameters defined in the

following ranges: batch size = [5, 10, 15, 30, 45, 90], number

of cells=[1:30], epochs=[10, 1000, 2000, 4000, 5000, 10000],

activation functions = [softmax, relu, linear, tanh, sigmoid,

softsign, softplus], learning rate = [1e-4, 1.5e-4, 2e-4, 3e-4,

4e-4, 5e-4, 1e-3, 2e-3]. Best results were obtained with two

layers with 7 cells in each layer, batch size of 15, 5000 epochs,

learning rate of 1.5e-4 and softmax activation function.

5) Support Vector Regression (SVR): The SVR maps input

data into an m-dimensional feature space using a kernel

function [29]. The kernel translates a nonlinearly separable

problem into a feature space, which is linearly separable by

a hyperplane. The SVR defines a ǫ loss function that ignores

the errors situated within a certain distance of the true value.

The SVR is parametrized through the choice of kernel

function. For a nonlinear problem the RBF kernel is recom-

mended: k(x, x′) = exp(γ||x − x′||2), where γ is the RBF

width, x and x′ are training and testing data samples, and

||d|| is the Euclidean norm. The SVR solves an optimization

problem maximizing the distance from the hyperplane to the

nearest training point. SVR penalizes the loss function with

a cost variable c. SVR training consists of calculating the

hyperparameters c and γ. Model training was performed using

the R kernlab and MLR packages and grid search was

used to optimize c and γ within c = [2−8, 2−4, 2−2, 1] and

γ = [2−8:2:24]. Of the trained SVRs, the one with the highest

accuracy was selected which had ǫ=0.1, γ=0.25 and c=1

C. Lifetime modelling through Particle Filtering (PF)
PF is a Monte Carlo based Bayesian filtering method. PF

enables the integration of multiple measurements in a single

degradation model f(·) and filters the true state of the system,

xt, taking into account multiple sources of uncertainty [33].

A two-step method is implemented when PF is used for PHM

[34]. Firstly the system state estimation is performed:

xk = f(xk-1, wk-1) (9)

zk = h(xk, ϕk) (10)

where f(·) is the state degradation function, wk is a state noise

vector wk = 〈wt, wRULt
〉, h(·) is the measurement function,

and ϕk is a measurement noise vector ϕk = 〈ϕTO, ϕi〉.
Fig. 4 shows the application of (9) and (10) in the trans-

former paper RUL estimation process. The measurement func-

tion defined in (6) integrates load (i) and top-oil temperature

(ΘTO) along with their measurement errors (ϕi and ϕTO)

and other transformer parameters, and computes the hot-

spot temperature ΘH. The degradation function defined in (7)

integrates the process noise W t and calculates the RUL from

the HST and initial health state. The initial health state is then

iteratively updated with the actual state.

The state estimation xk given measurements zk up to the

time instant k is defined in terms of probability density

function (PDF) p(xk|z0:k). The initial state p(x0) is assumed

to be known (see diagnostics in Fig. 1). There are different

methods to estimate the transformer’s initial health state such

as the experimental analysis of the degree of polymerization

of the insulation paper, or if the paper is new, the initial

Fig. 4. PF framework for transformer insulation paper analysis

health state may be assumed to be of 180000 hours under

the conditions stated in IEEE C57.91 [7]. The prior PDF of

the state xk from the distribution p(xk-1|z0:k-1) is determined

by:

p(xk|z0:k-1) =

∫
p(xk|xk-1, z0:k-1)p(xk-1|z0:k-1)dxk-1

=

∫
p(xk|xk-1)p(xk-1|z0:k-1)dxk-1

(11)

where the state-transition distribution function p(xk|xk-1) is

defined by the recurrence relation form in (9). In order to

update the prior PDF, a new measurement is collected at time

k; zk, and the posterior PDF is obtained using the Bayes rule:

p(xk|z0:k) =
p(xk|z0:k-1)p(zk|xk)

p(zk|z0:k-1)
(12)

The analytic solution of (12) is complex. Thus, the PF

was proposed based on iterative application of prediction,

update and resampling steps at each time instant k [33].

