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Abstract

The use of cognitive radio (CR) is anticipated to enable a couple of significant enhancements in

wireless communications. The major enhancements include better configuration and dynamic

adaptation of radio access technologies in tone with localized conditions and more independent

localized options of spectrum usage and networking configuration. Consequently, improve-

ments in spectrum efficiency, controllable mutual interference among users, and flexible co-

existence with various radio access technologies are prominent benefits. These benefits have

caused involvement of cognitive networking as an integral component of next generation mo-

bile networks. The greatly increased complexity in next generation mobile networks (due to the

localized variations, the heterogeneous networking, and the availability of various access meth-

ods) will not be optimally managed with human input, or with those conventional algorithms

which lack adaptability to the environmental variations. Therefore, cognitive networking will

enable next generation networks to be more adaptable and successfully able to manage these

conditions with greatly reduced human intervention.

Among the operational networking paradigms, the underlay cognitive radio mode suffers

from short communication range. This impact results from limiting the interference at the pri-

mary users which necessitates imposing constraints on the transmit power of the cognitive trans-

mitter. Such power limitation in turn reduces the spectral efficiency of cognitive radio compared

to conventional non-cognitive radios. The use of multiple antennas is an effective technique to

manage the interference at the primary radio via multiuser transmit precoding. Furthermore, by

means of multiuser multiple-input multiple-output (multiuser MIMO), the spectral efficiency

of the cognitive radio network can be enhanced due to enabling the management of mutual

interference among the cognitive users.

In this thesis, we develop efficient resource allocation and adaptive precoding schemes for

two scenarios: multiuser MIMO-OFDM and multiuser MIMO based CR networks. The aim of

the adaptive precoding is to squeeze more efficiency in the low SNR regime. In the context of
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the multiuser MIMO-OFDM CR network, we have developed resource allocation and adaptive

precoding schemes for both the downlink (DL) and uplink (UL). The proposed schemes are

characterized by both computational and spectral efficiencies. The adaptive precoder operates

based on generating countable degrees of freedom (DoF) by combining the spaces of the block

interference channel. The resource allocation has been formulated as a sum-rate maximization

problem subject to the upper-limit of total power and interference at primary user constraints.

The variables of the problem were matrix of the precoding and integer indicator of the subcar-

rier mapping. The formulated optimization problem is a mixed integer programming having

a combinatorial complexity which is hard to solve, and therefore we separated it into a two-

phase procedure to elaborate computational efficiency: Adaptive precoding (DoF assignment)

and subcarrier mapping.

From the implementation perspective, the resource allocation of the DL is central based

processing, but the UL is semi-distributed based. Central resource allocation task is solved

to maintain central adaptive precoding and subcarrier mapping for both the DL and UL. The

subcarrier mapping is performed by optimal and efficient method for the DL as the problem is

modeled as convex. But, it is characterized by near-optimality for the UL despite the convexity

due to the per-user resource constraints of the UL problem. The DL problem is sorted out

using the Lagrange multiplier theory which is regarded as an efficient alternative methodology

compared to the convex optimization theory. The solution is not only characterized by low-

complexity, but also by optimality. Concerning the UL, the distributive resource allocation

task is necessary to resolve the power allocation of the UL. The prominent advantages of the

semi-distributed scheme in the UL are the provided computational and spectral efficiencies.

Moreover, such scheme also leads to a small data overhead and helps simplify the terminal

structure. Numerical simulations illustrate remarkable spectral and SNR gains provided by

the proposed scheme. In addition, robustness is demonstrated against the tight and relaxed

transmission conditions, i.e. interference constraints. Therefore, the proposed schemes enable

larger communication range for underlay CR networks.

Concerning the multiuser MIMO CR based network, we develop an adaptive non-iterative

linear precoder, namely Adaptive Minimum mean square error Block diagonalization (AMB).

The proposed AMB precoder employs the proposed DoF concept which we call it here precod-

ing diversity. In this context, DoFs of the proposed precoder are generated by space combining

and channel path combining methods. We have also developed adaptive Zero-Forcing Block

diagonalization (AZB) engaging the precoding diversity concept. The proposed AMB precoder

illustrate a notable spectral and SNR gains over the conventional MMSE as well as the AZB
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precoders in the SNR region of interest: The low SNR region. Unlike non-linear iterative pre-

coders, the proposed precoders are linear non-iterative and therefore provide low-complexity

along with a gainful spectral efficiency.

The complexity provided by the proposed precoders is an indispensable price for the ac-

quired spectral efficiency compared to the state-of-the-art linear precoders. More specifically,

the antenna configuration affects the complexity of both AMB and AZB precoders, which is

designed according to the capacity-complexity trade-off. The growth in complexity of the pro-

posed AMB and AZB precoders is exponential. However, possible complexity reduction as-

pects include parallel computing which is facilitated by the independence of the DoFs in the

adaptive precoding. The other aspect relaxes the exponential complexity by working off those

DoFs which don’t take the entire set of cognitive users into account.

Keywords: Cognitive radio, next generation networks, adaptive precoding, precoding diversity,

multiuser MIMO, OFDMA, resource allocation, convex optimization theory, Lagrange multi-

plier theory.
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Kurzfassung

In dieser Dissertation werden effiziente Ressourcenallokation und adaptive Vorkodierungsver-

fahren für zwei Szenarios entwickelt: Mehrbenutzer-MIMO-OFDM und Mehrbenutzer-MIMO

jeweils basierend auf CR-Netzwerken.

Im Bereich der Mehrbenutzer-MIMO-OFDM CR-Netzwerke wurden Verfahren zur Res-

sourcenallokation und zur adaptiven Vorkodierung jeweils für den Downlink (DL) und den

Uplink (UL) entwickelt. Die Ressourcenallokation wurde als Optimierungsproblem formuliert,

bei dem die Summenrate maximiert wird, wobei die Gesamtsendeleistung und die Interferenz

an den Primärnutzern begrenzt ist. Das formulierte Optimierungsproblem ist ein sogenanntes

Mixed-Integer-Programm, dessen kombinatorische Komplexität nur extrem aufwendig lösbar

ist. Auf Grund dessen wurde es zur Komplexitätsreduktion in zwei Phasen aufgeteilt: Adaptive

Vorkodierung (DoF-Zuordnung) und Subkanalzuordnung. Während die Ressourcenallokation

für den DL aus Implementierungssicht ein zentralistischer Prozess ist, kann sie für den UL als

semiverteilt eingeordnet werden. Die Aufgabe der zentralen Ressourcenallokation wird gelöst,

um die zentrale adaptive Vorkodierung und die Subkanalzuordnung für UL und DL zu verwal-

ten. Die Subkanalzuordnung ist für den DL optimal und effizient gelöst, indem das Problem

als konvexes Problem modelliert ist. Für den UL wiederum ist das Problem trotz der Kon-

vexität quasi-optimal gelöst, da in der Problemformulierung eine Begrenzung der Ressourcen

pro Benutzer existiert.

Im Falle der Mehrbenutzer-MIMO CR-Netzwerke wurde ein adaptiver, nichtiterativer, line-

arer Vorkodierer entwickelt, genannt "Adaptive Minimum mean square error Block diagonaliza-

tion" (AMB). Die AMB Vorkodierung generiert Freiheitsgrade und wird hier als Vorkodierungs-

diversität bezeichnet. Der vorgestellte AMB Vorkodierer zeigt im wichtigen Bereich des niedri-

gen SNR bemerkbare Gewinne im SNR und der spektralen Effizient gegenüber dem konven-

tionellen MMSE Vorkodierer. Der vorgestellte Kodierer ist linear und nichtiterativ und kann so

eine geringe Komplexität zusammen mit einer Steigerung der spektralen Effizienz bieten.
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1
Introduction

1.1 Overview

Since their introduction and spread, mobile communications have been smoothing people’s

lives through providing new services and applications. Mobile radio communications have been

evolving since 1980s in form of generations each containing its own progression as illustrated

in Figure 1.1. The first generation (1G) employed analog transmission for voice call services.

The first cellular system in the world was launched by Nippon Telephone and Telegraph (NTT)

in Tokyo, Japan. Then, popular analog cellular systems appeared in Europe in 1980s: Nordic

Mobile Telephones (NMT), Total Access Communication Systems (TACS), and A/B/C-Netz. In

the United States, the Advanced Mobile Phone System (AMPS) occurred in 1982. Both AMPS

and TACS employ analog techniques such as frequency modulation for radio transmission and

frequency division multiple access (FDMA) for traffic multiplexing [Che03, Toh02].

The second generation (2G) systems compared to 1G offered higher spectrum efficiency,

low data rate services, and more advanced roaming. Global System for Mobile Communi-

cations (GSM) was deployed in Europe in the end of 1980s enabling seamless international
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roaming throughout Europe. In the United States, three tracks of development were followed

in 2G. The first was developed in 1991 for which a new version of services (IS-136) was added

in 1996. Meanwhile, CDMA-One (IS-95) was established in 1993. Japanese Personal Digital

Cellular originally recognized as Japanese Digital Cellular was released in 1990 [Che03]. The

aforementioned 2G systems consider digital protocols for providing voice call and short text

message services. In particular, 2G are characterized by various digital modulation schemes in

radio transmission as well as time division multiple access (TDMA) technique for traffic mul-

tiplexing except the IS-95 which employs code division multiple access (CDMA). Moreover,

2G systems has exhibited improvement in capacity and coverage with data rates up to 64 kbps

in a circuit switched fashion. This is followed by further improvement with a quest for high-

speed data rates. General Packet Radio Service (GPRS), which is categorized as 2.5 generation

(2.5G), has upgraded the data rates up to 160 kbps employing packet switching protocol rather

than the circuit switching. A further advancement to GPRS, defined as 2.75 generation (2.75G)

dubbed as Enhanced Data Rates for GSM Evolution (EDGE), uses higher order modulation and

coding schemes to provide high data rates up to 473.6 kbps.

Standardization bodies has decided to design network standards whose services are indepen-

dent of the technology platform and characterized by universality. Hence, the third generation

(3G) was developed [Mis04]. The International Telecommunication Union (ITU) has termed

“IMT-2000” for the 3G standard requirements. This was followed by a mobile system definition

fulfilling the IMT-2000 standard by the 3rd Generation Partnership Project (3GPP). Generally

speaking, 3G has been developed to open the gates for broadband mobile communications sup-

porting multimedia and Internet services beside voice calls and text messages for speeds up to

2 Mbps in indoor environments. Europe has implemented UMTS (Universal Mobile Telecom-

munication System), which was driven by European Telecommunication Standards Institute

(ETSI). The 3G American variant is called CDMA2000, but the Japanese variant is branded

FOMA (Freedom of Mobile Multimedia Access). It is worth to point out that Wideband CDMA

(WCDMA) technique characterizes the air interface technology of UMTS. Both CDMA2000

and UMTS have been evolved into 1xEV-DO (1x Evolution Data-Optimized) and HSD/UPA

(High Speed Downlink/Uplink Packet Access), respectively, which have been standardized as

(3.5G).

The standardization body 3GPP has developed a long-term evolution of radio access tech-

nology called as 3GPP-Long Term Evolution (LTE) [3GP], which is referred to as the fourth

generation (4G). 4G is characterized by all-IP (Internet Protocol) feature, which simplifies in-

ternetworking with all fixed and wireless communication networks that have been developed so
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far [Wu10, KLSD10]. Based on Release 6 [3GP06], LTE technology supports peak data rates

up to 100 Mbps in downlink and 50 Mbps in uplink in a bandwidth of 20 MHz. It also improves

spectral efficiency 3 to 4 times the UMTS downlink and 2 to 3 times the uplink. Concerning

latency, the control plane latency is reduced to 100 ms and the user plane latency should be less

than 10 ms. However, Advanced LTE termed as (LTE-A) should support enhanced peak data

rate of up to 1 Gbps in downlink and 500 Mbps in uplink for low mobility scenarios [AY12].

Such 4G features facilitate mobile video conferencing and high-quality 3-dimensional graph-

ics. The demand of high-rate mobile communication systems increases exponentially [Eri13].

In just the past 10 years, it has been seen an astonishing evolution of wireless service with expo-

nential growth along with a stunning data usage around the globe exceeds 1 billion Gbyte in a

month. In 2020, the amount of traffic in wireless networks is estimated to be 1000 times higher

than that in 2010 [HHI+12].

AMPS/A,B,C-Netz/

TACS/NMT

GSM/IS-95/IS-136

UMTS/CDMA2000

LTE/WiMAX

?

1G

2G

3G

4G

5G

kbps

Mbps

Gbps

bps

Cell size shrinks

Cell count increases

1980       1990      2000     2010       2020       2030    Time decade

S
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e
e
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Figure 1.1: Evolutions of wireless mobile communication networks

1.2 Motivation

The emergence of new techniques and technologies in the wireless communication field as well

as the increasing demands for services and applications have triggered researchers to investigate

the next generation mobile networks (NGMN) categorized as the fifth generation (5G). Initial

specifications of 5G have been launched by NGMN alliance in their white report [5G 15]. The
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key requirements of 5G include supporting number of devices/services, spectral efficiency, peak

data rate, and low latency at limits beyond what 4G and its enhancements can support. The use

of cognitive radio (CR) is anticipated to enable a couple of significant enhancements in NGMN.

The major enhancement includes dynamic adaptation of radio access technologies in harmony

with localized conditions and spectrum usage. Consequently, improvements in spectrum ef-

ficiency, controllable mutual interference among users, and flexible co-existence with various

radio access technologies are gainful benefits. Such benefits have caused a consideration of

cognitive networking as integral component of NGMN [5G 15, 4G 14]. The greatly increased

complexity in 5G (due to the localized variations, the heterogeneous networking, and the avail-

ability of various access methods) will not be optimally managed with human input, or with

those conventional algorithms which lack adaptability to the environmental changes. Therefore,

cognitive radio involvement in 5G will address adaptability and management to those localized

conditions with greatly reduced human intervention.

CR has been originally proposed by Mitola [Mit00] to opportunistically use the underuti-

lized spectrum bands of a “licensed” primary radio (PR) system by an “unlicensed” CR system.

This would allow new market entrants, enterprise, public safety, and even existing wireless op-

erators to offer higher capacity and new services without requiring a purchase for expensive

and scarce spectrum. For example, a wireless network operator can provide new services by

installing CR access points where the PR access points are located. This improves the area

throughput of a cell via serving more users opportunistically by the CR units. In this context,

users that cannot gain access in the PR network will have a chance to access the CR network.

Such a goal requires wise methods to manage the multiuser interference and improve the spec-

tral performance as well. Thus, the research work of this thesis will investigate and focus on

developing new multiuser communication techniques for enhancing the performance of CR

mobile networks. The emphasis of this work covers transmit preprocessing and resource allo-

cation algorithms that can provide efficient spectrum sharing for the CR users considering the

performance of the PR network as a priority.

Another viable application that motivates this thesis framework includes dense deployment

scenario of overlapping WLANs in the context of future high-efficiency WLANs (HEW), so-

called IEEE 802.11ax-2019 [IEE15]. This new generation of WLAN is intended to establish

high-definition audio and video content exchange between users in very dense scenarios like

stadiums, trains, etc. The exchange of high-definition multimedia certainly needs groundbreak-

ing heterogeneous infrastructure which is capable of accommodating a large number of users

meanwhile providing qualitative services.
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Deep in the cutting-edge technologies, there are shortcomings which motivate this work.

In this context, the multiantenna technology so-called multiple-input multiple-output (MIMO)

is a key component in the future 5G. MIMO system can achieve capacity gain and reliable

communications by means of the spatial multiplexing and spatial diversity [Tel99]. Regarding

to multiantenna processing, transmit preprocessing so-called precoding can be regarded as a

generalization of beamforming in which multiple spatial streams are supported in multiantenna

wireless communications. In single-stream beamforming, the same signal is multiplied by ap-

propriate complex weight at each transmit antenna before transmission. Such complex weights

are supposed to provide optimal level of the signal power at the receiver output. However, con-

sidering single-stream beamforming for multiantenna receiver hinders concurrent signal level

maximization at all the receive antennas [FG98]. Therefore, precoding is generally required in

systems of multiple receive antennas.

Recently, advanced MIMO has been extended to a multiuser MIMO, which can add multi-

ple access capabilities to MIMO. Multiuser MIMO provides high data rate as well as reliable

communications and is considered a key enabler for advanced multiuser transmit and/or receive

processing techniques. The MIMO broadcast channel (BC) and multiple access channel (MAC)

are examples for multiuser MIMO systems. The multiuser MIMO systems have been investi-

gated and integrated with interference cancellation and interference management processing

techniques producing a significant improvement in the spectral efficiency of communication

systems. Several advanced processing techniques have been intensively studied in the context

of both non-CR systems as in [WSS06, JUN05, SSH04, SLL09b, ZL05, SLL09a] and CR sce-

narios as in [ZXL09, HZL07, LL11] taking into account the unique constraints of CR. Generally

speaking, although non-linear schemes, i.e. dirty paper coding (DPC) based, provide high spec-

tral efficiency and characterized as capacity-achieving, they remarkably require high complexity

(i.e. iterative processing). Furthermore, they require efficient dirty paper codes to approach the

theoretical capacity limit such as Tomlinson-Harashima precoding [Tom71, HM72]. On the

other hand, despite linear processing methods provide sub-optimal spectral efficiency, never-

theless they are preferred for their tractable computational complexity. In CR networks, the

computational complexity is a critical issue due to the fact that CR networks have to devote as

much time as possible for spectrum sensing to avoid disturbing the PR network. Meanwhile

CR has to devote as much time as possible for data transmission to provide high spectral effi-

ciency. Therefore, such time restrictions in a CR network require efficient processing for data.

In addition, one of the operational modes of the CR networks suffers from power restriction

to avoid interfering the PR network. Such limitation on transmit power has the consequence
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of low throughput. Therefore, the throughput-complexity trade-off in CR networks is a crucial

issue and needs to be addressed by research. Such a trade-off motivates the work of this thesis.

The classic results of precoding assume flat fading channel which does not change fast.

However, in practice channel suffers frequency selectivity especially at high data rates and

therefore flat fading channel can be obtained by employing the multicarrier technology. Or-

thogonal frequency division multiplexing (OFDM) [Skl97] has been defined as an efficient

multicarrier technique to mitigate inter-symbol interference (ISI) caused at the receiver by the

multipath frequency selective fading [Cha66, WE71, Cim85, ZW95, JH07]. Thereby, OFDM

technology provides outstanding communication reliability at high data rates. Furthermore,

it is characterized by easy equalization at the receiver at large transmission bandwidth where

the single carrier equalization produces intractable computational complexity. Given the above

mentioned properties of OFDM, its applications have been recently extended to a multiple ac-

cess scheme (OFDMA) referred to as multiuser OFDM [Law99]. OFDMA is meant for ac-

commodating multiple users in a communication system. Perhaps the dominant advantage of

OFDMA is the flexible subcarrier assignment for gaining spectral efficiency via the multiuser

diversity. Due to its potential advantages, OFDMA has been involved in the recent generations

of wireless networking standards which have been issued by 3GPP and Institute of Electrical

and Electronics Engineers (IEEE), i.e. LTE as well as LTE-A and Wireless Local Area Network

(WLAN) termed as 802.11ax [IEE15].

Yet, OFDM is well-established but considerations regarding its integration with various

technologies such as MIMO, multiple access, resource allocation, etc. need to be addressed in

the upcoming 5G networks to fulfill the key requirements [5G 15]. The bottleneck in OFDMA

technique is how to perform optimal subcarrier assignment at low-complexity cost. The exhaus-

tive search to assign subcarriers to users is known as a time consuming solution with exponential

complexity. This motivates many researchers to find efficient subcarrier allocation paradigms

which also require as little feedback as possible between base stations and users especially for

the uplink case. Generally, minimize the feedback refers to either one of the following possibil-

ities: Central scheme with little feedback or completely distributive scheme with no feedback

at all. This aspect is also one of the motivations of this thesis.

1.3 Thesis Scope and Aim

This dissertation aims to develop efficient platforms for future multiuser CR networks. We

assumed single cell scenarios. The proposed frameworks sort out issues related to spectrum
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efficiency enhancement at acceptable computational complexity. In particular, this thesis aims

to develop a couple of linear transmit precoders, which can provide remarkable spectral effi-

ciency in the signal-to-noise ratio (SNR) region of interest, i.e. low SNR region. The precoder

design utilizes the multiantenna structure efficiently to provide multiple countable independent

degrees of freedom (DoFs). These DoFs can be seen as a precoding set among which one can-

didate DoF provides the best spectral performance. The fundamental precoding expressions are

derived under two criteria: Zero-forcing (ZF) and minimum mean square error (MMSE). The

corresponding precoders are termed adaptive since the design mechanism facilitates precoding

adaptation according to the operating transmit power. The adaptive precoding achieves bet-

ter SINR for the CR users whilst fulfilling the network constraints. The best DoF selection is

similar to selection diversity, therefore the precoder is said to benefit from precoding diversity.

The precoding diversity produces multiuser (inter-user) interference (MUI) diversity among CR

users which improves the SINR of the CR users providing considerable spectral performance

in the low SNR regime. The computational complexity of the adaptive precoders comes from

calculating the candidate DoFs. It depends on the antenna configuration (i.e. overall number of

antennas) of CR and PR systems. Generally, the complexity increases as the aggregate number

of antennas and antennas per CR user increase. Since the adaptive precoders have independent

DoFs, parallel computing can provide a complexity reduction by means of multiple processing

cores and threads.

Concerning multicarrier CR systems, we develop an efficient two-phase scheme for efficient

resource allocation (RA) task. The first phase treats DoF selection for the adaptive precoding,

but the second phase elaborates subcarrier mapping. The proposed scheme is characterized by

spectral and computational efficiencies if compared to the exhaustive search. In our solution,

the downlink is solved by a central RA task. Important to note that the DoFs are computed

and selected when the CR network is interference-limited. Then, optimal subcarrier mapping is

built upon optimal power allocation that comes off the central RA task. Regarding the uplink,

the problem is solved by a semi-distributed scheme: A central task to get subcarrier mapping,

then per-user task to perform distributive adaptive precoding and optimal power allocation.