Prediction: assuming at time k−1, N p random samples

(particles) of the system state are available, {xi
k−1}

Np
i=1, as

a realization of the posterior distribution p(xk-1|z0:k-1), the

prediction at k is performed by sampling the probability

distribution of the system noise wk-1 and simulating the system

dynamics according to (9) to generate new samples xi
k which

are realizations of the predicted distribution p(xk|z0:k-1).
Update: each sampled particle is assigned a weight based

on the likelihoods of observations zk collected at time k:

wi
k =

p(zk|x
i
k)∑Np

j=1 p(zk|x
j

k)
(13)

An approximation of the posterior PDF p(xk|z0:k) is then

obtained from the weighted samples {xi
k, w

i
k}

Np

i=1.

Resampling: as the PF evolves in time, weight de-

generacy phenomena occurs where all but one particle have

negligible weights [33]. To avoid this problem a degeneracy

condition is defined based on the effective size:

N̂ eff = 1/

Np∑
i=1

wi
k (14)

If N̂ eff falls below a threshold NT (NT=N p/2 in this work),

a systematic resampling step is applied [33].

Algorithm 1 below is a variant of the PF framework and

defines the model implemented in this work for transformer

paper lifetime modelling as defined in Fig. 2.

IV. CASE STUDY

The health of transformers is critical for the NPP. The

parameters of the main output transformer analyzed in this

section are reported in Table II. It is assumed that a Normal
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Algorithm 1 PF framework for paper lifetime prediction

1: {RULk-1, x
i
k−1, w

i
k−1}

Np

i=1 ⊲ Results from instant k − 1
2: for k=1:∆t:Pred.Horizon do ⊲ Iterate ∆t timestep until horizon
3: Read and pre-process measurements
4: Segment data, extract and select features at k: {xk}
5: Forecast Θ̂H(k) from (8)

6: Sample error variables: rTO ∼ N(Θ̂TO,ϕTO), ri ∼ N(i, ϕi),
rRULk-1

∼ N(RULk-1, wRULk-1
), rk ∼ N(0, wk)

7: for i = 1 : N p do ⊲ State prediction step

8: Propagate xi
k using (9), (10), RULk-1 & Θ̂TO(k)

9: Compute {wi
k}

Np

i=1, using (13) ⊲ Update
10: if N̂ eff < NT then ⊲ Resampling cf. (14)
11: Update xi

k and wi
k via systematic resampling

12: RUL[k]← {xi
k, w

i
k}

Np

i=1 ⊲ Store particle results at time k
13: RULk-1 = RUL[k] ⊲ Update for the next iteration

14: return RUL⊲ All particles & weights in the prediction horizon

distribution models the uncertainty-related variables (cf. Algo-

rithm 1, line 6). For confidentiality reasons, it is assumed

that the initial state of the insulation paper is equal to a new

paper with 180000 hours of life and an uncertainty of 500

hours, i.e. RUL0∼N(180000, 500) [7] and the process noise

is assumed to be rk ∼ N(0, 20). However, note that the PF

framework is flexible and it enables the integration of non-

Normal distributions too.
TABLE II

TRANSFORMER PARAMETERS

Param. Value Param. Value

Cooling / m,n Oil Directed Water Forced / 1, 1 Rating 267 MVA

∆H,R/∆TO,R 30 ◦C / 24.3 ◦C V1/V2 17 kV/230
√
3 kV

wcore,coil/wtank 95254 kg / 30617 kg ir/γ 15.1 kA/0.25

A. Diagnostics & sensitivity analysis

1) Diagnostics: Using the proposed framework in Fig. 2, it

is possible to estimate the actual health state of the insulation

paper by replacing line 5 of Algorithm 1 with real ΘTO(t)
measurements and scoping the prediction horizon into the

length of the available data.

Assuming that the initial health state corresponds to 11/2012

the health state after 3 years and 10 months is evaluated, i.e.

at 09/2016. Accordingly, the available datasets for top-oil and

load for the same period are processed so as to first calculate

the HST [cf. (6)] and then estimate the RUL at 09/2016. Fig.

5 shows the preprocessed load and top-oil temperature data.
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Fig. 5. Tested load and temperature profiles (11/2012 - 09/2016)

In order to calculate the health state of the transformer as

of 09/2016, it is assumed that the temperature error is ϕTO =

5 ◦C and the load error is ϕi = 1 kA. The datasets in Fig. 5

are applied to the PF framework in Algorithm 1 as follows:

• line 1: initial state: RUL0 ∼ N(180000, 500).

• line 5: calculate the HST from (2) using the collected

top-oil temperature data in Fig. 5.

• line 6: draw random numbers corresponding to the

selected error variables.

• lines 7-13: calculate the PDF of the RUL at t.

This process is repeated for the selected prediction horizon

(line 2) with a ∆t=1 hour timestep, and finally the PDF

of the RUL is obtained after processing all the available data

(line 14). There is no need to extract features and predict

the TOT because the TOT is available until 09/2016 and the

goal is to diagnose the health state at this time instant.

Fig. 6 shows transformer lifetime diagnostics results. The

operating time axis denotes the processed data (11/2012-

09/2016), the RUL axis denotes the degradation of the health

state starting from the initial state, and the density axis denotes

the PDF value.
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Fig. 6. Transformer diagnostics results for 11/2012-09/2016

Fig. 7 shows the health state of the transformer at the initial

and final time instants directly taken from Fig. 6.

Fig. 7. RUL at initial and final time instants (inferred from Fig. 6)

An important result is that the initial assumptions about the

Normal distribution of the errors (cf. Fig. 7 left) change as the

PF framework propagates the measurements and associated

errors. By the end of the diagnostics process (cf. Fig. 7 right)

Normality cannot be assumed and therefore, when inferring

the confidence intervals, standard percentile values are not

applicable. Namely, the final health state is distributed into two

nodes located at 169300 and 170200 hours. Accordingly, it is

necessary to calculate the area under the curve so as to ensure

that it covers the desired confidence interval (CI) area. Fig. 8

shows the 95% confidence interval quantification concept for

non-Normal distributions bounded into [95- CI, 95+ CI].

The inference of the confidence intervals facilitates the

decision-making process because it enables engineers to adopt
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Fig. 8. 95% confidence intervals [95- CI, 95+ CI]

an uncertainty-informed decision with intuitive lower and

upper limits on the estimated parameters. Accordingly, Fig. 9

shows the maximum likelihood and 95% CI of the predictions

in Fig. 6.

Fig. 9. Transformer diagnostics, 95% CI of Fig. 6

Fig. 9 shows the maximum likelihood and 95% CI for the

PDFs shown in Fig. 6. The degradation is almost exponential

as determined by the ageing acceleration factor in (1), but

this is affected by the de-energized periods of the transformer

which are reflected in the load and top-oil temperature. For

example, the transformer was shut down in mid-2016 which

resulted in zero load, decreased top-oil temperature, and

accordingly almost negligible RUL decrease. The uncertainty

propagation is dependent on the assumed error variables and

processed data as discussed in the next subsection.

2) Sensitivity Analysis: In order to evaluate the effect of

error variables on the RUL estimation a sensitivity analysis has

been performed examining the effect of the change of load and

temperature measurement errors. Note that this information is

lost with existing lifetime estimation models.

The HST in (6) defines the effect of load and temperature

measurements errors. For this case study (cf. Table II), this

equation is parametrized as follows (i(t), ϕi are in kA units):

ΘH(t) =ΘTO(t)+ϕTO+ [∆H,R/ir
2].[i(t)2+ϕi

2+2.i(t).ϕi]

=ΘTO(t)+ϕTO+0.13.i(t)2+0.13.ϕi
2+0.13.i(t).ϕi

(15)

It is possible to see that the effect of temperature measure-

ment errors are added as absolute values. In contrast, for small

load variations, the effect of load measurement errors on the

HST are not relevant. However, if ϕi >
√

(1/0.13) ∼2.78 then

the effect starts increasing rapidly due to the factor 0.13.ϕi
2

and the exponential degradation in (7). The term 0.13.i(t).ϕi

depends on the specific transformer loading.

The effects of different load and temperature errors have

been analysed using monitored data. For computational effi-

ciency the data has been limited to a year (11/2012-11/2013).