Due to the per-user resource constraints of the uplink, the semi-distributed RA scheme provides

near-optimal spectral performance which is characterized by computational efficiency.
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1.4 Main Contributions

In this thesis, we assume full and perfect channel knowledge at the base station. The processing

is restricted to linear precoding schemes since they are computationally efficient. The major

contributions of the thesis can be summarized as follows.

• Adaptive precoding for multiuser MIMO-OFDM CR networks: As mentioned, the adap-

tive precoding produces multiple DoFs that directly improve the SNR of users and the

spectral performance accordingly. The adaptive precoding in such a system takes two

forms: Central and distributive. The central precoding conducts a common DoF selection

on the entire set of OFDM tones. It takes place at the CR base station. However, the dis-

tributive performs DoF selection on the subset of OFDM tones assigned to the CR user

and takes place at the terminal of the user. In addition to the spectral efficiency of the

adaptive precoder, the best DoF selection is implemented with computational efficiency.

That is by accommodating the transmit power in one of decision regions each mapped to

an optimum DoF.

• Subcarrier mapping for multiuser MIMO-OFDM CR networks: In this procedure, we

assumed the following mapping policy: Each subcarrier can not be shared by multiple

CR users. We perform such procedure as a part of the central RA scheme. For the

downlink, the resource constraints are central based by nature, and therefore the obtained

subcarrier mapping is optimal based on the above policy. Furthermore, the computational

complexity is reduced by using the Lagrange dual decomposition method. However,

the optimality conditions of the uplink differ due to the per-user resource constraints

for which the above mentioned method is inapplicable. The exhaustive search provides

optimality, but at an exponential complexity. Hence, a relaxation is necessary to enable

the use of the Lagrange decomposition. Toward this goal, the per-user power constraints

of the uplink optimization problem are replaced by a single constraint which is the sum of

users’ power. This enables the use of the central RA scheme and produces a near-optimal

solution.

• Adaptive precoding for multiuser MIMO broadcasting CR network: In this system, CR

users interfere each other. We can use such MUI to improve the spectral performance

of the system. We focused on the ZF and MMSE optimization criteria to design the

corresponding adaptive precoders. By using the antenna structure of both CR and PR

systems, adaptive precoding can provide many DoFs which we call it precoding diversity.
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Such diversity improves the SINR of CR users and the sum-rate accordingly. The DoFs

are produced by two ways: Channel path combining (CPC) and subspace combining

(SC). In the CPC based method, rows of the block channel that collects channels of all

CR users are combined. However, in the SC based method, spaces of the complementary

block channel are combined. CPC is computationally more expensive than SC. However,

two complexity reduction aspects are possible mainly for the CPC based method: Parallel

computing and search space confinement. In the search space confinement, only those

DoFs which consider all CR users are taken into account.

Part of thesis contributions was published as conference and journal papers in [YH14, YH16a,

YH16b, YH17].

1.5 Thesis Outline

The thesis is structured as follows. Chapter 2 presents a detailed information about CR net-

works such as operational transmission modes and corresponding functionalities. It also ex-

hibits the spectrum sharing classes and the use of MIMO technology in CR networks. Also,

considerations for realizing practical channel model are covered and formulated mathemati-

cally.

Chapter 3 introduces the basics and general trends of resource allocation in multiuser

MIMO/OFDM CR networks. Since radio resources are allocated through optimizing a sys-

tem utility function, the possible optimization objectives and constraints of CR networks are

covered. Furthermore, state-of-the-art linear precoding techniques such as ZF and MMSE are

derived through optimization.

Chapter 4 describes the details and efficiency of our proposed two-phase scheme for mul-

tiuser MIMO-OFDM CR networks. The first phase elaborates the design of the proposed adap-

tive precoding and DoF assignment. The second phase resolves fast and optimal/near-optimal

subcarrier mapping for the downlink/uplink according to an optimization performed by La-

grange multiplier theory. First, system modeling and assumptions are introduced. Then, the

proposed adaptive precoding is studied. Next, the mathematical steps of the proposed two-

phase solution are derived in details for both the downlink and uplink.

Chapter 5 discusses a couple of adaptive precoding designs meant for a scheme in which

the CR users access the radio resource non-orthogonally causing MUI among each other. The

proposed adaptive precoding schemes are developed upon ZF and MMSE criteria. The system

model and assumptions cover a MIMO CR broadcasting system. The degrees of freedom of the
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adaptive precoder lead to further improvement in spectral performance. Since the MUI causes

non-convex problem structure, that motivates new designs of power allocation.

Chapter 6 summarizes the conclusions and future work.



2
Multiantenna Cognitive Radio Systems

2.1 Cognitive Radio (CR)

The radio spectrum is considered the most valuable natural resource for wireless communica-

tions. In the last decades, the tremendous spread of wireless applications, services, and users

depleted the frequency bands in general and those bands which are devoted for future mobile

communication systems in particular. International bodies such as Federal Communications

Commission (FCC) regulated a policy for spectrum management in the United States [FCC02a].

It emphasized that spectrum utilization is more significant than its scarcity problem. Some

spectrum usage measurements indicate that some spectrum bands are fully and periodically

used whereas some other bands are partially occupied for most of the time. Precisely speaking,

the space-time-frequency voids, which belong to a licensed/primary radio but not utilized at a

particular time are called spectrum holes [SW04]. Such underutilization initiated the idea of

cognitive radio (CR): An unlicensed/cognitive user can access a spectrum hole which is unoc-

cupied by the primary user at the right time and geographical location [Mit00]. Cognitive radio

is identified as an intelligent wireless communication system that is aware of its surrounding
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environment and can change its operational parameters accordingly. International regulatory

agencies such as FCC and ITU have diverse definitions for cognitive radio as follows

• FCC definition: “A radio that can change its transmitter parameters based on interaction

with the environment in which it operates. This interaction may involve active negotiation

or communications with other spectrum users and/or passive sensing and decision making

within the radio” [FCC03a].

• ITU definition: “A radio system employing technology that allows the system to obtain

knowledge of its operational and geographical environment, established policies and its

internal state; to dynamically and autonomously adjust its operational parameters and

protocols according to its obtained knowledge in order to achieve predefined objectives;

and to learn from the results obtained” [ITU09].

Behind these diverse definitions, CR is mainly characterized by awareness capability and

reconfigurability. The reconfigurability is provided by software-defined radio (SDR) [MM99]

on which CR is built. SDR is recognized as a transceiver system which can be reconfigured with

the parameters of the desired standard. Such configuration guarantees that the transmission can

be changed instantaneously if necessary [Spe95, Tut02, DMA03]. SDR came to reality due to

the advances and convergence of digital radio and computer software technologies [Spe95].

Since a decade, CR technique has been investigated in networking. Investigations include

the basic spectrum management functions that CR networks have to consider. The following

list states the main required functions that CR networks have to handle [ALVM08]

• Interference avoidance with primary networks.

• Quality-of-Service (QoS) assurance via proper spectrum band selection.

• Seamless communications during movements from spectrum band to another.

Such challenges can be carried out by four major functionalities, which are described as fol-

lows [Nek06, ALVM08]

1. Spectrum sensing: CR network must detect and periodically collect information about

the available spectrum holes and partially used bands in order to take suitable reactions

and reconfigurations. Sensing techniques include three main categories: Primary receiver

detection, primary transmitter detection, and interference temperature management. In

primary transmitter detection, CR users (CUs) observe the weak signals from the primary
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transmitter. This kind of detection could be achieved by various techniques like energy

detection, matched filter detection, feature detection, and cooperative detection. Although

cooperative detection decreases the interference probability, the primary receiver detec-

tion is more effective within the communication range of CUs. As long as CUs do not

exceed a predefined tolerable interference limit at primary users (defined by FCC as inter-

ference temperature [FCC03b]), this model perfectly fits the spectrum sensing objective.

2. Spectrum decision: CR networks should decide which of the available spectrum bands fits

which of the users according to QoS requirements. This concept in networks is known

as spectrum decision. In CR networks particularly, spectrum decision is based not only

on internal policy regarding channel conditions, fairness, opportunistic scheduling, QoS

provision, interference avoidance at the PR users (PUs), etc., but also on external policy

concerning primary user occurrence and activity. The channel in CR networks more likely

encounters several impairments including: Interference due to the primary networks, path

loss due to the distance, link errors due to the modulation scheme and interference level,

and link delay due to the various protocols of different spectrum bands.

3. Spectrum sharing: Since the wireless channel in communication networks is open for all

users, there should be a coordination for transmission attempts. Thus, spectrum sharing

is relevant to medium access control protocol. Generally speaking, CR networks have

to coordinate the access of CUs in such a way that destructive MUI effect on spectral

inefficiency is avoided as possible. Spectrum sharing frameworks can be divided to four

aspects: Spectrum allocation behavior, architecture, access/operational mode, and scope.

Since spectrum sharing is the focus of this thesis, more details will be introduced in the

next section.

4. Spectrum mobility: Since CUs are regarded as unlicensed users, they have low priority

compared to PUs that appear on a specific spectrum band. Consequently, the communi-

cation of the CUs must be seamless during the transfer to another vacant or partially used

portion of the spectrum. Such process imposes a new conception of handoff in CR net-

working dubbed spectrum handoff. Once a CR user changes its operating frequency, the

network may require to modify the communication parameters (like modulation, power,

coding, etc.) accordingly such that a fast and smooth transition can lead to minor perfor-

mance degradation due to spectrum handoff.
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2.2 Spectrum Sharing in CR Networks

The architecture based classification of spectrum sharing can be categorized into centralized

and distributed.

• Centralized spectrum sharing: In this method, the spectrum allocation is controllable by

means of a central unit.

• Distributed spectrum sharing: In this approach, the policies of spectrum allocation are

distributed over local nodes [ZTSC07].

The second classification covers two classes of spectrum allocation behavior: Cooperative and

non-cooperative.

• Cooperative spectrum sharing: In this class, clusters are established to share interference

information.

• Non-cooperative spectrum sharing: In this type, a single node is counted [ZC05] such

that interference disturbing other nodes is not counted.

The third classification includes two categories regarding sharing scope: Intranetwork and in-

ternetwork as illustrated in Figure 2.1.

• Intranetwork spectrum sharing: In this paradigm, the policy of spectrum allocation con-

siders only the entities of a single CR network.

• Internetwork spectrum sharing: In this framework, multiple CR networks/operators are

considered in spectrum sharing policies.

The fourth classification is related to three operational/access modes [MBR05, GJMS09,

Wan09, BGG+13]: Interweave, overlay, and underlay. Detailed information regarding these

paradigms follows in the next section.

2.3 Cognitive Radio Network Operational Modes

The operational modes in CR differentiate according to the available network side information

(i.e. activity, codebooks, channel conditions, or messages of other nodes which share the spec-

trum) and the regulatory constraints (i.e. the interference caused by CUs at the PUs, so-called
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Intranetwork spectrum sharing

Internetwork spectrum sharing

CR user

(Operator 2)

CR user

(Operator 1)

Operator 2
Operator 1

Figure 2.1: Intranetwork and internetwork spectrum sharing in CR networks

PU interference (PUI)) into the three aforementioned schemes [Kol05]. These approaches have

different procedures and considerations to be taken into account for the corresponding net-

working and circuitry designs. It is worth to know that hybrid platforms combining the above

mentioned methods [WN07] can have potentiality to achieve remarkable spectral efficiency

gains.

1. Interweave Mode: This mode was the original motivation of CR, and counts on op-

portunistic communication idea [Mit00]. This idea has been studied afterwards by FCC

[FCC02b] exhibiting that the spectrum holes change with geographic location and time,

and can be utilized by CUs. Thus, the interweave technique imposes knowledge of PUs

activity in the spectrum. In other words, interweave CR requirements are: (a) Periodic

spectrum monitoring, (b) accurate detection to spectrum occupancy, (c) opportunistic

communication over spectrum holes, and (d) seamless communication during spectrum

handoff. Interweave CR paradigm faces signal processing challenges, perhaps the major

one is the accuracy of PUs detection in the radio spectrum in which the PUI is mini-

mal preserved as demonstrated in Figure 2.2. As a technology, interweave CR networks

occurred about a decade ago within the context of Wireless Regional Area Networks



16 CHAPTER 2. MULTIANTENNA COGNITIVE RADIO SYSTEMS
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Figure 2.2: The interweave scheme of cognitive radio using time sharing

(WRAN) which is the first standard released by IEEE 802.22 working group [IEE08].

WRAN employs the CR techniques for utilizing television unused white spectrum bands

opportunistically. The key specifications of WRAN include: Rural area coverage range

between 17 to 100 km, spectrum bands between 54 and 862 MHz, user mobility of up

to 114 km/h, and peak data rates of up to 1.5 Mbps for downlink and 384 kbps for the

uplink.

2. Underlay Mode: In this mode, the cognitive radio constrains its transmit power to ensure

that the interference power caused at the PUs by the CUs (i.e. PUI) does not exceed a

predefined threshold. In other words, this paradigm allows concurrent cognitive and pri-

mary radio communications as long as the PUI insignificantly degrades the performance

of the PR receivers. Candidate techniques to conduct the underlay mode include beam-

forming by means of the multiantenna technology and spread spectrum. In the spread

spectrum technique, the CR signal is spread over a wide bandwidth to reach the noise

floor level as illustrated in Figure 2.3. In beamforming, the multiantenna structure en-
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ables the interference control at the PUs as illustrated in Figure 2.4. The interference

constraint in underlay scenarios is typically tight, thus it limits the CUs transmit power

and consequently restricts the communication range to short distances. Since the short

communication range is the major limiting factor of the underlay paradigm, it will be

addressed in this thesis.

P
o

w
e

r

frequency

PU 1 PU 2

CU

Noise floor

Figure 2.3: The underlay scheme of cognitive radio using spread spectrum

PR Tx PR Rx

CR Tx

CR Rx

Figure 2.4: The underlay scheme of cognitive radio using multiantenna techniques

3. Overlay Mode: In this scheme, the CR transmitter knows the PR users’ broadcasted mes-

sages and codebooks. A possible form for the overlay model follows. The PR transmitter
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sends its message to the CR user before establishing the data communication. Knowledge

of the PR users’ information can be employed for canceling or mitigating the induced in-

terference at the receiver of the CR user. From another perspective, the CR user benefits

from this information in power allocation for establishing its own communications and

assisting the PR users’ communications as illustrated in Figure 2.5. In more details, the

CR user assigns part of the power to its own communications and the other part to assist

PR user by serving as a relay. The CR transmitter has no restrictions on power such that

no matter how much PUI is induced. Because the decrease in the SNR of the PR link due

to the PUI is compensated by an improvement due to the CR relaying.

CR Tx CR Rx

PR Tx PR Rx

Figure 2.5: The overlay scheme of cognitive radio

2.4 Multiantenna Technology in Underlay CR

Since the radio spectrum is a precious natural resource involved for many applications, such

as radio/TV broadcasting, cellular networks, satellite links, etc., the licenses are expensive. In

particular, those bands which are suitable for long-distance applications. Thus, it is necessity

to design wireless systems characterized by spectral efficiency. The available transmit power

is the only limiting factor of the spectrum efficiency of a single path transmission (single-input
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single-output) [Sha48]. However, the spectral efficiency can be increased via frequency reuse

mechanism by parallel spatially-separated devices, that is by dividing the area into cells and

sectors as in mobile radio networks. Such near-orthogonal resource allocation greatly avoids the

MUI, but it suffers spectral inefficiency if compared to non-orthogonal controlled-interference

approaches [SB05].

The engagement of multiple antenna in communications increases the spectral efficiency

linearly in terms of the number of antennas if the channel is known [FG98, MF70, Tel99]. The

advantages obtained from the multiple antenna structure include spatial multiplexing, spatial

diversity, and beamforming as illustrated in Figure 2.6.

Multiple Antenna 

Techniques

Spatial Multiplexing

 Multiplexing gain

 Higher bit rate

Spatial Diversity

 Diversity gain

 Smaller error rate

Beamforming

 Array gain

 Higher bit rate and 

smaller error rate

Figure 2.6: Possible benefits of using multiple antennas

CR networks which incorporate multiantenna structure and advanced signal processing

techniques can withstand higher levels of noise and interference than the conventional non-CR

systems. Precoding technique is sort of generalized beamforming as it provides multiple spatial

streams in MIMO systems. In point-to-point systems, precoding support multistream beam-

forming such that each data stream has independent and proper complex weights to maximize

the link data rate at the receiver output. In multiuser MIMO, the data streams are directed to

different users such that certain quality measure is optimized (e.g. sum-rate, energy efficiency,

fairness, etc.). The channel state information is required in multiuser MIMO systems to handle

the MUI [GKHJ+07]. In particular, the users of CR and PR networks have to have multiple

antennas to facilitate the MUI and PUI management among CR users and toward the PR users,

respectively.
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2.5 Wireless Channel Modeling

To provide reliable and high-speed communications, wireless channel poses a big challenge.

It suffers not only noise, interference, and other impairments, but also their random variations

over time due to transmitter and/or receiver mobility. Those variations in the received signal

are driven by path loss, shadowing, and multipath effects. Path loss describes the attenuation

in the transmit power when it radiates away from transmitter. Influence of the path loss vari-

ation happens over large distances (100-1000 m), thus it is referred to as large-scale fading

effect. Shadowing defines the attenuation in signal power rendered by obstructions between

transmitter and receiver, in particular, because of absorption, scattering, and diffraction. Such

variation occurs over distances proportional to the object length (10-100 m), hence it is regarded

as medium-scale fading effect. Multipath variation happens when multiple variants of the trans-

mitted signal follow different paths during propagation toward receiver arriving at different time

delays. Multipath is resulted from signal reflections and occurs over short distances on the or-

der of the signal wavelength and is, therefore, dubbed small-scale fading effect. Figure 2.7

illustrates the combined effects of path loss, shadowing, and multipath.

Path Loss alone

Shadowing and Path Loss

Multipath, Shadowing, and Path Loss
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Figure 2.7: Fading effect on signals due to the wireless channel
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2.5.1 Path Loss Modeling

To obtain precise path loss modeling, empirical measurements with tight specifications or com-

plex models have to be determined. But, for general system designs, it is convenient to use a

simple model approximating real channel due to the fact that channel modeling is not the main

focus in this thesis. Since the path loss varies with distance, it is non-trivial to consider the

following model

Pr

Pt

= ZPL

= Z0

(

d0
distance

)γ

=

(

λ

4πd0

)2(
d0

distance

)γ

(2.1)

The dB path loss is expressed as

ZPL(dB) = Z0(dB) − 10γ log10

(

d0
distance

)

(2.2)

where Z0 is a unitless constant which relies on the average channel attenuation and the antenna

characteristics, d0 points to a reference distance in the antenna far-field, and γ is the path loss

exponent. For approximating either an empirical or analytical model, the parameters Z0, d0, and

γ can be obtained. The model (2.1) is only valid for distance > d0, where d0 is assumed to be

10-100 m outdoors. For empirical measurements, Z0 is set to free-space path gain with normal-

ized antenna gains as formed in (2.1) assuming omnidirectional antennas. Empirical data backs

such assumption at 100 m distance for free-space path loss [EGT+99]. Alternately, Z0 can be

measured at d0 or optimized by means of MMSE between model and measurements [EGT+99].

The value of γ can be obtained for complex environments via MMSE to fit measurements

or alternatively from empirically based model which considers frequency and antenna height

[EGT+99]. On the other hand, γ is simply set to 2 or 4 according to the propagation model

either free-space or two-ray, respectively. In general, path loss tends to increase for higher fre-

quencies [TT92, DMW95, TTP98, DRX98], but it rather decreases for higher antenna heights

[EGT+99].

2.5.2 Shadowing Modeling

The signal while propagation experiences random variations due to obstructing objects in its

path which gives rise to random variations in the received power. Since such variations are
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caused by phenomena such as absorption, scattering, and diffraction with unknown locations,

sizes, and dielectric properties, statistical models are able to identify this attenuation. A com-

mon model which has been recognized empirically as an accurate model to represent these

variations is the log-normal shadowing [EGT+99, GGK+03]. In log-normal shadowing model,

the quantity ZS(dB) = 10 log10

(

Pr

Pt

)

is modeled as a log-normal distributed random variable for

which the probability density function is given as

p(ZS(dB)) =
1√

2πσS(dB)

exp

(

− (ZS(dB) − ψS(dB))
2

2σ2
S(dB)

)

(2.3)

The log mean ψS(dB) and the standard deviation σS(dB) characterize shadowing performance.

Note that the probability in (2.3) decreases when ψS(dB) is large and positive indicating to the

mean power variations with distance due to the path loss. In other words, the average attenuation

is directly proportional with distance as a result of the potential larger number of disturbing ob-

jects. The standard deviation σS(dB) values between four and thirteen are supported for outdoors

channels by many empirical studies [Jak74, Gud91, BBL92, GG93, Stu01].

2.5.3 Multipath Modeling

The received signal experiences small variations on the scale of the signal wavelength due to

several replicas (pulse train) reaching the receiving antenna from multiple paths as a conse-

quence of pulse reflections. The harmful influence of multipath on the received signal are the

destructive interference and the signal phase shift. Such effects cause fading. In particular, the

time delay spread caused by signal reflections is a characteristic of a multipath channel. The

delay spread represents the time delay between the first and last arrivals of the received signal

components resulted from a single transmitted pulse. If the channel delay spread happens to

be small compared to the inverse of signal bandwidth, it causes non-resolvable narrow band

fading which spreads the received signal a little. However, delay spread larger than the sig-

nal pulse duration causes resolvable wide band fading as well as gives rise to time spreading.

Thus a significant distortion in the received signal is caused and known as ISI. The multipath

channel is also characterized as time-variant, which arises because of transmitter and/or re-

ceiver mobility. Therefore, for repeatedly transmission of pulses from moving transmitter it is

natural to observe different variations in the delays, amplitudes, and the number of multipath

components corresponding to each pulse. Statistically, the magnitude of the multipath received

signal has Rayleigh distribution when it has no line of sight component. Other than that, fad-

ing follows the Ricean distribution. For any two Gaussian random variables Zm,I (in-phase

component) and Zm,Q (quadrature component) both have zero mean and equal variance σ2
m, i.e.
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Zm,I and Zm,Q ∼ N (0, σ2
m), then signal envelope

Zm =
∣

∣Zm,I + j Zm,Q

∣

∣ =
√

Z2
m,I + Z2

m,Q (2.4)

is Rayleigh distributed whereas signal power Z2
m has exponential distribution [PP02].