Fig. 10 shows the effect of different load measurement errors

on lifetime estimation assuming constant temperature mea-

surement error (N(ΘTO, 5)) and process noise (N(0, 20)).
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Fig. 10. Load error sensitivity analysis — 3D representation

It is apparent from Fig. 10 that different load measurement

errors play a different role on the lifetime estimation. Fig. 11

shows the maximum likelihood and 95% CI for the load error

sensitivity analysis inferred from Fig. 10.
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Fig. 11. Load error sensitivity analysis with 95% CIs

As the load measurement error magnitude increases in

Fig. 11, the uncertainty bounds increase and the maximum

likelihood value decreases. The zoomed view of the interval

[0.01-1] kA shows that the error bounds are around 2000 hours

and they are fairly constant in this zone. However, around the

elbow point identified in (15) the maximum likelihood value

starts decreasing rapidly and the 95% confidence intervals

widen due to the increased effect of the error values. Owing

to the stochastic nature of the PF algorithm, the 95% CIs vary

according to the nature of the PDF (see PDFs in Fig. 10).

In order to evaluate the effect of temperature errors, the load

measurement error (N(i(t), 1)) and process noise (N(0, 20))
have been assumed constants. Fig. 12 shows the 95% CI for

effect of error measurements for this situation.

In Fig. 12 one can see that for temperature measurement

error values below 5◦C, the effect of temperature measurement

errors on the RUL estimation is unstable. That is, the maxi-

mum likelihood value of the PDF of the RUL value fluctuates

around RUL0=N(180000, 500) minus the ageing after one

year. Depending on the initial state which is randomly sampled

from RUL0, the final health state varies. There are some cases

where the initial RUL is located around 180500 hours and

therefore, after a year with a degradation lower than 500 hours,

the final health state is above 180000 hours.
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Fig. 12. Temperature error sensitivity analysis

On the other hand, above a temperature error of 5◦C the

effect of the temperature error becomes non-negligible and it

directly affects the health state. Additionally, it is possible to

see that for temperature measurement error values below 2◦C

the CIs are very narrow, but as the error increases these bounds

widen. This is because for low temperature errors the model is

confident that the final health state is the maximum likelihood

value because there is no temperature error. However, as

the temperature error increases, the CIs widen and the final

evaluation of the health state is more uncertain.

When the load error is zero and the temperature measure-

ment error is 5◦C (Fig. 11) the variation of the RUL estimation

is caused by the term ϕTO in (15). In contrast, when the

temperature measurement error is zero in Fig 12, but the load

error is kept at 1kA, it can be seen that the variation due to

the term ϕi in (15) is almost negligible, which confirms that

the effect of temperature errors are more sensitive than load

errors for low loading conditions.

B. Prognostics
In order to predict the future health state of the transformer

the approach shown in Fig. 2 is adopted. First an appropriate

predictive model is designed which is able to estimate HST

given hypothetical load and temperature profiles. This estima-

tion can then be directly connected with the PF framework to

propagate uncertainties and estimate the lifetime. The adopted

temperature error is ϕTO = 5◦C and load error ϕi = 1 kA.

1) Feature processing & selection: The length of the

segment determines the validity of features and the final

prediction error. According to the performed experiments, best

results were obtained with a length of 5 days. With a segment

length longer than this the features lost representativeness and

the error increases (see Fig. 13) .

Subsequently, all the features (cf. Table I) along with

the preprocessed variables have been processed through a

recursive feature elimination (RFE) procedure and grid search

[35]. This step selects the most representative features which

minimize the prediction error. RFE was implemented for RF,

XGB and SVR using the Caret R package and grid search

was implemented for ANN and LSTM models. The error is

quantified through 10 repeated 5 fold CV using the normalised

root-mean-squared error (RMSE):

RMSE=
RMSE

max{RMSEi}N
i=1

;RMSE=

√

√

√

√

∑

N
i=1

(

Θ̂TO − ΘTO

)2

N
(16)

where N is the number of predicted data samples.

Fig. 13 shows the feature selection results with best features

for different segment sizes for XGB and RF models. Best

results were obtained with the listed 12 features in Fig. 13.

Fig. 13. Feature selection and segment size

Best results for SVR were obtained with three features

(water temperature, mean ambient temperature, load), nine for

ANN models (water temperature, mean ambient temperature,

mean load, RMS water temperature, mean water temperature,

skewness water temperature, RMS load, kurtosis ambient tem-

perature, IF ambient temperature) and six for LSTM models

(water temperature, mean ambient temperature, load, RMS

load, mean load, mean water temperature) all with a segment

size of 5 days. After the feature extraction step, all the

forecasting models have been designed and trained according

to the process outlined in Subsections III-B1-III-B5.