2.5.4 Combined Channel Model

The aforementioned models of path loss, shadowing, and multipath can be combined for tracing

the power decay in terms of the distance. In this model, the average path loss in dB characterizes

the log mean of shadowing fading, and they both characterize the mean parameter of Rayleigh

fading. Thus the models (2.1), (2.3), and (2.4) can be combined [Gol05] as

Pr

Pt

= ZPL ZS Z2
m = Z0

(

d0
distance

)γ

ZS Z2
m = |gain|2 (2.5)

where ZS = 10ZS(dB)/10 ;ZS(dB) ∼ N (0, σ2
S(dB)).

2.6 Chapter Summary

Since the radio spectrum resource is precious for wireless communications, temporal and spa-

tial reuse of spectrum is one of the recent interesting solutions for the scarcity issue. The

space-time-frequency voids, which belong to a licensed/primary radio, can be reused by unli-

censed/cognitive radio with high priority to the primary radio. Cognitive radio is an intelligent

communication system that is aware of the surrounding environment and able to adapt trans-

mission parameters accordingly. In this chapter, we covered the major issues related cognitive

radio and the aspects of realizing such kind of a radio system. The cognitive radio operates

on sensing, deciding, sharing, and switching the spectrum bands in an interactive manner. The

main paradigms of cognitive radio include interweave, underlay, and overlay. The realization

of underlay cognitive radio is possible by means of spread spectrum, ultra wide band, and mul-

tiuser MIMO techniques. Spectrum sharing in underlay cognitive radio is one of the major

challenges that need to be addressed by research. Beamforming is a potential candidate for

solving cognitive radio related issues such as spectrum efficiency. Realistic channel modeling

taking small-, medium-, and large-scale fading under consideration is important for realizing

feasible and transparent solutions.
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3
Resource Allocation and Transmit

Precoding

3.1 Radio Resource Management

Radio resource management (RRM) covers the control of system level parameters such as in-

terference, transmission characteristics, and radio resources in wireless communication systems

like mobile radio networks. RRM employs functions and strategies for managing parameters

such as transmit power, user scheduling, subcarrier allocation, admission control, beamforming,

data rates, modulation scheme, coding scheme, handover criteria, macro diversity, etc. [TRV01]

as illustrated in Figure 3.1. In addition, RRM takes multiuser and multicell network capacity is-

sues into account such that the limited radio spectrum and network infrastructure are utilized as

efficiently as possible. Particularly, the spectral efficiency of interference-limited systems can

be enhanced by efficient dynamic RRM schemes, for example cellular and broadcast networks.

Resource allocation schemes usually deals with spectral/energy efficiency as a cost function

under some regulatory constraints depending on the system requirements. As the conventional
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RRM considers the allocation of time and frequency with fixed spatial reuse patterns, the re-

cent multiuser MIMO techniques facilitate adaptive resource allocation in spatial domain. This

actually replaces the need to fractional frequency reuse by universal frequency reuse as in LTE

standard [BJ13].

Radio Resource 

Management (RRM)

Coding 

scheme

Modulation 

scheme

User 

scheduling

Beamforming

Handover
Macro 

diversity

Power 

control

Admission 

control

Subcarrier 

allocation

Figure 3.1: Some radio resource management (RRM) functions

RRM can be classified into static and dynamic. The static RRM is based on fixed radio net-

work planning, however the dynamic RRM changes the network parameters adaptively accord-

ing to some factors such as quality of service requirements, base station density, user mobility,

etc. The dynamic scheme aims to minimize the expensive cost of manual cell planning and to

achieve better spectral efficiency via small-scale frequency reuse patterns. Table 3.1 exhibits

some examples for the static and dynamic RRM.

3.2 Resource Allocation (RA) for Multiuser Systems

The multiantenna technology enables modern resource allocation techniques which benefit from

the space dimension for steering data toward the intended users. This signal steering is called

beamforming as illustrated in Figure 3.2. By means of beamforming, some advantages are

obtained: limited interference at non-intended users, increased received power at intended users

(array gain), enabled global utilization of spectral resources, and relinquished cell sectorization

and fixed frequency reuse patterns.
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Table 3.1: Examples for some static and dynamic RRM

Static functions Dynamic functions

- Deployment of base station sites - Power control

- Antenna heights - Precoding algorithms

- Sector antenna directions - Channel dependent scheduling

- Selection of modulation and coding schemes - Link adaptation schemes

- Fixed channel allocation - Dynamic channel allocation

- Static handover criteria - Adaptive handover criteria

- Static base station diversity (micro & macro) - Dynamic diversity, e.g. space-time coding

User 1 User 2 User 1 User 2

Beamforming TransmissionSingle-Antenna Transmission

Figure 3.2: Single-antenna versus multiantenna transmissions

In a multiuser downlink systems with K users, designing transmits covariance matrices

in compliance with the constraints on power is dubbed resource allocation. Such covariance

matrices determine the transmission strategy and what is received at the users. For instance,

let’s consider the design of transmission covariance matrices {S1, . . . ,SK} of the underlay

CR network serving K CUs as described in Figure 3.3. Assuming the objective of resource

allocation problem is channel capacity maximization with two conditions: Total power and PUI

constraints, then the optimization problem takes the following form
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CR base station

G

H1

HK

PU

CU 1

CU K

NCB

Nc

Np

Nc

Figure 3.3: Multiuser MIMO CR based broadcast channel model

max
{S1,...,SK}

K
∑

k=1

log2 |INc
+ SINRk|

subject to

K
∑

k=1

Tr (Sk) ≤ PT

K
∑

k=1

Tr
(

GSkG
H
)

≤ Ith (3.1)

where

SINRk =

(

σ2
nINc

+Hk

(

K
∑

j 6=k

Sj

)

HH
k

)−1

HkSkH
H
k

The first constraint regulates the total radiated power toward the K CR users preventing power

overshot above the budget PT . The second constraint controls the interference caused at the

PR users up to an upper limit Ith. The rank of Sk refers to the number of supported data

streams to be multiplexed at the kth CU. Tr(Sk) quantifies the assigned power for transmission

to CU k, such that the eigenvalues and eigenvectors of Sk describe the spatial distribution of

power over the eigenmodes. In multiuser MIMO networks, users can simultaneously access

the channel in spatial division multiple access (SDMA) manner [RO91], which gives rise to

MUI and harms spectral efficiency when channel state information (CSI) is uncertain. OFDMA

scheme [Law99] is another attractive technique to serve multiple users simultaneously with

multiuser interference avoidance. OFDMA leads to improvement in channel capacity added
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to the advantages of easy equalization and frequency selective fading mitigation. In multiuser

MIMO CR based networks, managing the interference among CUs (i.e. MUI) and at PUs

(i.e. PUI) can be performed by means of transmit precoding. The general structure of the

transmit precoder synthesizes mainly two elements: The multiuser space matrix coming off the

interfering channel and the spatial power distribution matrix. Design criteria of precoders and

examples are described in the following sections.

3.3 Precoding for Multiuser MIMO Systems

In multiuser MIMO, a multiantanna transmitter transmits concurrently with multiple receivers

(with one or multiple antennas per each). From the implementation point of view, precoding al-

gorithms can be categorized into linear and nonlinear classes. Nonlinear precoding schemes are

known as capacity-achieving [WSS04], but linear schemes achieve relatively lower complexity

with reasonable spectral performance.

Linear precoding strategies include maximum ratio transmission (MRT) [Lo99], zero-forcing

(ZF) precoding [SSH04, SLL09b], and regularized zero-forcing formulated based on minimum

mean square error (MMSE) precoding [SLL09b, SLL09a]. The optimal linear precoding is

computed by monotonic optimization which costs high complexity exponentially in terms of

the number of users [UB12]. Nonlinear precoding design is based on dirty paper coding (DPC)

concept. In DPC, the interference subtraction or cancelation takes place without penalty of radio

resources if the optimal precoding order on the transmit signal is followed [WSS06]. In addition

to the high computational complexity, DPC requires efficient dirty paper codes to approach the

theoretical capacity limit which is another disadvantage of such scheme. Tomlinson-Harashima

precoding [Tom71, HM72] is an example.

3.4 State-of-the-Art Linear Precoding

This section presents the precoding design of the conventional approaches: CR based ZF block

diagonalization (ZF-BD) and CR based MMSE block diagonalization (MMSE-BD) subject to

two particular constraints: PUI and transmit power. For a multiuser MIMO CR based broadcast

channel model as in Figure 3.3, the details of ZF-BD and MMSE-BD follow.
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3.4.1 Zero Forcing Block Diagonalization

In the conventional ZF-BD precoder, PUI and MUI are suppressed thoroughly at the kth CU

receiver since the precoding matrix Fk ∈ C
NCB×Nc lies in the null space of the interference

channel H̄k ∈ C
Rk×NCB defined as

H̄k = [GTHT
1 . . .H

T
k−1H

T
k+1 . . .H

T
K ]

T

where Rk = (K − 1)Nc + Np. Denote H̄
(0)
k as a matrix contains the null space orthonormal

bases of H̄k. Therefore, Fk satisfies zero PUI and MUI conditions:

GFk = 0Np×Nc
(3.2)

HjFk = 0Nc×Nc
∀j 6= k (3.3)

Towards achieving this approach, the number of transmit and receive antennas should fulfill

NCB ≥ KNc + Np to provide a null space to each CU. The kth CU power Pk (i.e. diagonal

of Sk) is allocated by waterfilling approach as described in [SSH04] after diagonalizing the kth

CU effective channel by using singular value decomposition (SVD) as

HkH̄
(0)
k = ǓkΛ̌kV̌

H
k

Ultimately, the precoder of the kth CU can be expressed as

FZB

k = H̄
(0)
k V̌kP

1
2
k (3.4)

3.4.2 Minimum Mean Square Error Block Diagonalization

The MMSE-BD precoder improves the performance as it regularizes the channel inverse via

including the transmit power and noise covariance. The precoder addresses the transmit power

boost issue found in ZF-BD through employing the MMSE criterion. The optimization design

suppresses MUI subject to a transmit power and a constrained PUI threshold Ith. Given that

F̂ = [F̂1 . . . F̂K ] and H = [HT
1 . . .H

T
K ]

T , then the regularized channel inversion is written

as [LL11]

F̂ = γ F̄(µ)

= γ

(

HHH+ µGHG+
Nr − µIth

PT

INCB

)−1

HH (3.5)

where γ =
√

PT/Tr
(

F̄(µ)F̄(µ)H
)

and µ is a positive parameter lies in the interval 0 ≤ µ ≤
Nr/Ith aiming to fulfill the problem constraints at the upper-limit. In other words, the optimum
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value of µ ensures dissipating the transmit power PT in whole while fulfilling the PUI constraint

as described in [LL11], and it can be found numerically by the bisection method [BV04]. How-

ever, for zero PUI constraint (Ith = 0), the regularized channel inversion (3.5) takes another

form given by

F̂ = γG⊥HH

(

HG⊥HH +
Nr

PT

INr

)−1

(3.6)

The null space of G is defined as

G⊥ = INCB
−GH(GGH)−1G (3.7)

Then, the QR decomposition can be used to compute the orthonormal bases spanned by the

corresponding projection matrix F̂k of CU k as

F̂k = QkRk, ∀k (3.8)

where Qk ∈ C
NCB×Nc contains the Nc columns of the orthonormal bases. As a counterpart to

waterfilling power allocation, the MMSE combining matrix PMB

k for the kth CU minimizes the

sum MSE subject to transmit power constraint as shown in [SLL09b]. It is given as

PMB

k = βP̄MB

k (3.9)

where

P̄MB

k =

(

QH
k Σ

K
j=1H

H
j HjQk +

Nr

PT

INc

)−1

QH
k H

H
k HkQk

and β normalizes the sum power and defined as

β =

√

PT/ΣK
k=1Tr

(

P̄MB

k

H
P̄MB

k

)

To this end, the SVD is then applied to diagonalize the effective channel as

HkQkP
MB

k = ǓkΛ̌kV̌
H
k

Ultimately, the precoder of MMSE-BD is expressed as

FMB

k = QkP
MB

k V̌k (3.10)

It is worth to know that MMSE-BD outperforms ZF-BD in low SNR regime, but in high SNR

regime (when Ith = 0) they converge and consequently have equivalent performance.
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3.5 Chapter Summary

Radio resource management covers and employs functions and strategies for managing sys-

tem level parameters such as interference, transmission characteristics, and radio resources in

wireless communication systems like mobile radio networks. In addition, RRM takes multiuser

MIMO and multicell network capacity issues into account such that the limited radio spectrum,

the spatial domain, and the network infrastructure are utilized as efficiently as possible. Partic-

ularly, the recent multiuser MIMO techniques facilitate adaptive resource allocation in spatial

domain and replace the need to fractional frequency reuse by universal frequency reuse as in

LTE standard. General resource allocation schemes usually deal with spectral/energy efficiency

as a cost function under some regulatory constraints depending on the system requirements.

Designing the transmit strategy, i.e. covariance matrices, of a multiuser MIMO system in com-

pliance with the power constraints is dubbed resource allocation. The design of interference

management within resource allocation schemes is the technical description of transmit pre-

coding. Precoding can also be considered as a generalization of beamforming that support

multiple data streams for the same user. Despite their sub-optimal spectral efficiency, linear

precoders are preferred over non-linear due to the low complexity they provide. The criteria

of conventional linear precoder design include zero-forcing and minimum mean square error,

which demonstrate tractable computational complexity compared to others such as maximum

ratio and monotonic precoding schemes.



4
MIMO-OFDM Cognitive Radio Networks

Currently the radio spectrum is not efficiently used: Some frequency bins are overloaded, while

others are sparsely used for most of the time. This situation can be improved by CR [Mit00].

A powerful application of CR is to adaptively allocate frequency bins used by PUs to unli-

censed users, so-called CUs. The underlay CR network can concurrently operate with the PR

network but, however, has to restrict its transmit power to induce interference at the PUs below

a predefined limit called interference temperature [Hay05]. Consequently, this limits the com-

munication range of underlay CR networks. By means of a multicarrier structure, frequency

selective fading is mitigated, moreover more degrees of freedom in subcarriers assignment

for performance enhancement can be provided. The multiantenna structure and transmitter-

side channel knowledge are the key enabling techniques with respect to (w.r.t) preprocessing

methods for handling interference management. Generally speaking, precoding boosts spectral

efficiency of multiuser applications such as broadcast channels and multiple access channels,

whether non-CR systems as in [JUN05, SLL09a, ZL05, SLL09b, SAR09], or CR systems as in

[HZL07, YH16a, LL11, ZLC10].

The underlay CR based networks have more restrictions w.r.t transmit power and interfer-
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ence. Moreover, they have to devote time slots for kernel functionalities such as spectrum

sensing. Thus, it is not convenient to involve non-linear preprocessing during data transmis-

sion since it requires expensive computations. From this perspective, CR systems benefit from

employing efficient linear processing techniques in terms of performance optimization as they

have acceptable performance in the practical (low) SNR regimes. Nevertheless, the fixed linear

processing (preprocessing/post-processing) techniques addressed for MIMO-OFDM based CR

networks in major part of the literature so far (e.g. [ZLC10, AA14, ZL08a, AAN14, SMpV11,

RCL10, LHCT11]) are not sufficient to handle the multiuser and primary user interferences

(spectrally) efficiently.

Roughly speaking, involving frequency domain equalization procedure for the OFDM sys-

tem, also known as single carrier FDMA (SC-FDMA), improves power efficiency and sub-

stantially maintains the same spectral performance [FABSE02]. Therefore, it has been agreed

on employing such scheme as multiple access method in the uplink (UL) of LTE for improv-

ing the power efficiency of the terminals [Eri05]. Thus, the RA schemes in [ZJL16, YEHD14,

HSAB09, NS08, GC08, KHK07], which count on OFDM in the UL even in non-CR context, are

characterized by high power consumption due to the high peak to average power ratio [HL05].

Although the works in [WH08a, WH08b] have focused on the UL of a multiuser OFDM system

using SC-FDMA, they did not take underlay CR requirements into account. In addition, most

initial work joining OFDM, CR, and RA has considered the downlink (DL) case (as in [ZL08a,

XL14, SMpV11, RCL10, LHCT11, ZL08b, BHB11, PWLW07, Wan10, WZGW12]) for which

the optimality conditions can not be straightforward adopted for the UL due to differences in

the resource constraints.

In this chapter, we propose an efficient RA scheme treating both the DL and UL of multiuser

MIMO-OFDM/SC-FDMA based underlay CR networks. The benefit of the proposed scheme

is two-fold: Relaxing underlay CR networks to be power-limited systems allowing more trans-

mit power and hence larger communication range. Furthermore, it preserves optimality at low

computational complexity with linear order in terms of M , i.e. number of OFDM tones, instead

of the exponential order of the exhaustive search as will be discussed in the analysis. From

the implementation perspective, the proposed scheme is carried out by a central RA task for

the DL and a semi-distributed (central plus distributive) RA task for the UL. The proposed RA

scheme is a two-phase procedure: Adaptive precoding and subcarrier mapping for assigning

OFDM/SC-FDMA tones to the CUs. In particular, the central RA task is solved in two phases:

The first phase performs the proposed central adaptive precoding which improves the SNR of

CUs due to the degrees of freedom it can provide. The second phase derives optimal/near-
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optimal subcarrier mapping for the DL/UL. The distributive RA allocates power and conducts

per-user adaptive precoding for a given subcarrier assignment obtained from the central RA. It

is necessary for the UL but optional for the DL. Such semi-distributed RA scheme in the UL

replaces the optimal exhaustive search by a near-optimal yet computationally efficient scheme.

Furthermore, it distributes processing between CR central unit and user equipment leading to

small data overhead and low-complexity architecture for the terminals.

4.1 System Model and Problem Formulation

We consider a MIMO underlay CR network coexisting and sharing the spectrum of a PR net-

work. The CR base station (CR-BS) with NCB antennas communicates with a set of K CUs,

denoted as K = {1, 2, . . . , K}. The kth CU has Nc antennas and occupies Sk subcarrier subset

from the overall set of OFDM tones denoted as M = {1, 2, . . . ,M}. The different CUs occupy

orthogonal subcarrier sets. It is not condition for the the PR network to employ OFDM, but for

the ease of presentation, let us assume L PUs each equipped with Np antennas. The different

PUs occupy orthogonal subsets of subcarriers given that the set of subcarriers allocated to the

PU l is denoted as Sl. System model is described in Figure 4.1. By means of active signal

Np

PU l

PU L

Np

Nc

CU k

PR-BS

CR-BS

Nc

CU K

NCB

NPB

GU,l,k,il

GU,L,K,iL

Tl,il

TL,iL

Z1,ik

ZK,iK

GD,l,il GD,L,iL

HD,k,ik

HD,K,iK

HU,k,il

HU,K,iL

Figure 4.1: Multiuser MIMO-OFDM CR based network model

shaping or superposition modulation [HW11], the CR transmit signals can be fairly assumed
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Gaussian distributed. Since CUs do not know the codebooks of the PUs and vice versa, the dis-

turbing interference introduced from one another can be fairly modeled as additive white Gaus-

sian noise (AWGN) as well. To soften the effect of interference plus noise, whitening filters are

used at both receiver sides of the CR links. The CR-BS is assumed to have full channel state

information of both cognitive UL and DL, denoted as {H.}, and all interference links toward

active PUs, denoted as {G.}, while the kth CU only knows its own link and the interference

link from the PR base station (PR-BS), denoted as Z.. The CR system is assumed to operate

in time-division duplex (TDD) mode and can, therefore, use the reciprocity argument for es-

timating the channels of the direct CR and interference links. In the DL, the transmit signals

are directly mapped to the desired OFDM subcarriers. However, they are precoded by M -point

discrete Fourier transform (DFT)-precoder) in the UL before being mapped to the OFDM tones

to produce SC-FDMA scheme [WH08a]. To avoid interfering the UL of the PR network by the

CR transmissions (since PUs’ transmitters have limited power to boost the UL SNRPR), it is

convenient to assume both UL and DL transmissions of the CR network within the time interval

of the DL of the PR network. For convenience, functionalities other than data transmission,

such as spectrum sensing and estimating the channels {G.}, can take place whilst the PR net-

work in a UL state. In non-cooperative legacy PR networks, no information is expected from

the PR network to the CR network about the interference temperature. Thus, the CR network

can fix the interference temperature to noise floor or to some value causing a desired PU rate

loss as will be shown in the sequel.

CR Downlink Notation: Denote the DL channel from the CR-BS to CU k (to PU l) on

subcarrier i by HD,k,i ∈ C
Nc×NCB(GD,l,i ∈ C

Np×NCB), ∀k, i, l.
For the DL, denote the data vector, precoding matrix, diagonal power matrix, noise vector

and post-coding matrix on subcarrier i for CU k as sD,k,i ∈ C
Nc×1, FD,k,i ∈ C

NCB×Nc , PD,k,i ∈
R

Nc×Nc , nk,i ∈ C
Nc×1 and WD,k,i ∈ C

Nc×Nc , respectively.

CR Uplink Notation: Similarly for the UL, denote the UL channel from CU k to the CR-BS

(to the PU l) on subcarrier i as HU,k,i = HH
D,k,i ∈ C

NCB×Nc (and GU,l,k,i ∈ C
Np×Nc), ∀k, i, l.

Note that reciprocity is inapplicable for estimating GU,l,k,i from GD,k,i since they are uncorre-

lated (i.e. due to the spatial separation between CR-BS and CUs) and differ in dimensions as

well. The DFT-precoded data vector, precoding matrix, diagonal power matrix, noise vector and

post-coding matrix on subcarrier i for CU k are denoted by sU,k,i ∈ C
Nc×1, FU,k,i ∈ C

Nc×Nc ,

PU,k,i ∈ R
Nc×Nc , nk,i ∈ C

NCB×1 and WU,k,i ∈ C
NCB×NCB , respectively.

PR Link Notation: Denote the channel from the PR-BS to CU k (to PU l) on subcarrier i

by Zk,i ∈ C
Nc×NPB(Tl,i ∈ C

Np×NPB). For the PR link, denote the data vector, noise vector,
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diagonal power matrix, and SVD precoder on the ith subcarrier for the lth PU as sl,i ∈ C
Np×1,

nl,i ∈ C
Np×1, Pl,i ∈ R

Np×Np , and Fl,i ∈ C
NPB×Np .

4.1.1 Cognitive Radio Downlink

The aggregate DL received signal of the CR network can be expressed as

y
D
= HDFDsD + ZFPRsPR + nD (4.1)

where y
D
= [yT

D,.,1 . . .y
T
D,.,M ]T is theMNc×1 DL received vector, HD = blkd(HD,.,1 . . .HD,.,M)

is theMNc×MNCB DL block channel, FD = blkd(FD,.,1 . . .FD,.,M) is theMNCB×MNc DL

block precoder, sD = [sTD,.,1 . . . s
T
D,.,M ]T is theMNc×1 DL data vector, Z = blkd(Z.,1 . . .Z.,M)

is the MNc ×MNPB interference block channel from the PR-BS, nD = [nT
.,1 . . .n

T
.,M ]T is the

MNc × 1 noise vector. The PR link parameters FPR ∈ C
MNPB×MNp and sPR ∈ C

MNp×1 are

defined in subsection 4.1.3.

The entries of the noise vector nk,i are independent and identically distributed (i.i.d.) cir-

cular symmetric complex Gaussian (CSCG) samples characterized by nk,i ∼ CN (0, σ2
nINc

).

Therefore, the inverse of the interference plus noise covariance matrix at the kth CU receiver

on the ith subcarrier can be factorized as

(Zk,iPl,iZ
H
k,i + σ2

nINc
)−1 = ΓD,k,iΓ

H
D,k,i (4.2)

where ΓD,k,i ∈ C
Nc×Nc defines the receive whitening filter of the kth CU on the ith subcarrier

and Tr(Pl,i) = Tr(Fl,iF
H
l,i) as stated in subsection 4.1.3. The block of whitening filters can be

written as W̃D = blkd(ΓD,.,1 . . .ΓD,.,M). Thus, the aggregate whitened received signal is given

by

ỹ
D
= H̃DFDsD + ñD (4.3)

where H̃D = W̃DHD and ñD = W̃D(ZFPRsPR + nD). We assume unit variance for the

DL data block symbol of the CR network E
{

sDs
H
D

}

= IMNc
. The block power matrix of the

DL PD is obtained from distributing the CR-BS power PT over the data streams of H̃DFD via

waterfilling (WF) given that E {‖FDsD‖2} ≤ PT . Note that ñD is a whitened noise vector with

zero-mean and identity covariance matrix. From the above, the whitened received signal of the

kth CU on the ith subcarrier is expressed as

ỹD,k,i = H̃D,k,iFD,k,isD,k,i + ñk,i (4.4)

where H̃D,k,i = W̃D,k,iHD,k,i and ñk,i = W̃D,k,i(Zk,iFl,isl,i + nk,i).
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4.1.2 Cognitive Radio Uplink

The aggregate whitened UL received signal can be expressed as

ỹ
U
= H̃UFUsU + ñU (4.5)

where ỹ
U
= [ỹT

U,.,1 . . . ỹ
T
U,.,M ]T is theMNCB×1 UL whitened received vector, H̃U = W̃UHU =

blkd(H̃U,.,1 . . . H̃U,.,M) is theMNCB×MNc UL whitened block channel, FU = blkd(FU,.,1 . . .FU,.,M)

is the MNc×MNc UL block precoder, sU = [sTU,.,1 . . . s
T
U,.,M ]T is the MNc× 1 UL data vector,

and ñU = [ñT
.,1 . . . ñ

T
.,M ]T is theMNCB×1 whitened noise vector. We also assume unit variance

for the UL data block vector of the CR network E
{

sUs
H
U

}

= IMNc
. The block power matrix

of the UL PU is obtained from distributing each per-user power Pk over the data streams of

H̃U,k,iFU,k,i, ∀i ∈ Sk via WF given that
∑

i∈Sk

E {‖FU,k,isU,k,i‖2} ≤ Pk.

Since the CR-BS receives the kth CU signal plus noise only 1, noise component alone needs

to be whitened in the UL state of the CR network. In this case, the whitening filter is defined

as (σ2
nINCB

)−1 = ΓU,k,iΓ
H
U,k,i, where ΓU,k,i ∈ C

NCB×NCB and W̃U = blkd(ΓU,.,1 . . .ΓU,.,M).

Therefore, the whitened received vector for the kth CU on the ith subcarrier at the CR-BS can

be written as

ỹU,k,i = H̃U,k,iFU,k,isU,k,i + ñU,k,i (4.6)

where H̃U,k,i = W̃U,k,iHU,k,i, and ñk,i = W̃U,k,ink,i.

Toward the goal of capacity maximization, the central and distributive RA tasks should take

place once within the coherence time of the channel.

4.1.3 Primary Radio Link

During the DL state of the CR network, note that the entire PUs receive interference vector

from the CR-BS equals GDFDsD. However, they receive interference vector from the entire

CUs equals GUFUsU during the UL state of the CR network. Therefore, the aggregate received

signal of the PR network on the overall subcarrier set can be written as

y
PR

= TFPRsPR + ρGDFDsD

+ (1− ρ)GUFUsU + nPR (4.7)

1Assuming that no interference is introduced from the PR-BS at CR-BS. This can be realized by installing

sector antennas physically high for both stations so as they are aligned side-by-side to cover the same sector. Due

to the height and narrow beamwidth, no directed nor reflected paths cause them to interfere each other.
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where ρ is set to 1 when the CR network in DL state and 0 if the CR network in UL state.

The multicarrier matrices and vectors of (4.7) are defined as follows. y
PR

= [yT
.,1 . . .y

T
.,M ]T

is the MNp × 1 PR receive vector, sPR = [sT.,1 . . . s
T
.,M ]T is the MNp × 1 PR data vector,

T = blkd(T.,1 . . .T.,M) is the MNp × MNPB block channel of the direct PR link, FPR =

blkd(F.,1 . . .F.,M) is the MNPB × MNp block SVD precoder of the PR network, GD =

blkd(GD,.,1 . . .GD,.,M) is the MNp ×MNCB block interference channel from CR-BS, GU =

blkd(GU,.,.,1 . . .GU,.,.,M) is the MNp ×MNc block interference channel from the CUs, nPR =

[nT
.,1 . . .n

T
.,M ]T is the MNp × 1 PR noise vector. The entries of the noise vector nl,i are i.i.d.

CSCG samples, i.e. nl,i ∼ CN (0, σ2
nINp

).

It is assumed that the data symbol has unit variance E
{

sPRs
H
PR

}

= IMNp
. The PR block

power matrix PPR ∈ R
MNp×MNp is obtained by distributing the PR-BS power PPB over the

data streams of all PUs, i.e. the eigenmodes of each block in T, via WF such that Tr (PPR) =

Tr
(

FPRE
{

sPRs
H
PR

}

FH
PR

)

≤ PPB .

4.1.4 Problem Formulation for the Downlink

The central RA task for the DL takes place in the CR-BS and can be expressed mathematically

as follows

Copt
D = max

{θ
(d)
k,i

,F
(d)
D,k,i

∈FD}

τD
M

K
∑

k=1

M
∑

i=1

θ
(d)
k,i log2 |INc

+W
(d)
D,k,iHD,k,iF

(d)
D,k,iF

(d)H
D,k,iH

H
D,k,iW

(d)H
D,k,i|

s.t.:

C1:
K
∑

k=1

M
∑

i=1

θ
(d)
k,iE

{

‖F(d)
D,k,isD,k,i‖2

}

≤PT

C2:
K
∑

k=1

∑

i∈Sl

θ
(d)
k,iE

{

‖GD,l,iF
(d)
D,k,isD,k,i‖2

}

≤I thl ,∀l

C3:θ
(d)
k,i ∈ {0, 1}

C4:
K
∑

k=1

θ
(d)
k,i = 1, ∀i (4.8)

where PT is the transmission power budget of the CR-BS. τD refers to the DL time sharing

weight, which is fulfilling with the UL weight τU the condition τD + τU = 1. In other words,

if the DL time weight is τ , the UL time weight will be (1 − τ ). To utilize the radio resource

efficiently, τ can be designed to turn the TDD flexibly to either half or full duplexing mode

according to [5G 15] for improving the spectral efficiency. θ
(d)
k,i can be either 1 or 0 indicating

whether the subcarrier i is occupied by the CU k or not. C3 and C4 informing that each sub-
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carrier cannot be shared by multiple CUs. Note that θ
(d)
k,i highly depends on the dth degree of

freedom (DoF) of the adaptive precoder F
(d)
D,k,i since each DoF changes the effective channel

of the kth CU accordingly. In other words, the kth CU may have the best channel conditions

at some DoF but not at the rest DoFs. Consequently, the subcarrier assignment procedure is

dependent on the DoF of the adaptive precoder. In (4.8), we try to maximize the sum-rate of the

CR system under the transmission power budget of the CR-BS, while guaranteeing tolerable

PUI. I thl is the PUI threshold of the PU l, which is usually set in underlay CR systems to the

noise floor.

Without loss of generality, we can adjust the PUI threshold according to PU rate loss (PRL)

as follows

Proposition 1: To link the PUI threshold I thl to PRL, first define the lth PRL as

PRLl =
CSNR − CSINR

CSNR

= 1− CSINR

CSNR

(4.9)

where CSNR and CSINR are the sum-rate of the eigenmodes Λj,l’s of the PU l without and

with interference component due to the CR system, respectively, which are formed as CSNR=
Np
∑

j=1

log2

(

1+
pj,lΛ

2
j,l

σ2
n

)

and CSINR=
Np
∑

j=1

log2

(

1+
pj,lΛ

2
j,l

σ2
n+αlσ2

n

)

, where αl is called temperature parameter

and αlσ
2
n is the interference caused by the CR transmitter at the lth PU. Then, simplify (4.9)

for SNRPR → 0 to αl =
PRLl

1−PRLl
. Next, express the scalar PUI threshold I thl in terms of the

temperature parameter αl as follows

I thl =
∑

i∈Sl

Tr(Ithl,i) (4.10)

where Ithl,i ∈ R
Nc×Nc , ∀i ∈ Sl is a PUI diagonal matrix. We need to express the contribution of

CUs’ eigenmodes in the PUI threshold over the set Sl. Thus, equal contributions infer that the

elements of Ithl,i are equally weighted as
Tr(αlσ

2
nINp)

Nc
, where the diagonal matrix αlσ

2
nINp

refers

to the interference on the eigenmodes of the lth PU for the subcarrier i ∈ Sl.

Proof: See Appendix F.1.

Note that the PRL is maximum in the low SNRPR regime, but decreases as SNRPR increases.

Obviously, (4.8) defines mixed integer programming problem, which involves integer variables

θ
(d)
k,i and complex-matrix variables F

(d)
D,k,i. It is not convex and generally hard to solve (4.8)

because it is combinatorial and generates an exponential complexity2. We develop a two-phase

2Convex relaxation is possible for the OFDMA scheme if every OFDM tone can be shared by users in time

so-called OFDMA-TDMA. Mathematically, the integer parameter θ would be replaced by a time-sharing factor,

which is real parameter between 0 and 1. That would define convex objective and constraint set. However, when
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procedure to address it. The solution carries out adaptive precoding (DoF assignment) and

subcarrier mapping separately. Particularly, best DoF of the adaptive precoder is assigned first

to the CR system under study for a given initial subcarrier mapping (under the assumption of

interference-limited underlay CR system in which C2 tighter than C1). Then, the assigned DoF

enables accurate subcarrier mapping even for power-limited underlay CR system, i.e. C1 tighter

than C2.

4.2 Downlink Adaptive Precoding and Degree of Freedom

Assignment

4.2.1 Central Adaptive Precoding

It is convenient to develop new linear precoding method since linear processing is character-

ized by low computational complexity. We develop an adaptive linear precoder utilizing the

multiple antenna structure for boosting spectrum efficiency. In the adaptive precoder, we scan

all combinations of the spaces of the interference channel GD,l,i to get countable independent

DoFs. The precoding matrix is adapted by selecting the best DoF to achieve maximum SNR.

The adaptation happens according to the amount of transmit power even if the channels are

time-invariant. For the CU k on the subcarrier i, unlike ZF precoder, the PUI condition to be

fulfilled by the dth DoF of the adaptive precoder is formed as GD,l,iF
(d)
D,k,i ≥ 0Np×Nc

, ∀k, l.
The adaptive precoder relaxes the PUI constraint converting the CR system from interference-

limited to power-limited. The overall DoF set of the DL is denoted as FD = {F(0)
D , . . . ,F

(|D|)
D },

where the index set is denoted as D = {0, 1, 2, . . . ,Rank(GD,l,i)}. We need to select the best

DoF in the set FD. Note that for each DoF we combine the similar indices for the subcarrier

set M no matter which CUs occupy them, so-called central adaptive precoding. For instance,

the DoF of index d = 1 collects the precoding matrices indexed as d = 1 from all subcarriers,

i.e. F
(1)
D = blkd(F

(1)
D,.,1, . . . ,F

(1)
D,.,M). Per-user or distributive adaptive precoding combines the

similar indices, however, for the kth CU subcarrier subset Sk.

The design of the dth DoF of the adaptive precoder on the ith subcarrier follows. The

subspaces of GD,l,i are combined such that not only the null space is taken into account, but

the number of OFDM tones approaches infinity, the OFDMA-TDMA solution approaches the optimum OFDMA.

In other words, for sufficiently large number of subcarriers, the OFDMA-TDMA solution that allocates every

subcarrier to the user with the largest time-sharing factor will produce negligible performance loss compared to

the optimum OFDMA solution.
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also the space of smallest d non-zero singular values. Note that the cardinality of the precoding

set is |D| = R + 1, where R = Rank(GD,l,i). For instance, let the singular values of GD,l,i

be ordered as λ1 ≥ λ2 ≥ · · · ≥ λR and the null space is indexed as d = 0, therefore the

DoF indexed as d = 3 refers to the spaces of the null as well as the smallest three non-zero

singular values (i.e. λR−2, λR−1, λR). Now, denote V
(d)
D,l,i ∈ C

NCB×d as the spaces of dth DoF

obtained from GD,l,i. Apply the SVD as H̃D,k,iV
(d)
D,l,i = Ǔ

(d)
D,k,iΛ̌

(d)
D,k,iV̌

(d)H
D,k,i to diagonalize the

effective channel before applying power allocation PD,k,i. Let’s denote F̂
(d)
D,k,i = V

(d)
D,l,iV̌

(d)
D,k,i

as the projection matrix. The precoder and receive filter can be written as

F
(d)
D,k,i = F̂

(d)
D,k,iP

1
2
D,k,i

W
(d)
D,k,i = Ǔ

(d)H
D,k,iΓD,k,i (4.11)

Consequently, the whitened baseband received signal for the CU k on the subcarrier i is

given by

ỹD,k,i = Λ̌
(d)
D,k,iP

1
2
D,k,isD,k,i + Ǔ

(d)H
D,k,iñk,i (4.12)

4.2.2 Efficient Degree of Freedom Assignment

This section introduces an efficient algorithm for DoF selection. The best DoF is selected based

on the following maximum achievable capacity criterion

F
(d̂)
D = argmax

d∈D

K
∑

k=1

rk

(

F
(d)
D

)

(4.13)

where rk

(

F
(d)
D

)

is the data rate of the kth CU. This selection criterion refers to conducting

WF power allocation for every CU and every candidate DoF on every subcarrier, that actually

consumes a plenty of time. Therefore, it is desired to carry out a DoF selection with low

computational complexity. Toward this goal, we replace (4.13) by a time efficient algorithm.

First, we substitute (4.11) in (4.8) and refer to Ω
(d)
D,k,i ∈ C

Nc×Nc as the effective interfering

channel power toward the PU l obtained as Ω
(d)
D,k,i = diag

(

F̂
(d)H
D,k,iG

H
D,l,iGD,l,iF̂

(d)
D,k,i

)

. Then,
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rewrite (4.8) as

Copt
D = max

{θ
(d)
k,i

,PD,k,i,d∈D}

τD
M

K
∑

k=1

M
∑

i=1

θ
(d)
k,i log2|INc

+ Λ̌
(d)2
D,k,iPD,k,i|

s.t. :

C1 :
K
∑

k=1

M
∑

i=1

θ
(d)
k,i Tr

(

F̂
(d)H
D,k,iF̂

(d)
D,k,iPD,k,i

)

≤ PT

C2 :
K
∑

k=1

θ
(d)
k,i Tr

(

Ω
(d)
D,k,iPD,k,i

)

≤ Tr(Ithl,i), ∀l, i

C3 and C4 as in (4.8)

C5 : PD,k,i ≥ 0, ∀k, i (4.14)

Before going through DoF assignment algorithm, note that the DoF assignment is a pre-

requisite to obtain an accurate subcarrier mapping. Particularly, we depend on the achievable

rates of OFDM tones to accomplish the subcarrier mapping. In an OFDM based CR network,

a subcarrier with higher SNR may generate more PUI, which means the PUI threshold also

set an upper bound of the maximum transmission power of a subcarrier. Thus, it is crucial to

jointly consider the SNR of a subcarrier and the PUI threshold in C2 to calculate the maximum

achievable rate over that subcarrier. However, the maximum achievable rate also depends on

the adaptive precoding (specifically, on the assigned DoF as it affects Λ̄
(d)2
D,k,i). Hence, to solve

(4.14) with spectrum efficiency, we need to address the adaptive precoding (DoF assignment)

procedure before executing the subcarrier mapping procedure.

For a fast DoF selection criterion, we count on analytical power computations assum-

ing interference-limited underlay CR system. Precisely, we calculate a couple of precoding-

thresholds (power values) that separate countable precoding-regions within which a break-

through in the system sum-rate occurs. The following theorem and corollary prove our ob-

servation.

Theorem 1. For the dth precoding DoF, as PT → 0, the sum-rate fulfills C
(d−1)
D < C

(d)
D , and

conversely as PT → ∞, the sum-rate fulfills C
(d−1)
D > C

(d)
D .

Proof : See [ZL08a] and Theorem 3 and 4 therein.

Corollary 1. There is an intersection point equalizes the capacity of both DoFs d and (d − 1)

such that the equality holds C
(d−1)
D = C

(d)
D . At this point the precoding-threshold P

(d,d−1)
D,th is

located.

The following proposition exhibits the DoF assignment procedure.
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Proposition 2: The precoding-thresholds are calculated for each two-consecutive DoF in-

dices (i.e. d and (d − 1)) to get a couple of precoding-regions. Then, the DoF selection can be

efficiently handled by comparing the transmit power budget PT with the precoding-threshold

set denoted as {P (d,d−1)
D,th }Rd=1 to accommodate PT in the corresponding precoding-region. Then,

assign the optimum DoF precoding matrix F̂
(d̂)
D,k,i to the CR system under study as shown below.

Mathematically, we express the DoF selection as follows

PT

d̂=d

≶
d̂=d−1

P
(d,d−1)
D,th , ∀d ∈ D (4.15)

The set of thresholds can be calculated as follows

{

P
(d,d−1)
D,th =

M
∑

i=1

max
l

Tr
(

Ω
(d)

D,k̄,i

−1
Ithl,i

)

}R

d=1

(4.16)

where R = Rank(GD,l,i).

Proof: See Appendix F.2.

Given that |D| = R + 1 is the number of DoFs, the defined (R + 1) precoding-regions are

separated by (R) precoding-thresholds according to Proposition 2.

4.3 Fast Subcarrier Mapping for Downlink

In this procedure, we propose computational efficient and optimal subcarrier mapping algorithm

for the DL for a given DoF assignment. The subcarrier mapping scheme for the DL is charac-

terized by optimality since it is built upon optimal power allocation no matter if the CR system

under investigation is power-limited or interference-limited. The variable index d is fixed to a

value within the set D once DoF assignment is completed, then the CR network is preprocessed

by the optimum DoF {F̂(d̂)
D,k,i}∀k, i. Hence, the subcarrier mapping procedure can skip d from

(4.14) for notation simplicity.

Problem (4.14) defines a mixed integer programming and can optimally be solved with com-

putational efficiency by using the Lagrange dual decomposition method [BV04] that decom-

poses the problem into M parallel subproblems converting the exponential complexity O(KM)

into a linear order in terms of M . Since each subcarrier cannot be shared by multiple CUs, we

can execute subcarrier mapping procedure according to the maximum achievable rate on the

OFDM tones. Each subcarrier can be assigned to the CU that produces the highest achievable
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rate over it. Toward this end, Lagrangian of the problem (4.14) is written as

LD({PD,k,i, θk,i}, µD,δD,ΨD, ζ) = Copt
D − µD

(

M
∑

i=1

K
∑

k=1

θk,iTr
(

F̂H
D,k,iF̂D,k,iPD,k,i

)

−PT

)

−
M
∑

i=1

δD,i

(

K
∑

k=1

θk,iTr (ΩD,k,iPD,k,i)−Tr(Ithl,i)

)

−
M
∑

i=1

K
∑

k=1

ψD,k,iPD,k,i −
M
∑

i=1

(

K
∑

k=1

ζk,iθk,i−ζk,i
)

(4.17)

where µD is a dual variable associated with the constraint C1, δD = [δD,1, δD,2, . . . , δD,M ] is a

vector of dual variables each associated with one of the constraints set C2, ζ = [ζk,1, . . . , ζk,M ]

is a vector of dual variables each belongs one in the set C4, and ΨD = [ψD,1,1, . . . , ψD,K,M ] is

a vector of dual variables each associated with one of the constraint set C5. The Lagrange dual

function can be expressed as

GD(µD, δD,ΨD, ζ) = max
{PD,k,i,θk,i}

LD ({PD,k,i, θk,i}, µD, δD,ΨD, ζ) (4.18)

The Lagrange dual optimization problem is

min
µD≥0,δD≥0,ΨD≥0,ζ≥0

GD (µD, δD,ΨD, ζ) (4.19)

It is observed that (4.18) can be rewritten as

GD (µD, δD,ΨD, ζ) =
M
∑

i=1

GD,i(µD, δD,i, ψD,k,i, ζk,i) + µDPT (4.20)

where

GD,i(µD , δD,i, ψD,k,i, ζk,i) = max
{PD,k,i,θk,i}

τD
M

K
∑

k=1

θk,i log2
∣

∣INc
+ Λ̌2

D,k,iPD,k,i

∣

∣

− µD

K
∑

k=1

θk,iTr
(

F̂H
D,k,iF̂D,k,iPD,k,i

)

− δD,i

(

K
∑

k=1

θk,iTr (ΩD,k,iPD,k,i)− Tr(Ithl,i)

)

−
K
∑

k=1

ψD,k,iPD,k,i −
K
∑

k=1

ζk,iθk,i + ζk,i (4.21)

It is clear that (4.19) is decomposed into M independent unconstrained optimization subprob-

lems each can be solved numerically by updating the dual variables µD, {δD,i}, {ψD,k,i}, and

{ζk,i} iteratively (concentric loops) using the bisection method [BV04].