2) Thermal modelling: The first step is to learn a predictive

model so as to predict the top-oil temperature. Figs. 5 and 14

show load, ambient, water and top-oil measurements hourly

sampled for a period of 3 years and 10 months.

Fig. 14. Water and ambient temperature data (11/2012-09/2016)

It can be seen that the top-oil temperature profile is highly

non-linear due to the specific operational constraints of NPPs.

Namely, the plant is shut down for maintenance activities

and this affects the load and top-oil temperature values.

Additionally, depending on the harshness of the winter, load

conditions and applied water temperature, the oil temperature

can drop below zero degrees, e.g. winter 2016.

The learning process includes a 10 repeated 5 fold CV

procedure to estimate parameters and generalize the prediction

results. That is, the top-oil time series is divided into 5

equidistant folds (see Fig. 5). Then a number of ML models

are trained (see Subsection III-B) for the first fold and tested

with the second fold, subsequently the same models are trained

with the first two folds and then tested with the third fold and

the validation continues until the last step, where the models

are trained with the first four folds and tested on the last fold.

This process is repeated 10 times to deal with the stochastic
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behaviour of some models and generate repeatable results. For

the error calculation the RMSE has been used. Note that there

are different alternatives to validate the results such as the

stratified double CV scheme [26].

In total, after preprocessing the data and removing invalid

samples, there are 32440 samples so each fold has 6488

samples. Accordingly, at each fold the models predict up to

6488 hours ahead (∼ 271 days). Table III displays the mean

RMSE and the standard deviation for various models for all the

folds estimated through the 10 repeated 5 fold CV procedure.

TABLE III
RMSE OF ML MODELS FOR TOP-OIL TEMPERATURE FORECASTING

Tech.
Fold #1 Fold #2 Fold #3 Fold #4 Average

etrain etest etrain etest etrain etest etrain etest etrain etest

XGB

0.37

±
0.28

4.13

±
0.37

1.2

±
0.35

5.07

±
0.35

2.08

±
0.13

6.63

±
0.67

3.04

±
0.24

9.1
±

0.15

1.67

±
1.14

6.23
±

2.17

LSTM

(2L)

1.77

±
0.05

3.99
±

0.42

2.45

±
0.12

4.13
±
0.3

2.89

±
0.15

6.85

±
0.25

4.63

±
0.28

9.97

±
0.39

2.94

±
1.05

6.24

±
2.43

LSTM

(3L)

1.82

±
0.09

4.31

±
029

2.43

±
0.33

4.39

±
0.24

3.01

±
0.28

6.67

±
0.24

4.21

±
0.6

9.7

±
0.11

2.87

±
0.88

6.27

±
2.19

LSTM

(1L)

2

±
0.17

4.3

±
0.71

2.52

±
0.24

4.4

±
0.49

3.29

±
0.52

6.9

±
0.26

4.34

±
0.67

9.6

±
0.52

3.05

±
1.01

6.3

±
2.5

RF

0.85

±
0.02

4.23

±
0.05

0.84

±
0.01

5.05

±
0.06

0.91

±
0.005

6.49
±

0.001

1.07

±
0.005

10

±
0.005

0.92

±
0.1

6.4

±
2.55

SVR 1.66 4.9 2.87 4.13 2.38 6.93 3.5 9.76

2.35

±
0.77

6.43

±
2.51

ANN

1.12

±
1.04

5.8

±
1.6

1.49

±
0.27

5.47

±
0.83

2.07

±
0.14

6.54

±
0.18

3.43

±
0.19

11.07

±
0.93

2.03

±
1.01

7.22

±
2.6

IEEE

C57.91
N/A 5 N/A 5.6 N/A 8.6 N/A 12 N/A

7.77

±
3.2

From the prediction results in Table III it can be seen

that the XGB predicts best the top-oil temperature value. The

mean performance of the LSTM is practically the same, but

in the worst case scenario the maximum error is greater than

the XGB, i.e. etestXGB
= 8.4 < etestLSTM

=8.67. Additionally, an

important advantage of XGB over LSTM is that XGB models

are easier and faster to train and test. Accordingly, the XGB

model is used for lifetime modelling and RUL estimation. Fig.

15 shows the last fold prediction for XGB and LSTM, where

ground truth denotes the measured top-oil temperature data.