Remark 1: For reduced numerical calculations, we can drop the loops of {ψD,k,i}, which

guarantee semidefinite power matrix, and replace them by the operator [a]+ = max(a, 0), where

a is real number.
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Remark 2: Based on the subcarrier mapping policy, the last two terms of (4.21) cancel each

other for the selected CU. Therefore, the drop of ζk,i is not only valid but also reduces the

numerical calculations.

Based on Remark 1 and Remark 2, we can skip the last two terms of (4.17) during the

optimal power derivation as follows.

Theorem 2. The optimal power can be derived ∀i ∈ M, ∀k ∈ K by applying the Karush-

Kuhn-Tucker (KKT) conditions of optimality. From the gradient of LD, the optimal power is

expressed as

P̂D,k,i =
[

{

M ln 2

τD

(

µDF̂H
D,k,iF̂D,k,i + δD,iΩD,k,i

)

}−1

− Λ̌−2
D,k,i

]+

(4.22)

Proof: See Appendix F.3.

Since both the DoF assignment and power allocation procedures are completed now, it is

possible to execute the subcarrier mapping step. As mentioned above, the subcarrier mapping

policy is to assign the subcarrier i to only one CU that has the highest achievable rate on it. Thus,

we can carry out the subcarrier mapping procedure according to the achievable rate defined in

(4.21). The procedure is over when all subcarriers are allocated.

Mathematically, we map the subcarriers by finding the values of θk,i’s as follows

θk,i =







1 k̂ = argmax
k

GD,i (µD, δD,i)

0 otherwise







, ∀i ∈ M (4.23)

The algorithm of the proposed scheme is summarized in Table 4.1.

4.4 Problem Formulation for the Uplink and Optimality Con-

dition

4.4.1 Problem Formulation

The optimality condition derived for the DL can not be directly followed to the UL due to the

differences in resource constraints. The challenging aspect in the SC-FDMA based UL that

make the RA task intractable is the per-user power constraints. Up to the knowledge of au-

thors, optimal and fully distributed UL subcarrier assignment can be performed by means of an

exhaustive search. Furthermore, it confines all processing tasks at the terminals causing huge

hardware complexity. It requires no data overhead between CR base station and CR termi-

nals. On the other hand, fully centralized method can be efficient concerning processing time.
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Table 4.1: The Downlink Algorithm of the Proposed Scheme

Analytical Procedure: Adaptive Precoding (DoF Assignment)

A) ∀d ∈ D do

1. ∀k ∈ K, i ∈ M do

Calculate {Ithl,i}, ∀l, i by (4.10) end.

2. Calculate P
(d,d−1)
D,th , ∀d by (4.16) end.

B) Allocate the optimum precoding DoF d̂ to the CR system by (4.15).

C) Return {F(d̂)
D,k,i}, ∀k, i.

Numerical Procedure: Subcarrier Mapping

A) Initialization: µmin
D = 0 and µmax

D = µ̂D where µ̂D

is a large value.

B) Repeat until
(

µmax
D − µmin

D

)

≤ ǫ

1. µ
(ν)
D =

(

µmin
D + µmax

D

)

/2

a) Initialization: ∀i ∈ M, δmin
D,i = 0 and δmax

D,i = δ̂D,i, where

δ̂D,i is a large value.

b) ∀i ∈ M repeat until
(

δmax
D,i − δmin

D,i

)

≤ ǫ

i) δ
(j)
D,i =

(

δmin
D,i + δmax

D,i

)

/2

ii) ∀k ∈ K, calculate P̂
(ν,j)
D,k,i by (4.22)

iii) Calculate GD,i (µD, δD,i) by (4.21). Then, allocate the

ith subcarrier to the best CU (i.e. find {θk,i}, ∀k) by (4.23).

iv) If
K
∑

k=1

θk,iTr
(

ΩD,k,iP̂
(ν,j)
D,k,i

)

≤ Tr(Ithl,i), ∀l, set

δmax
D,i =δ

(j)
D,i, otherwise δmin

D,i = δ
(j)
D,i.

2. If
K
∑

k=1

M
∑

i=1

θk,iTr
(

F
H
D,k,iFD,k,iP̂

(ν,j)
D,k,i

)

≤PT , set

µmax
D =µ

(ν)
D , otherwise µmin

D =µ
(ν)
D .

C) Return {P̂D,k,i, θk,i}, ∀k, i.
where ǫ is a small constant

It causes simple terminal architecture as the processing takes place at the central unit. How-

ever, it requires large preamble information to feed the parameterization back to the terminals.

Therefore, we propose a semi-distributed platform for the UL which is characterized by effi-

cient computational complexity, simple terminal architecture, and small data overhead. Toward

this goal, we initially relax the optimization problem of the UL which has K per-user power

constraints into a centrally solvable form according to Proposition 3. This form is solved at the

CR-BS.

Proposition 3: The K per-user power constraints are absorbed into a single sum-power

constraint to solve the adaptive precoding and subcarrier mapping centrally for the UL problem
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as follows
K
∑

k=1

M
∑

i=1

θk,iTr
(

F̂
(d)H
U,k,iF̂

(d)
U,k,iPU,k,i

)

≤
K
∑

k=1

Pk (4.24)

where Pk is the transmission power budget of the kth CU. The central RA task of the UL has

the same structure of (4.14) with replacement of PT by
K
∑

k=1

Pk.

We solve the central RA of the UL to obtain subcarrier mapping which is computationally

efficient solution because of using the M parallel decomposed routines. This mapping is rigor-

ously optimal under the sum-power constraint defined in (4.24), but near-optimal under per-user

power constraints. The solution steps are identical to those of the DL described in Table 4.1.

Since WF is recognized as opportunistic power distribution, the sum-power constrained RA

may violate the per-user power constrained RA. In other words, the power distribution over Sk

due to the UL central RA may likely exceed the budget Pk. Therefore, distributed RA task

with per-user power constraint is necessary at each terminal to obtain optimal power distribu-

tion. Once the central RA optimization terminates, the assigned subcarriers are fed back to each

terminal via signaling channels in order to enable the distributed RA.

4.4.2 Distributive RA Task and Per-User Adaptive Precoding

For the subcarrier mapping obtained from the central RA, we re-optimize the RA task distribu-

tively at the terminal of the CU with the per-user power constraint. Distributive RA assigns

the DoF and the power over the allocated subcarriers set of the kth CU, i.e. Sk, by solving the

following task

CU,k = max
{d∈D,PU,k,i}

τU
M

∑

i∈Sk

log2

∣

∣

∣
INc

+ Λ̌
(d)
U,k,iPU,k,i

∣

∣

∣

s.t. :

C1 :
∑

i∈Sk

Tr
(

F̂
(d)H
U,k,iF̂

(d)
U,k,iPU,k,i

)

≤ Pk

C2 : Tr
(

Ω
(d)
U,k,l,iPU,k,i

)

≤ Tr(Ithl,i), ∀l, ∀i ∈ Sk

C3 : PU,k,i ≥ 0, ∀i ∈ Sk (4.25)

Clearly, (4.25) can be solved by a two-phase procedure. First, efficient DoF assignment (per-

user adaptive precoding) is elaborated according to (4.15) given in Proposition 2 but for the

subcarrier subset Sk. Second, optimal power is allocated among the eigenmodes of Sk similar

to (4.22) and given ∀i ∈ Sk, as

P̂U,k,i =
[

{

M ln 2

τU

(

µU F̂
H
U,k,iF̂U,k,i + δU,iΩU,k,i

)

}−1

− Λ̌−2
U,k,i

]+

(4.26)



4.5. SIMULATION RESULTS 49

Then, the sum-rate of the UL can be calculated by adding up the data rates of all CUs

according to

Copt
U =

K
∑

k=1

CU,k (4.27)

Similarly, per-user adaptive precoding can be applied for the DL by solving distributive RA

having a structure like (4.25) for a given subcarrier mapping and per-user power constraints

obtained from solving the central RA task (4.14). Unlike UL, the DL distributive RA procedure

takes place at the CR-BS.

4.4.3 Complexity Analysis

In the central RA procedure, the adaptive precoding step (DoF assignment) requires |D| cal-

culations for the precoding-thresholds ∀k, i, and thus costs MK|D|. Furthermore, the sub-

carrier mapping step needs cc iterations per each power calculation ∀k, i, and hence costs

ccMK. Therefore, the central RA step requires complexity of MK(cc + |D|). The dis-

tributive RA procedure carries out |Sk||D| calculations for the per-user adaptive precoding

and cd|Sk| for the power distribution. Thus, the distributive RA procedure complexity ∀k is

(cd + |D|)Σk|Sk| = M(cd + |D|), where cd denotes the average number of iterations per sub-

carrier in the distributed RA task. The overall complexity of both central and distributive RA

procedures is O (M(K + 1)(c+ |D|)), where c denotes the average number of iterations per

subcarrier. The exhaustive search requires testing K|D| combinations per subcarrier and each

combination requires c iterations, thus for M subcarriers that costs
M
∏

i=1

cK|D| = (cK|D|)M .

The RA scheme in [YH14] costs O(cM + MK|D|). Other RA schemes, which have lower

performance than our proposal, have complexity O (cMK) [SMpV11, PWLW07].

4.5 Simulation Results

4.5.1 Channel Model and System Configuration

In the simulations, we consider a multiuser MIMO-OFDM/SC-FDMA based CR DL/UL with

OFDM subchannels suffering from independent Rayleigh flat fading. The path loss (PL), shad-

owing, and Rayleigh-distributed multipath fading assumed for channel modeling are combined

according to the model in section 2.5. The channel modeling parameters are configured for the

simulation as follows: Reference distance d0 = 1 m, PL exponent γ = 2, shadowing variance

σ2
S(dB) = 0 dB and multipath variance σ2

m = 1. Assuming normalized PL, i.e. ZPL = 1, all CUs
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and PUs are uniformly distributed on a circle around the CR-BS with a radius of distance = d0

and free space loss Z0 = 1. It is assumed that K = 10 CUs coexist with L = 7 PUs. The

elements of the desired channels HD,k,i,HU,k,i, and Tl,i as well as the interference channels

GD,l,i,GU,k,l,i, and Zk,i are generated as i.i.d. variables as described in the above channel

model. The simulation parameters in the following examples are set-up as follows unless oth-

erwise stated. The antenna configuration is [NCB×Nc : NPB ×Np] = [6×5 : 4 ×4], assuming

M=64 for OFDM and SC-FDMA tones. The interference temperature parameter of the lth PU

is αl = 0.01, ∀l. The link time weight is set to τ = 0.5. We define the SNR of the CR link as

SNRCR = PT/σ
2
n and the PR link as SNRPR = PPB/σ

2
n, with σ2

n = 1. The SNRPR is fixed to

100.

4.5.2 Example 1: Comparison of the Proposed Scheme and Alternative

Schemes

We compare the proposed scheme with the following five alternative schemes:

(1) ZF precoding (ZP): In this case, a fixed precoding technique is involved based on driving

the interference at all PUs to zero forcibly.

(2) SVD precoding with transmit power control (SPT): A fixed precoding technique based

on SVD with transmit interference power control at the PUs is used as in [SMpV11] and the

MIMO version in [PWLW07].

(3) Hybrid precoding with transmit power control (HPT): A fixed precoding based on in-

volving some orthonormal bases besides the null-space is employed [ZL08a].

The proposed subcarrier mapping developed in Section 4.3 is employed in the schemes

above. We also compare our proposal with the following two alternative schemes:

(4) Adaptive precoding with the initial (approximate) subcarrier allocation (APA): This

scheme employs the adaptive precoding, an approximate subcarrier allocation, and WF power

allocation [YH14].

(5) Equal power allocation with adaptive precoding (EPA): Equal power allocation com-

bined with both the proposed adaptive precoding and subcarrier mapping is conducted in this

scheme.

All the above mentioned schemes are extended to fit the UL depending on Proposition 3. In

Figure 4.2 and Figure 4.3 the achievable total CR sum-rate for all the schemes mentioned above

is drawn versus the SNR scaled over the range 1 to 1000.

Figure 4.2 illustrates an outstanding performance in favor the proposed approach which
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Figure 4.2: Aggregate CR sum-rate as a function of the SNR
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Figure 4.3: Aggregate CR sum-rate as a function of the SNR

is conducted at a relaxed transmission condition, i.e. high PU rate loss that corresponds to

αl = 100. Our proposal achieves a remarkable gains: SNR gain of up to 9 dB and spectral gain
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of up to 5 bps/Hz for τ = 1, i.e. DL state. However, the gain obtained by our proposal decreases

as the transmission conditions get tighter. Figure 4.3 shows an example for the achievable gains

at low PU rate loss αl = 0.5 for τ = 0, i.e. UL state. Nevertheless, our proposal still achieves

good spectral gain up to 3 bps/Hz and SNR gain up to 5 dB in the high SNR regime, i.e.

SNRCR > 100.

4.5.3 Example 2: Effect of the Temperature Parameter on the Primary

and CR Sum-Rates

Figure 4.4 shows the aggregate CR sum-rate as well as the sum-rate of the PR link in terms

of the temperature parameter αl. Obviously, little αl causes minor loss in the PR sum-rate

while significantly degrades the CR sum-rate, and vice versa. It is also clear that our proposal

outperforms other techniques for the regime SNRCR = 15 dB at both tight and relaxed inter-

ference temperatures achieving a spectral gain of up to 5 bps/Hz. Furthermore, it demonstrates

robustness against the tight transmission conditions of the CR network.
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Figure 4.4: Aggregate CR sum-rate as a function of temperature parameter

Another illustration is the sum-rate of the PR link as a function of the aggregate CR sum-

rate as in Figure 4.5, which draws the capacity region of both PR and CR systems in the low
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regime SNRCR = 10. The proposed scheme achieves higher capacity than other techniques at

any transmission conditions, i.e. for αl in the range 10−2 to 102.
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Figure 4.5: Capacity region: PR sum-rate as a function of the aggregate CR sum-rate

4.5.4 Example 3: Effect of the Distributive RA on the CR Sum-Rate

Figure 4.6 and Figure 4.7 compare the central and distributive RA schemes of both DL and

UL. The comparisons are conducted by employing the CR sum-rate as an assessment metric in

terms of the SNRCR and the temperature parameter αl. Generally, there is a better performance

in favor the distributive scheme in the DL, but in favor the central scheme in the UL. The per-

user adaptive precoding provides the CUs with more degrees of freedom in the DoF assignment.

Unlike the common DoF assigned to all CUs in the central scheme, the distributive DoF for the

CU k is independent of else’s CUs, i.e. ∀j, j 6= k. That contributes toward little CR sum-rate

enhancement. In the UL distributive RA, despite the independence of the DoF assignment, the

per-user power constraints degrade the performance compared to the central. In other words, the

sum-power constraint, which enables the fast subcarrier mapping in the central RA, provides

the strong subcarriers of Sk with higher power than the per-user power constraint does. The

significance of the UL distributive RA is the near-optimal capacity it provides compared to the

optimal central scheme.
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Figure 4.6: CR sum-rate of both DL and UL individually as a function of the SNR
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4.5.5 Example 4: Complexity

Figure 4.8 shows the computational cost of our proposal compared with other techniques for

K = 10 CUs and cardinality of DoFs set equals |D| = 5 for the adaptive precoder. It can be

observed that the complexity of our proposal increases slightly with the number of subcarriers

unlike the optimal exhaustive search. Although the proposed approach consumes a little more

time than other RA schemes, it makes better performance.
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Figure 4.8: Computational cost as a function of the number of subcarriers

4.6 Chapter Summary

In this chapter, we have developed efficient RA scheme for MIMO-OFDM/SC-FDMA CR net-

works. Since the formulated optimization problem has a combinatorial complexity, we sepa-

rated it into a two-phase procedure to elaborate computational efficiency: Adaptive precoding

(DoF assignment) and subcarrier mapping. From the implementation perspective, the RA of

the DL is central based, but the UL is semi-distributed based. The central RA task has been

solved to obtain both the central adaptive precoding and the subcarrier mapping for both the DL

and UL. The subcarrier mapping is optimal for the DL, but near-optimal for the UL due to the

per-user resource constraints. Furthermore, the distributive RA task is necessary to resolve the
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power allocation of the UL, but an option for the DL. The semi-distributed scheme in the UL

is computationally and spectrally efficient. It also leads to a small data overhead and simplifies

the terminal structure. Numerical simulations illustrated remarkable spectral and SNR gains

provided by the proposed scheme. Moreover, it demonstrated robustness in tight and relaxed

transmission conditions. Therefore, it enables larger communication range for underlay CR

networks.



5
MIMO Broadcasting Cognitive Radio

Networks

Cognitive radio has versatile applications in the future mobile network as a broadcast channel.

In the underlay spectrum sharing strategy, CR transmits concurrently with primary radio (PR),

thus CR should constrain its transmit power to manage the interference at PR users (PUs) to be

below a predefined threshold [Hay05] aiming to protect the PR performance from degradation.

Meanwhile, CR should provide a qualitative service for CUs fulfilling their minimum SNR.

With such a challenge in the underlay CR network, CR can hardly provide a good quality of ser-

vice for CUs. Motivated by this, some methods have been developed to build platforms for mul-

tiuser CR downlink systems employing multiple antennas like [ZXL09, LL11]. Typically, since

CR systems are unlicensed and have limitations with respect to transmission, they should utilize

the data-carrying time slots spectrally and computationally efficient. On one hand, non-linear

processing like [ZXL09] performs serial-based computations. Hence, its major drawback is that

it cannot handle parallel computing facilities despite its spectral efficiency. On the other hand,

although linear precoding techniques developed in [LL11, SSH04, SLL09b, JUN05, ZLC10]
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(even in non-CR context) have lower sum-rate, they are highly preferred in real-time CR net-

works as they require less computations.

In [SSH04, SLL09b, LL11], MMSE based preprocessing has demonstrated better perfor-

mance versus ZF based preprocessing for multi-antenna multiuser downlink systems since it

addresses the transmit power boost issue, which is equivalent to the noise enhancement issue in

ZF linear receivers. The MMSE precoder regularizes channel inversion using the entire transmit

power and noise variance. Recently, an MMSE CR based block diagonalization (MMSE-BD)

scheme [LL11] has been extended the MMSE based channel inversion scheme [SLL09b] to

meet CR requirements. However, we claim that the multiple antenna structure of the MIMO

channels in the conventional MMSE based precoding approach has not been fully utilized.

In this chapter, we propose two adaptive linear precoders based on ZF and MMSE criteria,

respectively, both employing a precoding diversity concept for a multiuser MIMO CR based

downlink. Unlike the conventional ZF-BD CR based (ZF-BD) precoder, the proposed scheme

utilizes the MIMO channel paths and spaces to create precoding diversity in order to excite

a multiuser interference (MUI) diversity. Such a diversity can achieve considerable SINR and

spectral efficiency gains in the low SNR region. Although the adaptive ZF-BD precoding (AZB)

method improves the SINR, it still suffers from the transmit power boost issue. Therefore, we

propose an adaptive MMSE-BD (AMB) scheme for the CR downlink to address it. The pro-

posed AMB employs a non-iterative solution and overcomes the transmit power issue inherent

in AZB by means of engaging a regularization factor. We mitigate the interference produced

by the PR system at the CUs’ receivers by means of a whitening process. Although the pro-

posed adaptive precoding requires relatively higher complexity than the conventional ZF-BD

and MMSE-BD precoders, it can be handled by parallel computing facilities unlike the non-

linear precoder developed in [ZXL09]. As will be seen in the simulation results, the proposed

AMB precoder considerably improves the SINR as well as the spectral efficiency and outper-

forms the conventional MMSE-BD precoder.

5.1 System Model and Problem Statement

This section presents the system model and states the problem of multiuser MIMO communi-

cation systems which is investigated in later sections.
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5.1.1 System Model

Consider a CR-BS equipped withNCB antennas that communicates with a set ofK CUs denoted

as K = {1, . . . , K} each having Nc antennas on a cognitive based multiuser MIMO broadcast

channel as shown in Figure 5.1. Denote the total number of CU receive antennas as Nr =

KNc. Let the MIMO channel between the CR-BS and the kth CU denoted as Hk ∈ C
Nc×NBS .

A PR network (a PR-BS having NPB antennas communicates with a single PU that has Np

antennas) coexists with the CR network. Denote the channel between the CR-BS and the PU as

G ∈ C
Np×NCB , the channel between the PR-BS and the PU as T ∈ C

Np×NPB , and the channel

between the PR-BS and the kth CU as Zk ∈ C
Nc×NPB . The assumption is that all {Hk} and G

are known at the CR-BS, while the kth CU only knows Hk and Zk infers that the MUI should

be managed at the transmitter side via preprocessing.

Np

PU

Nc

CU 1

Nc

CU K

PR-BS

CR-BS

NCB

NPB T

Z1

ZK

G

H1

HK

Figure 5.1: Multiuser MIMO CR based broadcast channel model

The kth data vector, noise vector, power matrix, preprocessing matrix, and post-processing

matrix are denoted as sk ∈ C
Nc×1, nk ∈ C

Nc×1, Pk ∈ C
Nc×Nc , Fk ∈ C

NCB×Nc , and Wk ∈
C

Nc×Nc , respectively. Regarding the PR network, the data vector, noise vector, power matrix,

and precoding matrix are denoted as sp ∈ C
Np×1, np ∈ C

Np×1, Pp ∈ R
Np×Np , and Fp ∈

C
NPB×Np , respectively. The entries of noise vectors nk and np are i.i.d. Gaussian random

variables, i.e., nk ∼ CN (0, σ2
nINc

) and np ∼ CN (0, σ2
nINp

). Therefore, the aggregate received
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signal of the CR system under investigation can be expressed as

y = H F s+ ZFpsp + n (5.1)

where the multiuser vectors and matrices in (5.1), i.e. receive vector y ∈ C
Nr×1, data vector

s ∈ C
Nr×1, channel matrix H ∈ C

Nr×NCB , precoding matrix F ∈ C
NCB×Nr , noise vector

n ∈ C
Nr×1, channel matrix of the PR-BS-to-CUs cross link Z ∈ C

Nr×NPB , are defined as

follows

y = [yT
1 . . .y

T
K ]

T

s = [sT1 . . . s
T
K ]

T

H = [HT
1 . . .H

T
K ]

T

F = [F1 . . .FK ]

n = [nT
1 . . .n

T
K ]

T

Z = [ZT
1 . . .Z

T
K ]

T

It is assumed that each data symbol has unit variance E
{

s sH
}

= INr
, therefore the CR-BS

transmit power fulfills E {‖F s‖2} ≤ PT .

In the PR network, the received signal at the PU, i.e. yp ∈ C
Np×1, can be written as

yp = TFpsp + yni (5.2)

where Fp is a SVD precoder, Pp is obtained by distributing the PR-BS power PPB over the data

streams (eigenmodes) of T via waterfilling such that Tr(Pp) = Tr(FpE
{

sps
H
p

}

FH
p ) ≤ PPB

assuming that E
{

sps
H
p

}

= INp
. On one hand, the second term yni ∈ C

Np×1 refers to the CR-

BS interference plus noise induced at the PU, which defined as yni = GF s+ np. On the other

hand, the PR-BS interference plus the noise covariance matrix at the kth CU can be factorized

as

(ZkPpZ
H
k + σ2

nINc
)−1 = ΓkΓ

H
k (5.3)

Γk ∈ C
Nc×Nc is defined as a receive whitening filter at the kth CU. The block of whitening

filters can be written as W̃ = blkd (Γ1 . . .ΓK). Therefore, the whitened version of the entire

received vector of all CUs defined in (5.1) can be written as

ỹ = H̃ F s+ ñ (5.4)
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in the above equation

H̃ = [H̃T
1 H̃

T
2 . . . H̃

T
K ]

T = W̃ H

and

ñ = [ñT
1 ñ

T
2 . . . ñ

T
K ]

T = W̃(ZFpsp + n)

The whitened noise vector ñ is characterized as a zero-mean vector with identity covariance

matrix. Thus, the whitened received vector of CU k is given by

ỹk = H̃kFksk + H̃k

K
∑

j=1,j 6=k

Fjsj + ñk (5.5)

where H̃k = W̃kHk and ñk = W̃k(ZkFpsp + nk). Thus, the whitened noise vector ñk is

characterized as a zero-mean vector with identity covariance matrix.

5.1.2 Problem Statement

The spectral efficiency and low latency of multiuser MIMO communications are the main con-

cerns in future mobile network. In regard to non-orthogonal access systems, non-linear trans-

mit precoding, i.e. dirty paper coding based, methods are known as computationally expensive

techniques despite their high spectral efficiency. On the other hand, linear techniques can offer

affordable complexities but at, however, lower spectral efficiencies. Therefore, new designs

which have acceptable complexities and relatively high spectral efficiencies are required. Some

linear techniques optimize either one of the following common quality measures: Sum-rate

maximization and MMSE. The sum-rate maximization problem has the following structure

max
{F(d),∀d∈D}

K
∑

k=1

log2 |INc
+ SINRk|

subject to E
{

‖GF(d)s‖2
}

≤ Ith

E
{

‖F(d)s‖2
}

≤ PT (5.6)

where

SINRk =
Wk(d)HkFk(d)F

H
k (d)H

H
k W

H
k (d)

σ2
nINc

+Wk(d)Hk

(

K
∑

j 6=k

Fj(d)FH
j (d)

)

HH
k W

H
k (d)

The MMSE optimization problem has a different objective function as follows
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min
γ,F(d),d∈D

E
{

‖s− γ−1ỹ‖2
}

subject to E
{

‖GF(d)s‖2
}

≤ Ith

E
{

‖F(d)s‖2
}

≤ PT (5.7)

where γ is a scaling factor for the received signal. In general, some prior precoding techniques

categorized under ZF criterion include [CM04, LLa11, SSH04, SLL09b] and others incorpo-

rating MMSE criterion in precoding contain [JBU04, SH08, SLL09b, SLL09a, JL07]. These

preliminaries have not taken into account the CR requirement. However, the scheme in [LL11]

has imposed a constraint to restrict PUI effectively extending ZF and MMSE criteria to meet

CR requirements as will be detailed in the following section.

5.2 Proposed Adaptive Linear Precoding

Conventional linear preprocessing designs have substantially low complexity, therefore from

the complexity perspective it is convenient to develop new linear preprocessing techniques

in an adaptive manner utilizing the multiple antenna structure for enhancing spectrum effi-

ciency. Particularly in the proposed adaptive linear precoding schemes, we map the antenna

diversity to a precoding diversity with countable independent DoF. The precoding diversity

produces a MUI diversity and thus improves the SNR of the CR system under investigation.

The network adapts the precoding according to the maximum achievable SNR which fulfills

the network constraints. Concerning the complexity, on one hand the comparable conventional

precoding schemes, i.e. ZF-BD and MMSE-BD, only have one DoF compared to the pro-

posed adaptive schemes which is an advantage in favor of computations reduction. On the

other hand, advances of the parallel computing can handle the calculations of the independent

precoding DoFs in the proposed adaptive methods efficiently. In the following, we present

the details of the proposed adaptive linear precoders AZB and AMB. Without loss of gener-

ality, both MUI and PUI conditions in the adaptive linear preprocessing schemes are formed

as: H̃jFk ≥ 0Nc×Nc
and GFj ≥ 0Np×Nc

, ∀j, j 6= k, respectively. Therefore, the mechanism

of the proposed approaches works on producing a precoding and a MUI diversity while sat-

isfying the PUI condition
K
∑

k=1

E {‖GFksk‖2} ≤ Ith, and dissipating the entire transmit power

PT spectrally efficiently. Specifically, the key idea beyond the adaptive based preprocessing

considers a part of complementary MIMO channel’s paths (or subspaces) when computing a

corresponding precoding DoF as will be described below. In other words, the design of the dth
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precoding DoF counts on one combination of complementary MIMO channel’s paths (rows) or

subspaces. Through scanning the entire combinations of paths (or subspaces), we can create a

precoding set indexed for the kth CU as Dk = {1, 2, . . . , |Dk|}. As we consider equal number

of antennas per CU Nc, all CUs will have similar size precoding set, i.e. |D| = |Dk|, ∀k. From

CUs’ precoding sets, we combine the overall DoF set of network as K-tuples. To establish a

low complexity solution, we combine the similar indices of the K precoding sets of the K CUs

together, i.e. the K-tuple F(d) ∈ {F(1), . . . ,F(|D|)}, where for instance the first K-tuple in

the DoF set is defined as F(1) = [F1(1)F2(1) . . .FK(1)].

5.2.1 Adaptive Zero Forcing Block Diagonalization

In this approach, we address the sum-rate maximization (5.6) which considered non-convex

problem as the MUI occurs in the denominator of each CU’s SINR. To solve it in the context of

the proposed AZB method, we should find the best K-tuple precoding F(d̂) which maximizes

the sum-rate.

To exploit the antenna diversity of CUs, we generate precoding diversity by two means:

Subspace (orthogonal basis) combining and channel path combining. Note that the cardinality

of D is a function of the number of rows of the complementary MIMO channel for the kth CU

H̄k = [GT H̃T
1 . . . H̃

T
k−1H̃

T
k+1 . . . H̃

T
K ]

T

i.e. |D| = f(Rk), where Rk = Np + Nr − Nc. To this end, we consider the MUI seen by

other K − 1 CUs but not the intra-user interference seen by the kth CU itself. Note that the

conventional ZF-BD approach can be seen as one candidate DoF within the proposed AZB

scheme and is the only case causing convexity. We will consider the waterfilling solution of this

convex case PZB as a power allocation solution for the proposed AZB precoder. The details of

both subspace and channel path combining methods follow.

1. Subspace Combining (AZB-SC):

In this approach, all paths of the complementary MIMO channel are considered in the

preprocessing (rows of MIMO channel), however, the subspaces of the complementary

MIMO channel are combined. Precisely, not only the null space of H̄k is taken into

account, but also the spaces of the non-zero singular values. For the CU k, the cardinality

of the precoding set in this method is |D| = Rk + 1 and the DoF set is indexed as

D = {0, 1, 2, . . . ,Rk}. For instance, let the singular values of H̄k be ordered as λ̄1 ≥
λ̄2 ≥ · · · ≥ λ̄Rk

and the null space is indexed as d = 0, therefore the index d = 3
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refers to the spaces of the null as well as the smallest three non-zero singular values.

For the CU k and the precoding index d, denote H̄
(d)
k ∈ C

NCB×(Nc+d) as the space of

the null as well as the smallest d non-zero singular values in H̄k. Then, apply the SVD

as H̃kH̄
(d)
k = Ǔ

(d)
k Λ̌

(d)
k V̌

(d)H
k to diagonalize the effective channel before applying power

solution PZB

k . The precoder and receive filter can be written as

FAZB1

k (d)=H̄
(d)
k V̌

(d)
k (PZB

k )
1
2 and WAZB1

k (d)=Ǔ
(d)H
k Γk (5.8)

Remark 1: For zero PUI constraint Ith = 0, we use the null space of G denoted as G⊥

which is defined as

G⊥ = INCB
−GH(GGH)−1G (5.9)

such that the effective channel of the kth CU is projected onto G⊥ before applying the

SVD operation as H̃kG
⊥H̄

(d)
k = Ǔ

(d)
k Λ̌

(d)
k V̌

(d)H
k for the diagonalization and power allo-

cation steps. The precoder becomes FAZB1

k (d)=G⊥H̄
(d)
k V̌

(d)
k (PZB

k )
1
2 .

2. Channel Path Combining (AZB-CPC):

In this method, we define the complementary channel model of the CU k, excluding the

kth CU’s channel model ỹk = H̃ksk + ñk as

ỹAZB2

k
(d) = H̃k(d) Fk(d) sk + ñk(d) (5.10)

where ỹ
k
(d), Fk(d), sk, ñk(d), and H̃k(d) are given, respectively, as

ỹ
k
(d) = [yT

niỹ
T
1 . . . ỹ

T
k−1ỹ

T
k+1 . . . ỹ

T
K ]

T (5.11)

Fk(d) = [F1(d) . . .Fk−1(d)Fk+1(d) . . .FK(d)] (5.12)

sk = [sT1 . . . s
T
k−1s

T
k+1 . . . s

T
K ]

T (5.13)

ñk(d) = [nT
p ñ

T
1 . . . ñ

T
k−1ñ

T
k+1 . . . ñ

T
K ]

T (5.14)

H̃k(d) = M
(d)
k ⊙ H̄k

= M
(d)
k ⊙ [GT H̃T

1 . . . H̃
T
k−1H̃

T
k+1 . . . H̃

T
K ]

T (5.15)

given that ⊙ is the Hadamard “element wise product” operator and M
(d)
k ∈ R

Rk×NCB is

the so-called inclusion matrix which corresponds to the precoding index d of the CU k.

The cardinality of the precoding set is |D| =∑Rk

j=1
RkCj = 2Rk − 1 per CU, where mCn

refers to the number of possible n-tuples combined from m entities. The entries of each

column in M
(d)
k are expressed as the binary conversion of the decimal index d as shown in
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Table 5.1: Entries of M
(d)
k , ∀d ∈ D of AZB-CPC

Row index of M
(d)
k ↓ M

(d)
k → M

(1)
k M

(2)
k M

(3)
k . . . M

(|D|)
k

1 0T 0T 0T 1T

...
...

... 0T . . .
...

0T 1T 1T

Rk 1T 0T 1T 1T

Table 5.1 in which 0T and 1T are 1×NCB all-zero and all-one row vectors, respectively.

For instance, for Rk = 8 and precoding index d = 3, the inclusion matrix M
(3)
k has NCB

equal column vectors each written as [0 0 0 0 0 0 1 1]T , where Rk determines the number

of binary digits of the vector and d represents the decimal value of the binary column

vector. For the CU k and index d, denote H̃
(0)

k (d) as the null space of H̃k(d), then apply

the SVD to the effective channel as H̃kH̃
(0)

k (d) = Ǔ
(d)
k Λ̌

(d)
k V̌

(d)H
k for the diagonalization

purpose before the waterfilling power allocation solution PZB

k . Thus, the ultimate form of

the precoder and receive filter of the kth CU can be written as

FAZB2

k (d)=H̃
(0)

k (d)V̌
(d)
k (PZB

k )
1
2 and WAZB2

k (d)=Ǔ
(d)H
k Γk (5.16)

Remark 2: For zero PUI Ith = 0, similar to Remark 1 the effective channel of the kth

CU should be projected on G⊥ defined in (5.9) before applying the SVD operation as

H̃kG
⊥H̃

(0)

k (d) = Ǔ
(d)
k Λ̌

(d)
k V̌

(d)H
k . The precoder becomes FAZB2

k (d)=G⊥H̃
(0)

k (d)V̌
(d)
k (PZB

k )
1
2 .

Therefore, the optimal K-tuple
{

FAZB(d̂),WAZB(d̂)
}

, d̂ ∈ D, should achieve the maximum

sum-rate while satisfying the PUI condition.

5.2.2 Power Allocation of the Adaptive Zero Forcing Block Diagonaliza-

tion

In this section, we illustrate the derivation of the waterfilling power PZB

k , ∀k employed in the

proposed AZB precoder. Note that the objective function to be optimized is the sum-rate sub-

jected to a single constraint: The power budget. First, the Lagrangian can be written as

LZB({Pk}, µ)=
K
∑

k=1

log2
∣

∣INc
+Λ̌2

kPk

∣

∣− µ

(

K
∑

k=1

Tr (Pk)−PT

)

(5.17)
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where µ is a Lagrange multiplier associated with the power constraint and both Λ̂k as well as

Pk are diagonal matrices. Note that the MUI vanishes in the ZF-BD technique.

Then we obtain the optimal power by applying the Karush-Kuhn-Tucker (KKT) conditions

[BV04]. The gradient ∂LZB

∂Pk
= 0 can be easily derived from which the optimal power is written

as

PZB

k =
[

{ln 2 (µINc
)}−1 − Λ̌−2

k

]+
, ∀k (5.18)

The power is obtained after n iterations for the dual variable µ using a numerical method like

the bisection method [BV04].

5.2.3 Adaptive Minimum Mean Square Error Block Diagonalization

In this section, we develop the conventional MMSE based precoding scheme into the proposed

AMB precoding. As mentioned earlier, the precoding diversity enhances the network perfor-

mance as it causes a notable improvement of the downlink SNR. Based on the MMSE criterion,

the MMSE based precoder regularizes the channel inversion via a regularization factor contain-

ing the transmit power and noise covariance. We address the MMSE optimization problem in

(5.7).

In the proposed AMB approach, we develop a precoder to suppress the MUI and to fulfill

both transmit power as well as PUI constraints. To exploit the multiple antenna structure of CUs,

a DoF set with a cardinality |D| collecting all path combinations is computed as mentioned.

Then, we find the optimal precoding K-tuple according to the following criterion:

F(d̂)=argmax
d∈D

K
∑

k=1

rk (F(d)) (5.19)

where rk (F(d)) is the data rate of the kth CU given as a function of the dth K-tuple F(d),

d ∈ D. Therefore, we first solve (5.7) for all DoFs, i.e. ∀d ∈ D, then apply (5.19) to find the

optimal network precoding F(d̂). Toward this goal, we define the network channel model of the

dth DoF as

ỹAMB(d) = H̃(d) F(d) s+ ñ (5.20)

where ỹAMB(d), F(d) and H̃(d) are defined, respectively, as

ỹAMB(d) = [ỹ1(d)
T ỹ2(d)

T . . . ỹK(d)
T ]T (5.21)

F(d) = [F1(d)F2(d) . . .FK(d)] (5.22)

H̃(d) = M(d) ⊙ H̃ (5.23)
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where M(d) ∈ R
Nr×NCB is the inclusion matrix of the dth DoF for which the entries are tabulated

in Table 5.2. Here, we point out that the precoding set has a cardinality of |D| =∑Nr

j=1
NrCj =

2Nr − 1 DoFs. Each j-tuple corresponds to one path combination produced by (5.21). To this

Table 5.2: Entries of M
(d)
k of AMB, ∀d ∈ D

Row index of M(d) ↓ M(d) → M(1) M(2) M(3) . . . M(|D|)

1 0T 0T 0T 1T

...
...

... 0T . . .
...

0T 1T 1T

Nr 1T 0T 1T 1T

end, we apply the channel model defined in (5.21) to the MMSE network precoding resulted

from solving (5.7) as described in [LL11]. The MMSE based precoding is given by

F̂(d) = γ F̄(µ, d)

= γ

(

H̃(d)HH̃(d)+µGHG+
Nr−µIth

PT

INCB

)−1

H̃(d)H

(5.24)

where γ =
√

PT/Tr
(

F̄(µ, d)F̄(µ, d)H
)

and µ is a positive parameter that lies in the interval

0 ≤ µ ≤ Nr/Ith in order to regularize the precoding matrix such that the entire transmit power

PT is dissipated while fulfilling the PUI constraint. µ can be found numerically by the bisection

method [BV04].

Remark 3: For zero PUI constraint Ith = 0, the regularized channel inversion in (5.24) takes

another form considering the null space of G defined in (5.9) as

F̂(d) = γG⊥H̃(d)H
(

H̃(d)G⊥H̃(d)H +
Nr

PT

INr

)−1

(5.25)

Then, the space of the orthonormal bases of the kth CU which are spanned by the column

vectors of the corresponding projection matrix F̂k(d) can be obtained by the QR decomposition

as follows:

F̂k(d) = Qk(d)Rk(d), ∀k (5.26)

where Qk(d) ∈ C
NCB×Nc contains Nc-dimensional columns of orthonormal bases. Then, we

apply the power allocation counting on the MMSE combining matrix PAMB

k for the kth CU which
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minimizes the sum MSE subject to a transmit power constraint as shown in [SLL09b]. Mathe-

matically, PAMB

k (d) is computed for the dth DoF as described in (3.9) as PAMB

k (d) = β(d)P̄AMB

k (d),

where

P̄AMB

k (d) =

(

Qk(d)
HΣK

j=1H̃
H
j H̃jQk(d)+

Nr

PT

INc

)−1

Qk(d)
HH̃H

k H̃kQk(d) (5.27)

and β(d) is computed as β(d) =
√

PT/ΣK
k=1Tr

(

P̄AMB

k (d)HP̄AMB

k (d)
)

.

To this end, applying the SVD decouples the effective channel into parallel subchannels

for carrying parallel data streams as H̃kQk(d)P
AMB

k (d) = Ǔk(d)Λ̌k(d)V̌k(d)
H . Ultimately, the

precoder and receive filter of the proposed AMB technique are expressed as

FAMB

k = Qk(d)P
AMB

k (d)V̌k(d) and WAMB

k = Ǔk(d)
HΓk (5.28)

5.3 Performance Evaluation

In this section, we carry out an analysis of the performance of the proposed adaptive precoding

approaches. We consider an analysis in terms of the sum-rate and computational complexity.

5.3.1 Achievable Sum-Rate Analysis

Note that the AMB precoding regularizes the inversion by a regularization factor, which is

inversely proportional to the SNR operating point of the downlink. Therefore, in the high

SNR regime the regularization factor approaches zero, and consequently the MMSE based pre-

coding method converges to the ZF based precoding and therefore exhibits a similar sum-rate

[LL11, SLL09b]. However, in the low SNR regime, we expect an achievable sum-rate in favor

of AMB precoding outperforming the AZB solution due to the fact that the regularization factor

mitigates the degradation caused by the noise term. Unlike fixed precoding based conventional

methods, i.e. ZF-BD and MMSE-BD, the proposed adaptive MMSE based precoding scheme

calculates a set of precoding matrices (precoding diversity) for the kth CU and therefore ex-

hibits a MUI diversity at each CU. Intuitively speaking, precoding diversity likely improves the

SNR and the spectral efficiency gains of the CUs. Furthermore, we emphasize that those gains

grow proportionally in terms of the number of antennas per CU because of the antenna coordi-

nation at the receiver. To calculate the maximum SNR and achievable sum-rate of the proposed

schemes, we count on the output signal of the kth CU receive filter considering the optimal pair
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Fk(d̂),Wk(d̂) obtained from (5.19) as

ỹk = Wk(d̂)HkFk(d̂)sk +Wk(d)Hk

K
∑

j=1,j 6=k

Fj(d̂)sj +Wk(d̂)nk (5.29)

By substituting (5.8), (5.16), and (5.28) in (5.29), we get

ỹAZB

k = Λ̌k(d̂) (P
ZB

k )
1
2 sk + Ǔk(d̂)

HH̃k

K
∑

j=1,j 6=k

Fj(d̂)sj + Ǔk(d̂)
Hñk

(5.30)

ỹAMB

k = Λ̌k(d̂)sk + Ǔk(d̂)
HH̃k

K
∑

j=1,j 6=k

Fj(d̂)sj + Ǔk(d̂)
Hñk (5.31)

It is worth noting that the statistical characteristics of ñk do not change when multiplied by a

unitary matrix UH
k . Therefore, the maximum achievable sum-rate of the proposed AZB and

AMB precoding schemes can be expressed, respectively, as follows:

RAZB =
K
∑

k=1

Nc
∑

i=1

log2











1 +
Λ̌k,i(d̂)

2P ZB

k,i

1+
K
∑

j=1,j 6=k

∥

∥

∥
wk,i(d̂)HkFj(d̂)

∥

∥

∥

2











(5.32)

RAMB =
K
∑

k=1

Nc
∑

i=1

log2











1 +
Λ̌2

k,i(d̂)

1+
K
∑

j=1,j 6=k

∥

∥

∥
wk,i(d̂)HkFj(d̂)

∥

∥

∥

2











(5.33)

where Λ̌k,i(d̂) and P ZB

k,i refer to the ith diagonal element of Λ̌k(d̂) and PZB

k , respectively. wk,i(d̂)

is the ith row vector of Wk(d̂).