Fig. 15. Top-oil temperature forecasting results for the last fold (see
top-oil temperature and folds in Fig. 5)

RF also shows a good performance, but the problem is that

RF overfits the model as shown by the low training error. Also

note that different trials of SVR models generate same results

because of the fixed decision boundaries.

In contrast, the thermal model defined in the IEEE C57.91

standard has the poorest performance and highlights that the

IEEE analytic model may not perform accurately for every

transformer operating in different contexts.

3) Lifetime modelling: The lifetime prediction model uses

the most accurate thermal model within the framework in Fig.

2. Given hypothetical ambient temperature, load and water

temperature variables, first the selected features are inferred

(cf. Fig. 13), and then the XGB model predicts the top-

oil temperature. Subsequently, the IEEE model is used to

estimate the hot-spot temperature from the predicted top-oil

temperature, and finally, this is used to predict the paper RUL

using the PF framework defined in Algorithm 1.

To test the approach with different hypothetical profiles, one

year’s worth top-oil and ambient temperature data have been

taken from Fig. 14 as a representative reference for yearly

temperature patterns. Then user-defined load profiles are used

to predict the TOT under different loading conditions. Fig. 16

shows tested load and temperature patterns.

Fig. 16. Tested future load and temperature profiles

These patterns have been repeatedly applied to the PF

framework in Algorithm 1 for two different prediction hori-

zons of 5 and 10 years:

• line 1: initial state: RUL0 ∼ N(180000, 500).
• line 4: infer selected features from load, ambient tem-

perature and water temperature profiles in Fig. 16.

• line 5: using the designed XGB model, first forecast

the TOT and then calculate the HST.

• line 6: draw random numbers corresponding to the

assumed error variables.

• lines 7-13: calculate the PDF of the RUL at time

instant t.

This process is repeated for the selected prediction horizon

(line 2) with a ∆t=1 hour timestep, and finally the PDF

of the RUL is obtained after processing the data up until

the prediction horizon (line 14). Fig. 17 shows the RUL

predictions after 5 and 10 years.

Fig. 17. Predicted RUL with the scenarios in Fig. 16

The initial state statistics in Fig. 17 are mean=179800,

95+=180900, 95-=178900 (all in hours). Table IV displays

RUL statistics corresponding to different profiles.
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TABLE IV
RUL STATISTICS IN FIG. 17

Time
Profile A Profile B Profile C

m 95+ 95- m 95+ 95- m 95+ 95-

5y 178.9k 180.1k 178.6k 177.6k 178.1k 176.5k 169.9k 170.4k 168.4k

10y 178.5k 179.1k 177.1k 174.2k 174.3k 173.7k 158.9k 159.8k 158.4k

The predicted RUL values are consistent with the applied

profiles. That is, C shows the most severe degradation followed

by B, and the application of A results in a higher RUL.
V. CONCLUSIONS

This paper has presented a novel transformer condition

assessment approach integrating model-based experimental

models, forecasting models and uncertainty modelling con-

cepts in a Bayesian Particle Filtering framework.

Error propagation and sensitivity analysis are key activities

for decision-making under uncertainty. The implemented sen-

sitivity analysis evaluated the effect of load and temperature

measurement errors on transformer lifetime and it showed that

for low load measurement errors the effect of temperature

errors are more critical. However, the load measurement

error increases rapidly above an elbow value which has been

formulated analytically.

It has been demonstrated that the integration of machine

learning (ML) models with experimental models improves

transformer lifetime estimations. Among the tested ML models

for thermal modelling, the eXtreme Gradient Boosting (XGB)

has shown the best prediction performance. Accordingly, the

transformer RUL has been examined with different operational

profiles using the XGB-based temperature prediction model,

IEEE-based lifetime model and uncertainty information of col-

lected measurements and stochastic processes. The predicted

RUL values are consistent with the applied operational profiles

and this demonstrates the validity of the proposed approach

for adaptive lifetime predictions.

As NPPs age, the aging of transformers is becoming increas-

ingly critical because they are crucial assets to export energy

from the NPP. The proposed approach enables the modelling

of these dynamic contexts accurately while accounting for

uncertainties. Future work may focus on integrating other

degradation accelerating factors in the proposed approach such

as the moisture and other chemical factors.
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