5.3.2 Computational Complexity Analysis

In this section, we present an analysis of the computational complexity of the proposed method.

Relying on the floating point operations (FLOPS) stated in [GL96, SLL09b, ZdLH13], the

FLOPS of the required matrix operations are described as follows:

• Multiplication of m× n by n× p complex matrices: 8mnp− 2mp

• QR decomposition of an m× n(m ≤ n) complex matrix: 16(n2m− nm2 + 1
3
m3)
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• SVD of an m× n(m ≤ n) complex matrix where only Λ and V are obtained: 32(nm2 +

2m3)

• SVD of an m× n(m ≤ n) complex matrix where U,Λ, and V are obtained: 8(4n2m +

8nm2 + 9m3)

• Inversion of an m×m matrix using Gauss-Jordan elimination: 4
3
m3

• Hadamard product of m× n real and m× n complex matrices: mn

We illustrate the required FLOPS for the proposed adaptive linear precoding techniques

AZB-SC, AZB-CPC, and AMB in Tables 5.3, 5.4, 5.5, respectively.

Table 5.3: Computational complexity of AZB-SC

Steps Operations FLOPS

×(|D|=Rk+1)

1 SVD of H̄k 32K(NCBR2
k+2R3

k )/|D|
2 H̃kH̄

(d)
k K(8N2

c NCB+8NcNCBd− 2N2
c −2Ncd)

3 SVD of H̃kH̄
(d)
k 8K(18N3

c +10N2
c d+Ncd

2)

4 Calculation of PZB

k 6KnNc/|D|

Table 5.4: Computational complexity of AZB-CPC

Steps Operations FLOPS

×(|D|=2Rk−1)

1 M
(d)
k ⊙ H̄k KRkNCB

2 SVD of H̃k(d) 32K(NCBR2
k+2R3

k )

3 H̃kH̃
(0)
k (d) K(8N2

c NCB−2N2
c )

4 SVD of H̃kH̃
(0)
k (d) 8K(21N3

c )

5 Calculation of PZB

k 6KnNc/|D|

Note that the computational complexity primarily counts on the system antenna configura-

tion. For instance the CR configurations 8×(3,3) and 8×(2,2,2) for a given PR configuration
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Table 5.5: Computational complexity of AMB

Steps Operations FLOPS

×(|D|=2Nr−1)

1 M(d) ⊙ H̃ NrNCB

2 F̂(d) 4
3
N3
CB+NCB(2−2Nr) +N2

CB(24Nr+8Np−6)

3 QR of F̂k(d) 16K(N2
CBNc−N2

c NCB+
1
3
N3

c )

4 Calculation of PAMB

k (d) K{N3
c (

28
3
+8)+N2

c (16NCB−7) +Nc(16N
2
CB−4NCB + 1

+8N2
CB/|D|)−2N2

CB/|D|}
5 H̃kQk(d)P

AMB

k (d) 8KN3
c +KN

2
c (8NCB − 4)

6 SVD of H̃kQk(d)P
AMB

k (d) 8K(21N3
c )

2×2, although they have a similar Nr, present different complexity and performance due to the

contrast in K and Rk. The best selection of antenna configuration can be a capacity-complexity

trade-off as will be demonstrated in the simulation results.

5.4 Simulation Results

5.4.1 Channel Model and System Configuration

In the simulations, we conduct experiments for a multiuser MIMO CR based broadcast chan-

nel model suffering from Rayleigh flat fading. The elements of the channels of the cognitive

links Hk, ∀k and the interference link G are generated as i.i.d random variables as described

in the statistical channel model described in section 2.5 in which the path loss, shadowing, and

Rayleigh-distributed multipath fading are combined. The channel parameters are configured as

follows. We assume a normalized free space loss, i.e. Z0 = 1, γ = 2, shadowing variance

σ2
S(dB) = 0, and Rayleigh multipath fading variance σ2

m = 1.

The SNR of the PU link is defined as SNRPR = PPB/σ
2
n, and the CUs link as SNRCR =

PT/σ
2
n with noise variance σ2

n = 1.

The CR link is configured as 14×(4,4,4), i.e. three CUs with Nc = 4, and the PR link as

2×2 unless otherwise stated.
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5.4.2 Example 1: Comparison of the Achievable Sum-Rates

In this section, simulations are conducted for six different precoders including the proposed

techniques as illustrated in Figure 5.2. The comparable precoder successive MMSE (SMMSE)

described in [LLHL08] is modified to fit CR requirement. Generally speaking, Figure 5.2

demonstrates that the proposed adaptive precoders outperform the conventional precoders in the

low and moderate SNR regions which are of practical importance. Also, it exhibits the superior-

ity of the AMB precoder with achievable spectral efficiency gain of 5 bps/Hz at SNRCR = 5 dB

and a SNR gain about 3 dB at a spectral efficiency of 10 bps/Hz. Furthermore, it shows that

employing a larger number of antenna per CU improves the sum-rate as a consequence for

the antenna coordination at the receiver. From another perspective, setting more antennas per

CU causes a bigger capacity gap between the proposed AMB precoder and the conventional

schemes and, however, smaller gap toward the AZB precoder curves.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

CR:14×(4,4,4)

CR:14×(2,2,2,2,2,2)

SNRCR [dB]

S
u

m
-r

at
e

[b
p

s/
H

z]

PR : 2× 2, Ith = 0, SNRPR = 15dB

AMB

AZB-CPC

AZB-SC

MMSE-BD

SMMSE [LLHL08]

ZF-BD

PR Link

Figure 5.2: Sum-rate versus SNRCR for two antenna configurations
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5.4.3 Example 2: Effect of the Whitening Process and Primary SNR on

the CR Sum-Rate

In this example, an illustration is presented about the effect of the whitening process on the

sum-rate of a CR link configured as 14×(2,2,2,2,2,2) at the operating point SNRPR = 5 dB.

As mentioned in the system model, the whitening process reduces the effect of the interference

produced by the PR-BS and received by the CUs enhancing the CR sum-rate. Figure 5.3 ver-

ifies this fact for which the whitening process takes the advantage of the PR-BS interference

to improve the SNR. Note that a small SNRPR produces small PR sum-rate and little PR-BS

interference causing little improvement for the whitened CR sum-rate over the non-whitened.

Non-whitening can be implemented by setting Γk, ∀k as identity matrix. Moreover, it is worth

to note that the proposed AMB precoder can achieve a spectral efficiency gain up to 3 bps/Hz

in the high SNR region when the number of the antennas per CU decreases whether with or

without whitening process.
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Figure 5.3: Effect of the whitening process on sum-rate
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5.4.4 Degree of Freedom and Complexity Analysis

In this example, we present an illustration on the precoding DoF diversity and its influence on

the capacity and complexity of the proposed AMB precoder. Concerning the capacity aspect,

Figure 5.4 exhibits an instantaneous CR sum-rate conducted at SNRCR = 25 dB in terms for the

dth index of DoF, ∀d ∈ D. It illustrates that the DoF diversity causes MUI and PUI diversities.

Furthermore, it demonstrates that the optimal DoF selected for the AMB precoder meets the

PUI constraint while achieving a spectral efficiency gain.
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Figure 5.4: Effect of the DoF diversity on the sum-rate

Regarding to the complexity aspect, the antenna configuration and number of CUs K to be

served both affect the number of the required FLOPS. Figure 5.5 and Figure 5.6 exhibits the

number of FLOPS as a function of K and Nc, respectively. It shows that the proposed AZB-SC

scheme is the least complex as it has linear complexity, but both AMB and AZB-CPC schemes

are expensive computationally as they have exponential complexities. It is also obvious that the

growth of Nc increases the complexities more than the growth of K.
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Figure 5.5: Effect of the DoF diversity on the complexity for fixed Nc

5.5 Chapter Summary

In this chapter, we have developed a non-iterative linear adaptive MMSE based precoder dubbed

“AMB” suitable for multiuser MIMO CR based broadcasting. The proposed AMB precoder

employs our developed conception so-called precoding diversity in which the multiple antenna

structure is better utilized compared to conventional precoders. We have also extended the con-

ventional ZF based precoding approach into an adaptive precoding dubbed “AZB” exploiting

precoding diversity. Roughly speaking, the proposed AMB precoder resolves notable spectral

and SNR gains over the state-of-the-art and the AZB precoder in the SNR region of interest: The

low SNR region. In the high SNR region, the AMB precoder is characterized by an increment

of spectral efficiency gain when the number of antennas per CU decreases. Unlike non-linear

iterative precoders, the proposed precoders are linear non-iterative and therefore provide less

complexity along with a spectral efficiency achievement. The degrees of freedom of the pro-

posed AMB precoder can be handled independently by parallel computing. The characteristics

of our proposed precoder make it a candidate for future mobile CR networks.
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6
Conclusions and Outlook

6.1 Conclusions

In this thesis, we have developed efficient RA and precoding schemes for both multiuser MIMO-

OFDM and multiuser MIMO based CR networks. In the context of the multiuser MIMO-OFDM

CR network, we have developed RA and adaptive precoding schemes for both the DL and UL.

The proposed schemes are characterized by both computational and spectral efficiencies. The

adaptive precoder operates based on generating countable degrees of freedom by combining

the spaces of the block interference channel. The RA has been formulated as a sum-rate max-

imization problem subject to total power and PUI constraints. The variables of the problem

were matrix of the precoding and integer indicator of the subcarrier mapping. Since the for-

mulated optimization problem is a mixed integer having a combinatorial complexity which is

hard to solve, we separated it into a two-phase procedure to elaborate computational efficiency:

Adaptive precoding (DoF assignment) and subcarrier mapping.

From the implementation perspective, the RA of the DL is central based processing, but

the UL is semi-distributed based. Central RA task has been solved to maintain central adaptive
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precoding and subcarrier mapping for both the DL and UL. The subcarrier mapping has been

performed by optimal and efficient method for the DL as the problem is modeled as convex.

But, it is characterized by near-optimality for the UL despite the convexity due to the per-user

resource constraints of the UL problem. The DL problem has been solved by using the La-

grangian multiplier theory which is regarded as an efficient alternative methodology compared

to the convex optimization theory. The solution is not only characterized by low-complexity,

but also by optimality. Concerning the UL, the distributive RA task is necessary to resolve the

power allocation of the UL. However, the distributive RA processing can be an option for the

DL to provide more degrees of freedom in the adaptive precoding on the user level design. The

prominent advantages of the semi-distributed scheme in the UL are the provided computational

and spectral efficiencies. Moreover, such scheme also leads to a small data overhead and helps

simplify the terminal structure. Numerical simulations illustrated remarkable spectral and SNR

gains provided by the proposed scheme. In addition, it demonstrated robustness against the

tight and relaxed transmission conditions, i.e. interference constraints. Therefore, the proposed

schemes enable larger communication range for underlay CR networks.

We have also developed a non-iterative linear adaptive MMSE block diagonalization based

precoder “AMB” for multiuser MIMO CR based broadcasting. The proposed AMB precoder

employs the proposed DoF concept which we call it here precoding diversity. In this context,

DoFs of the proposed precoder are generated by space combining and channel path combining

methods. We have also extended the conventional ZF block diagonalization based precoding

approach into an adaptive precoding “AZB” using our precoding diversity concept. Roughly

speaking, the proposed AMB precoder illustrated a notable spectral and SNR gains over the

conventional and the AZB precoders in the SNR region of interest: The low SNR region. Un-

like non-linear iterative precoders, the proposed precoders are linear non-iterative and therefore

provide low-complexity along with a spectral efficiency achievement. The extra complexity

provided by the proposed precoders is an indispensable price for the gained spectral efficiency

compared to the state-of-the-art linear precoders. More specifically, the antenna configuration

affects the complexity of both AMB and AZB precoders, which is designed according to the

capacity-complexity trade-off. The growth in complexity of the proposed AMB and AZB pre-

coders is exponential with order O(2Rk). Since the high complexity is a major limiting factor

w.r.t tractability, we address it by the following reduction aspects

• Parallel Computing: Since the DoFs of the precoders AMB and AZB-CPC can be com-

puted independently, the parallel computing is an option for complexity reduction with

investment in the hardware part. This aspect is not applicable in non-linear DPC based
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schemes as they are serial based precoders despite the high spectral efficiency they can

provide.

• Exponential complexity breaking: Another practical solution for reducing the complexity

is to break the exponential complexity. Intuitively, the multiuser MIMO broadcasting

scenario produces higher spectral efficiency than the single-user MIMO scenario. From

this observation, the size of DoF set can be reduced and confined to those DoFs that take

all CUs into account. In other words, at least one channel path from each CU should

be considered in each DoF of the AMB precoder. The DoFs that skip some CUs harm

the spectral efficiency as those excluded CUs have no interference control mechanism,

and thus it is likely they introduce severe MUI at other users. Expectations of complexity

reduction can be up to 80% based on the number of antenna per CU. Hence, that improves

the practicality of the proposed adaptive precoders.

• SVD Replacement: Concerning the AZB-CPC, replacing the SVDs by QR decomposi-

tions, as in [ZdLH13], is another aspect for complexity reduction.

Taking complexity reduction aspects into considerations, the characteristics of our proposed

precoder make it a candidate for future mobile CR networks.

6.2 Outlook

In the work of this thesis, the inter-cell interference was not considered in the proposed adaptive

precoding and resource allocation schemes. This assumption does not make sense in realistic

cellular systems due to the fact that cell-edge users experience strong path loss and inter-cell

interference. Therefore, the proposed precoding and power allocation solutions in this thesis

are not sufficient to address the poor performance of the cell-edge user, however they can be

seen as a step toward that goal. Extension of this work by considering smart cooperation, het-

erogeneous networking, and inter-node coordination scenario(s) is an advantage to address the

poor conditions experienced by cell-edge users and to further improve the capacity. In partic-

ular, relaying not only improves the coverage range of the cell, but additionally reduces the

interference at cell edges by reducing the transmit power over a smaller range. In inter-node

coordinations, neighbor base stations are grouped into clusters such that each cluster coordi-

nate the transmission directed to the cell-edge user in order to avoid the inter-cell interference.

Despite the benefits of the inter-node coordination, the inter-cluster interference is still problem-

atic. State-of-the-art precoders such as those proposed in this thesis along with wise relaying
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and scheduled coordination schemes can play a role to have a strategic solution for the problem.

One interesting application for our proposed precoding is the simultaneous transmission re-

ception which is proposed for the upcoming 5G networks according to [4G 14]. In this scheme,

both UL and DL transmissions are performed simultaneously on the same physical radio re-

source such that they interfere each other. Interference cancellation is a candidate technique to

address it, but it brings no performance when the received signals are weak compared to the

strong transmitted signals. In this context, such kind of self-interference can be managed by

engaging the spatial division multiplexing and interference management which have been used

in the proposed precoding schemes in this thesis.

The proposed adaptive precoding in this work has been established upon the concept of

precoding diversity which is based on DoFs. In fact, using such kind of processing may not be

computationally efficient in case of being developed into massive MIMO with tens or hundreds

of antennas. Toward the compatibility with massive MIMO, it is better to design an efficient

paradigm for the adaptive precoding without DoFs. Such design is possible in the context of

multiuser MIMO-OFDM CR scenario by finding the optimal precoding via direct derivation

from the cost function of the problem. That implies using Lagrange multiplier and convex

optimization theories for solving the problem away from the ZF and MMSE criteria.
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Abbreviations and Acronyms

1G First Generation

1xEV-DO 1x Evolution Data-Optimized

2G Second Generation

2.5G 2.5 Generation

2.75G 2.75 Generation

3G Third Generation

3.5G 3.5 Generation

3GPP 3rd Generation Partnership Project

4G Fourth Generation

5G Fifth Generation

AMB Adaptive MMSE Block Diagonalization

AMPS Advanced Mobile Phone System

APA Adaptive Precoding with an initial (Approximate) subcarrier allocation

AWGN Additive White Gaussian Noise

AZB Adaptive ZF Block Diagonalization
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AZB-CPC AZB with Channel Path Combining

AZB-SC AZB with Subspace Combining

BC Broadcast Channel

CDMA Code Division Multiple Access

CR Cognitive Radio

CR-BS CR Base Station

CSCG Circular Symmetric Complex Gaussian

CSI Channel State Information

CU CR User

DFT Discrete Fourier Transform

DL Downlink

DoF Degree of Freedom

DPC Dirty paper coding

EDGE Enhanced Data Rates for GSM Evolution

EPA Equal Power allocation with Adaptive precoding

ETSI European Telecommunication Standards Institute

FCC Federal Communication Commission

FDMA Frequency Division Multiple Access

FOMA Freedom of Mobile Multimedia Access

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

HEW High-Efficiency WLAN

HPT Hybrid Precoding with Transmit power control

HSD/UPA High Speed Downlink/Uplink Packet Access

IEEE Institute of Electrical and Electronics Engineers

i.i.d. Independent and identically distributed

IMT-2000 International Mobile Telecommunications-2000

IS-95 Interim Standard 95

IS-136 Interim Standard 136

ISI Inter-Symbol Interference

ITU International Telecommunication Union

KKT Karush-Kuhn-Tucker

LTE Long Term Evolution

LTE-A LTE-Advanced
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MAC Multiple Access Channel

MIMO Multiple-Input Multiple-Output

MMSE Minimum Mean Square Error

MMSE-BD MMSE Block Diagonalization

MSE Mean Square Error

MRT Maximum Ratio Transmission

MUI Multiuser Interference

NGMN Next Generation Mobile Networks

NMT Nordic Mobile Telephones

NNT Nippon Telephone and Telegraph

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

PL Path Loss

PR Primary Radio

PR-BS PR Base Station

PU PR User

PUI PU Interference

PRL PU Rate Loss

QoS Quality-of-Service

RA Resource Allocation

RRM Radio Resource Management

SC-FDMA Single Carrier FDMA

SDMA Spatial Division Multiple Access

SDR Software-Defined Radio

SINR Signal-to-Interference-plus-Noise Ratio

SMMSE Successive MMSE

SNR Signal-to-Noise Ratio

SPT SVD Precoding with Transmit Power control

SVD Singular Value Decomposition

TACS Total Access Communication Systems

TDD Time-Division Duplexing

TDMA Time Division Multiple Access

UL Uplink

UMTS Universal Mobile Telecommunication System
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WCDMA Wideband CDMA

WF Waterfilling

WiMAX Worldwide Interoperability for Microwave Access

WLAN Wireless Local Area Network

WRAN Wireless Regional Area Networks

ZF Zero-Forcing

ZF-BD ZF Block Diagonalization

ZP Zero-Forcing Precoding



B
Notation

Conventions

Matrices and vectors are denoted by boldface capital and small letters, respectively. Determi-

nant, rank, and trace of a matrix are written as |.|, Rank(.), and Tr(.), respectively. (.)T and (.)H

are the transpose and conjugate transpose, respectively. Inverse of a square matrix is written as

(.)−1. blkd(A1 . . .AM) represents the block diagonal matrix with diagonal matrices given by

the set {A1, . . . ,AM} and zero off-diagonal elements. diag(x) denotes a diagonal matrix with

diagonal elements given by the vector x.

Unless otherwise stated, whitened parameters, projected entities, complementary elements,

and hard/optimized decisions are marked by (̃.), (̄.), (̌.), and (̂.). Block parameters are marked

by (.).

Specific Sets

C Complex numbers

C
n Complex n-vectors
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C
m×n Complex m× n matrices

R Real numbers

R
n Real n-vectors

R
m×n Real m× n matrices

R++ Positive real numbers

S
n
++ Symmetric positive definite n× n matrices

Operations on Scalars, Vectors, and Matrices

⊙ Hadamard product of two matrices

mCn Binomial coefficient
(

= m!
(m−n)!n!

)

[x]+ Semi-definite operator (= max(x, 0))

(.)T Transposed of a vector or a matrix

(.)H Conjugate transposed of a vector or matrix (.)H = ((.)∗)T =
(

(.)T
)∗

diag(x) Diagonal matrix with diagonal elements given by the vector x

X−1 Inverse of a square matrix X

E{.} Expectation operator

‖.‖ Euclidean norm

blkd(A1 . . .AM) Block diagonal matrix with diagonal matrices given by the set

{A1, . . . ,AM}
CN (x, NoI) Complex Gaussian circular symmetric distribution with mean vector x

and covariance matrix NoI

List of Variables

Variables Used for Channel Modeling (Chapter 2)

d0 Reference distance

distance Destination distance

γ Path loss exponent

λ Wavelength

Pr Receive power

Pt Transmit power

ψS(dB) Log mean of shadowing component

Z0 Free space path loss
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Zm Multipath component

Zm,I In-phase component of multipath

Zm,Q Quadrature component of multipath

ZPL Path loss component

ZS(dB) Shadowing component

General Variables (Chapter 3)

0m×n All-zero matrix of m× n dimensions

β Power normalization parameter

Fk Precoding matrix of the kth CU

F̂ Block that stacks the pre-precoding matrices of all CUs

G MIMO channel coefficients of the link CR base station-to-PU

G⊥ Null space of G

γ Scaling factor for the received vector in the MMSE precoding scheme

Hk MIMO channel coefficients of the kth CU

H̄k Complementary interference channel of the kth CU

H̄
(0)
k Null space of H̄k

Ĥ Channel block that stacks MIMO channels of all CUs

Ith Interference threshold at PU

In n× n identity matrix

K Count of served CUs

Λk Diagonal matrix containing eigenvalues of the kth CU channel Hk

µ Positive number connected to Lagrange multipliers of the MMSE opti-

mization constraints

Nc Number of antennas at each CU

NCB Number of antennas at CR base station

Np Number of antennas at PU

Pk Diagonal power matrix of the kth CU

PMB

k MMSE transmit combining matrix of CU k (i.e. voltage matrix but the

power matrix is PMB

k (PMB

k )H )

PT Total transmit power of CR base station

Qk Unitary matrix resulted from QR decomposition for the kth CU pre-

precoding matrix
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Rk Upper triangular matrix resulted from QR decomposition for the kth CU

pre-precoding matrix

Sk Covariance matrix of the kth CU

Uk Left unitary matrix for the kth CU resulted from SVD

Vk Right unitary matrix for the kth CU resulted from SVD

Variables Used for MIMO-OFDM System Modeling (Chapter 4)

αl Temperature parameter of PU l

Copt
D Optimal channel capacity of the DL

Copt
U Optimal channel capacity of the UL

d Index of the dth DoF in the adaptive precoding

D DoF index set

δD Lagrangian multipliers for PUI constraint (C2) of the DL

FD The overall DoF set of the DL

F
(d)
D,k,i The dth DoF of the adaptive precoder at the CR-BS transmitter toward

CU k on subcarrier i

Fl,i SVD precoder at PR-BS transmitter toward PU l on subcarrier i

F
(d)
U,k,i The dth DoF of the adaptive precoder at terminal transmitter of CU k on

subcarrier i

GD,l,i Channel matrix of the cross downlink (CR-BS-to-PU) toward PU l on

subcarrier i

GU,l,k,i Channel matrix of the cross uplink from CU k toward PU l on subcarrier

i

ΓD,k,i Coefficients of whitening filter at the terminal receiver of CU k on sub-

carrier i

ΓU,k,i Coefficients of whitening filter at the CR-BS receiver for CU k on sub-

carrier i

GD Lagrangian dual function of the DL

HD,k,i Channel matrix of the cognitive downlink (CR-BS-to-CU) for CU k on

subcarrier i

HU,k,i Channel matrix of the cognitive uplink (CU-to-CR-BS) for CU k on sub-

carrier i

I thl PUI threshold at the lth PU

Ithl,i PUI diagonal matrix
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K Count of served CUs

K Set containing all CUs

LD Lagrangian function of the DL

L Count of served PUs

λj The jth singular value of GD,l,i

Λj,l The jth singular value of Tl,i

M Number of OFDM tones

M Set containing all OFDM tones

µD Lagrangian multiplier for transmit power constraint (C1) of the DL

nk,i noise vector for CU k at terminal/CR-BS receiver on subcarrier i

Nc Number of antennas of each CU

NCB Number of antennas of the CR-BS

Np Number of antennas of each PU

NPB Number of antennas of PR-BS

Ω
(d)
D,k,i Effective interfering channel power CR-BS-to-PU for DoF d on subcar-

rier i allocated to CU k

P
(d,d−1)
D,th Precoding-threshold between the DoFs d and d− 1 for the DL

Pk Power budget of the kth CU

PT Transmit power of the CR-BS

PD,k,i Diagonal transmit power matrix of the cognitive downlink toward CU k

on subcarrier i

Pl,i Diagonal transmit power matrix on the PR link towards PU l on subcar-

rier i

PU,k,i Diagonal transmit power matrix of the cognitive uplink between CU k

on subcarrier i

PRLl The lth PU rate loss

ΨD Lagrangian multipliers for the semi-definite power constraint (C5) of the

DL

rk Data rate of the kth CU

R Rank of the matrix GD,l,i

ρ Multiplexing indicator of binary value

sD,k,i Transmit data vector on the cognitive downlink toward CU k on subcar-

rier i

sl,i Transmit data vector on the PR link towards PU l on subcarrier i
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sU,k,i Transmit data vector on the cognitive uplink from CU k on subcarrier i

Sk Subcarrier set allocated to the kth CU

Sl Subcarrier set occupied by the lth PU

Tl,i Channel matrix of the PR-BS-to-PU link towards PU l on subcarrier i

τD Time sharing weight of CR downlink

τU Time sharing weight of CR uplink

θ
(d)
k,i Subcarrier mapping indicator of binary value

V
(d)
D,l,i The spaces of the dth DoF obtained from GD,l,i

WD,k,i Post-coding filter at the terminal receiver of CU k on subcarrier i

WU,k,i Post-coding filter at the CR-BS receiver for CU k on subcarrier i

yD,k,i Received vector at kth CU terminal on subcarrier i for the DL

yPR Received vector at the PR users

Zk,i Channel matrix of the PR-BS-to-CU link towards CU k on subcarrier i

ζD Lagrangian multipliers for OFDMA constraint (C4) of the DL

Variables Used for System Modeling (Chapter 5)

0 Column vector of all-zero elements

1 Column vector of all-one elements

β Power normalization parameter

D DoF index set of the adaptive precoding scheme

Fk Precoding matrix of the kth CU

Fp SVD precoder of the PR link

G Coefficients of the channel between the CR-BS and the PU

G⊥ Null space of G

γ Scaling factor for the received signal in the MMSE precoding scheme

Γk Coefficients of the whitening filter of the kth CU receiver

Hk Coefficients of the channel between the CR-BS and CU k

H̄
(d)
k The space of the dth DoF in the AZB-SC scheme

Ĥ
(0)

k Null space of the complementary channel Ĥk in the AZB-CPC scheme

Ith Interference threshold at the PU

K Number of served CUs

K Set containing all CUs

Λk Diagonal matrix containing eigenvalues of the kth CU channel

M
(d)
k Inclusion matrix of the dth DoF for the kth CU
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µ Positive number connected to Lagrange multipliers of the MMSE opti-

mization constraints

Nc Number of antennas of each CUs

NCB Number of antenna elements of the CR-BS

Np Number of antenna elements of the PU

nk Noise vector of the kth CU

np Noise vector of the PU

PT Transmit power of the CR-BS

Pk Power matrix of the kth CU

Pp Power matrix of the PU

Qk Unitary matrix resulted from QR decomposition for the kth CU pre-

precoding matrix

Rk Rank of the complementary channel H̄k

Rk Upper triangular matrix resulted from QR decomposition for the kth CU

pre-precoding matrix

sk Data vector of the kth CU

sp Data vector of the PU

T Coefficients of the channel between the PR-BS and PU

Uk Left unitary matrix for the kth CU resulted from SVD

Vk Right unitary matrix for the kth CU resulted from SVD

Wk Post-coding filter at the kth CU receiver

Zk Coefficients of the channel between the PR-BS and the kth CU
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C
Matrix Calculus

C.1 Hadamard Product

The Hadamard product of two (m × n) matrices A and B is the element-wise multiplication

which is defined as follows

A⊙B =









a11b11 . . . a1nb1n
...

. . .
...

am1bm1 . . . amnbmn









(C.1)

C.2 Cholesky and Singular Value Decompositions

Cholesky Decomposition

If A ∈ C
n×n is Hermitian and positive definite, then it can be decomposed as

A = ΓΓH (C.2)
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where Γ is nonsingular and lower triangular matrix with positive diagonal elements. It is called

the Cholesky decomposition of A.

Singular Value Decomposition

Assuming B ∈ C
m×n with rank(B) = R. B can be factored as [BV04, GL96]

B = UΛVH (C.3)

where U is am×m unitary matrix containing the eigenvectors of BBH and satisfying UUH =

Im. V is a n × n unitary matrix containing the eigenvectors of BHB and fulfilling VVH =

In. Λ is a m × n diagonal matrix containing the non-negative singular values such that Λ =

diag(λ1, . . . , λR) with λ1 ≥ λ2 ≥ · · · ≥ λR ≥ 0. The singular value decomposition can be

written as

B =
R
∑

i=1

uiλiv
H
i (C.4)

where ui ∈ C
m are the left singular vectors and vi ∈ C

n are the right singular vectors.

C.3 Useful Rules and Properties

Some useful rules and properties concerning trace, determinant, inverse, and derivatives fol-

low [PP12]

Trace

Tr(A) =
∑

i

Aii =
∑

i

λi, λi = eig(A) (C.5)

Tr(AXB) = Tr(BAX) = Tr(XBA) (C.6)

Tr(A+B) = Tr(A) + Tr(B) (C.7)

(C.8)
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Determinant

Assuming A is an n× n matrix

|A| =
∏

i

λi, λi = eig(A) (C.9)

|AT | = |A| (C.10)

|A−1| = 1/|A| (C.11)

|AB| = |A| |B| (C.12)

Inverse

(AB)−1 = B−1A−1 (C.13)

If (A+B)−1 = A−1 +B−1 then AB−1A = BA−1B (C.14)

Properties

∂A = 0 Ais a constant (C.15)

∂(aX) = a∂X (C.16)

∂(X+Y) = ∂X+ ∂Y (C.17)

∂(Tr(X)) = Tr(∂X) (C.18)

∂XH = (∂X)H (C.19)

∂(ln |X|) = Tr(X−1∂(X)) (C.20)

Derivative

∂

∂X
Tr(X) = I (C.21)

∂

∂X
Tr(AXT ) = A (C.22)

∂

∂X
Tr(AXTB) = BA (C.23)

(C.24)
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D
Convex Optimization Theory

The general form of optimization problem is defined as follows

min
x

f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m (D.1)

where the functions f0, . . . , fm : Rn → R. The problem (D.1) is called

• linear if f0, . . . , fm are linear (affine) functions such that for all x1,x2 ∈ R
n and η ∈ [0, 1]

fulfill fi(ηx1 + (1− η)x2) = ηfi(x1) + (1− η)fi(x2).

• convex if f0, . . . , fm are convex functions such that for all x1,x2 ∈ R
n and η ∈ [0, 1]

fulfill fi(ηx1 + (1− η)x2) ≤ ηfi(x1) + (1− η)fi(x2).

• quasi-convex if f0, . . . , fm are quasi-convex functions such that for all x1,x2 ∈ R
n and

η ∈ [0, 1] fulfill fi(ηx1 + (1− η)x2) ≤ max(fi(x1), fi(x2)).

• monotonic if f0, . . . , fm are monotonic functions (any combination of decreasing and

increasing functions).
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                                                                                                       All Optimization 

                                                                                                       Problems

                                                                     Monotonic

                                                                     Problems

  Quasi-Convex 

      Problems

Linear 

Problems

Figure D.1: Classes of optimization problems.

The above mentioned classes are ordered according to conditions: every linear problem is

counted convex, every convex problem is considered quasi-convex, and every quasi-convex

problem is classified monotonic. Figure D.1 illustrates such a relationship between optimiza-

tion classes.

Generally speaking, most optimization problems can be solved numerically since they have

no analytical solutions. Appropriate algorithms are used for solving optimization problems

based on their class. For instance, simplex method is an efficient algorithm to solve linear

problems [KB95]. It costs polynomial complexity growth with the problem dimensions and

number of constraints n and m, respectively.

D.1 Solving and Using Convex Optimization

There is no close-form solution for convex optimization problems, however there are effi-

cient numerical approaches such as Interior-point method. For solving the problem (D.1, the

number of iterations is almost between 10 and 100 such that each iteration requires the order

max(n3, n2m,Q) operations, where Q is the evaluation cost of the first and second derivatives

for the objective and constraints functions f0, . . . , fm. Solving general convex optimization

problems cannot be claimed as a mature technology yet as research on interior-point methods

for general non-linear convex problems is still a hot research topic. However, it is fair to con-

firm that interior-point methods are close to be a technology for some subclasses of convex

problems such as second-order cone programming and geometric programming [BV04]. The
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use of convex optimization is alike to the use of least-squares or linear programming. Once

a practical problem is modeled as a convex optimization problem, it is solved efficiently, but

it is difficult to recognize or formulate a convex function. However, once the skill of formu-

lating or recognizing convex problems is acquired, many problems can be solved via convex

optimization theory. This means the challenge in convex optimization is the formulation and

recognition. Interior-point methods solve both linear and convex optimization problems under

polynomial complexity [BV04]. General purpose interior-point methods based solvers include

SeDuMi [Stu99], SDPT3 [TTT03], CVX [GS11], and YALMIP [L0̈4].

D.2 Convex Sets

The convex set can be either one of the following [BV04]

Affine Sets

A C ⊆ R
n is affine if the line connecting any two points in C lies in C. This refers to all

possible linear combinations of any two points in C given that the sum of the coefficients is

one. As a generalization, the point η1x1 + · · · + ηkxk, where η1 + · · · + ηk = 1, is seen as an

affine combination of the points x1, . . . ,xk.

Convex Sets

A set C is convex if the line joining any two points in C lies in C, i.e. for any x1,x2 with

η ∈ [0, 1] satisfy

ηx1 + (1− η)x2 ∈ C.

Figure D.2 shows illustration for some convex and non-convex sets in R
2. As a generalization,

the point η1x1+ · · ·+ηkxk, with η1+ · · ·+ηk = 1 for ηi ≥ 0, i = 1, . . . , k, is seen as an convex

combination of the points x1, . . . ,xk. The convex hull is a always convex and defined for a set

C as all convex combinations of points in C:

convC = {η1x1 + · · ·+ ηkxk|xi ∈ C, ηi ≥ 0, i = 1, . . . , k,
k
∑

i=1

ηi = 1}.
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(a)                                               (b)                                               (c)

Figure D.2: Examples for some sets in R
2. (a) Hexagon is convex. (b) Kidney shape is non-

convex. (c) Square with excluded boundaries is non-convex.

Examples

Some important convex sets are listed as follows [BV04]

• The empty set ∅ is convex.

• Any line is affine, hence convex.

• A line segment is convex.

• Any subspace is affine, hence convex.

• Hyperplanes, ellipsoids, polyhedra, positive semidefinite cones, and many other sets are

convex. Interested readers can refer to [BV04] for more details.

D.3 Convex Functions and Operations Preserving Convexity

This section is cited from [BV04] and covers the definition of convex function with illustration

and examples. Then, operations that preserve convexity are briefly introduced.

Convex Functions

A function f : Rn → R is convex if dom f is a convex and for any x1,x2 ∈ domf and η ∈ [0, 1]

satisfies

f(ηx1 + (1− η)x2) ≤ ηf(x1) + (1− η)f(x2) (D.2)
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The geometrical interpretation is that the line segment between the pairs (x1, f(x1)) and (x2, f(x2))

lies above the curvature of f as depicted in Figure D.3. f is described strictly convex if the in-

equality in (D.2) strictly holds. The function f is concave if −f is convex and strictly concave

if −f strictly convex.

( x1, f(x1) )

( x2, f(x2) )

Figure D.3: Graph of a convex function.

Examples

Some examples for convex and concave functions on R follow

• Logarithm. log x is concave on R++.

• Exponential. eax is convex for any a ∈ R.

• Powers. xa is convex on R++ for a ≥ 1 or a ≤ 0, and concave for 0 ≤ a ≤ 1.

• Powers of absolute values. |x|a is convex on R for a ≥ 1.

• Negative entropy. x log x is convex on R++.

Other examples on R
n follow

• Log-determinant. The function defined as f(X) = log |X| is concave on domf = S
n
++.

• Norms. Every norm on R
n is convex.

• Max function. The function defined as f(x) = max{x1, . . . ,xn} is convex on R
n.

• Log-sum-exp. The function defined as f(x) = log(ex1 + · · ·+ exn) is convex on R
n.

• Geometric mean. The function f(x) = (Πn
i=1xi)

1/n is concave on domf = R
n
++.
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Operations Preserving Convexity

The operations that preserve convexity of functions and allow constructing other convex func-

tions are described as follows

• Non-negative weighted sums.

• Composition with affine mapping.

• Point-wise maximum and supremum.

• Composition.

• Minimization.

• Perspective of functions. The perspective functions normalize vectors such that the last

component becomes one in order to skip it afterwords.



E
Lagrange Multiplier Theory

By means of Lagrange multiplier theory, useful tools for solving, bounding, and analyzing opti-

mization problems are provided. Particularly, it reveals optimality conditions for obtaining so-

lutions to constrained optimization problems. The objective function and conditions generalize

an unconstrained optimization which has global minimum x∗ of f0(x) fulfilling ∇f0(x∗) = 0.

Let’s first define general form for optimization problems as follows

min
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m (E.1)

with x ∈ R
n assuming its domain Dx =

⋂m
i=0 domfi is nonempty. The functions fi : R

n → R

are the constraint functions.
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E.1 The Lagrangian

The Lagrangian is formed taking the constraints into account by augmenting the objective func-

tion with a weighted sum of the constraint functions. The Lagrangian function L : Rn ×R
m →

R associated with the problem (E.1) is defined as

L(x,µ) = f0(x) +
m
∑

i=1

µifi(x) (E.2)

with domL = Dx ×R
m. µi refers to the Lagrange multiplier associated with the ith constraint

fi(x) ≤ 0. The vector µ = [µ1 . . . µm] is called the dual variables or Lagrange multiplier

vector associated with the problem (E.1). The Lagrange dual function (or just dual function)

G : Rm → R is the minimum value of the Lagrangian over x

G(µ) = inf
x∈Dx

L(x,µ) (E.3)

The concept of the Lagrangian function is the augmentation of the cost function f0(x) with the

constraints. That means the cost is increased as a penalty due the constraint violations. Since

the dual function is the point wise infimum of a family of affine functions of (µ), it is concave

even if the optimization problem (E.1) is not convex. The computation of the infimum may be

difficult in some cases, thus the dual function provides lower bounds on the optimal value x∗.

For any µ ≥ 0, we have

G(µ) ≤ f0(x
∗) (E.4)

Based on the fact in (E.4), a maximization for the lower bound is necessary to get close to the

optimal solution.

E.2 The Lagrange Dual Problem, Optimality Conditions, and

Strong Duality

The Lagrange dual problem associated with (E.1) is given as

max
µ≥0

G(µ) (E.5)

The Lagrange dual problem is considered a convex optimization as the objective and the con-

straint are concave and convex, respectively. It does not matter whether the original problem in

(E.1) is convex or not. On the other hand, the convexity of the original problem ensures global

optimal solution for the dual problem, i.e. denoted as µ∗. The optimal solution of the original
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problem x∗ is connected with the Lagrange multiplier vector µ via the Karush-Kuhn-Tucker

(KKT) conditions. The KKT conditions imply that an optimal Lagrange multiplier vector µ∗

exists such that

∇f0(x∗) +
m
∑

i=1

µ∗
i∇fi(x∗) = 0, (E.6)

fi(x
∗) ≤ 0, i = 1, . . . ,m (E.7)

µ∗
i ≥ 0, i = 1, . . . ,m (E.8)

µ∗
i fi(x

∗) = 0 i = 1, . . . ,m (E.9)

The above conditions are called as stationary, original feasibility, dual feasibility, and comple-

mentary slackness, respectively. They are generally insufficient and unnecessary for the optimal

solution. However, they become necessary for optimality if the optimization problem is convex.

The optimal value of original problem (E.1) is related to the optimal value of the dual problem

(E.5) as

f0(x
∗) ≥ G(µ∗) (E.10)

It is observed that the optimal solution of the original problem is always greater than or equal

to that of the dual problem. The difference f0(x
∗)−G(µ∗) is positive and known as the duality

gap. Strong duality implies zero duality gap which is held when the original problem is convex.

This means the solution of the dual problem can be an exact solution for the original problem.

Moreover, the strong duality refers to the necessity and sufficiency of the KKT conditions.

From another perspective, a saddle point existence in the Lagrangian function interprets strong

duality as follows

sup
µ≥0

inf
x∈Dx

L(x,µ) = inf
x∈Dx

sup
µ≥0

L(x,µ) (E.11)

In words, if x∗ and µ∗ are original and dual optimal points for a convex problem, they form

a saddle point for the Lagrangian. The opposite is true: if (x,µ) is a saddle point of the

Lagrangian, then x is original optimal, µ is dual optimal, and the optimal duality gap is zero.

In this context, it is really interesting to have an alternative and relatively efficient method

to solve the convex problems. As a conclusion, the convexity of the optimization problem

facilitates involving Lagrange multiplier theory as efficient alternative to convex optimization

theory.
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F
Proofs

F.1 Proof of Proposition 1

Assuming Np eigenmodes for the PU l, the PU achievable rate equals the superposition of the

rates of whose eigenmodes. Thus, it make sense to prove the PRLl for the jth eigenmode as

follows

CSINR

CSNR

=
log2

(

1 +
pj,lΛ

2
j,l

σ2
l
+αlσ

2
l

)

log2

(

1 +
pj,lΛ

2
j,l

σ2
l

)

= lim
SNRPR→B

log2

(

1 + SNRPR

1+αl

)

log2 (1 + SNRPR)

=







0
0
, for B=0

∞
∞
, for B→∞

(F.1)
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Applying L’Hospital’s rule and reforming gives

CSINR

CSNR

= lim
SNRPR→B

1
1+αl

(1 + SNRPR)

1 + SNRPR

1+αl

(F.2)

For the low SNRPR regime (B = 0),

CSINR

CSNR

=
1

1 + αl

(F.3)

For the high SNRPR regime (B → ∞),

CSINR

CSNR

= lim
SNRPR→∞

1
1+αl

(

1 + 1

SNRPR

)

1
1+αl

+ 1

SNRPR

= 1 (F.4)

Substituting (F.3) and (F.4) in the PRLl defined in (4.9) gives

PRLl =







αl

1+αl
for SNRPR → 0

0 for SNRPR → ∞
(F.5)

Hence, for SNRPR → 0, αl =
PRLl

1−PRLl
.

F.2 Proof of Proposition 2

To compute the precoding-thresholds, we should assume an interference-limited CR system,

i.e. PT → ∞. Then, it is clear that the PUI threshold matrix Ithl,i set an upper bound of the

maximum transmission power of the subcarrier i based on C2 in (4.14). Hence, C2 is a rule

of thumb to calculate the maximum transmission power for each DoF of the adaptive precoder

(i.e. ∀d ∈ D) as

Tr
(

P
(d),max
D,k,i

)

= max
l

Tr
(

Ω
(d)
D,k,i

−1
Ithl,i

)

, ∀d ∈ D, ∀k, i (F.6)

Toward calculating the precoding-threshold between the dth and (d− 1)th DoFs, we sum up of

the maximum power of all OFDM tones for the dth or (d − 1)th DoF (as they provide similar

sum-rate C
(d)
D = C

(d−1)
D based on Corollary 1) as

{

P
(d,d−1)
D,th =

M
∑

i=1

Tr(P
(d),max

D,k̄,i
)=

M
∑

i=1

max
l

Tr
(

Ω
(d)

D,k̄,i

−1
Ithl,i

)

}R

d=1

(F.7)

However, each OFDM tone must be allocated to one CU to enable the computation of the

precoding-threshold set defined in (F.7). Therefore, we need an initial subcarrier mapping (best

user per subcarrier policy) for each DoF given by

k̄ = argmax
k
r
(d),max
D,k,i (F.8)
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where r
(d),max
D,k,i = log2

∣

∣

∣
INc

+ Λ̌
(d)2
D,k,iP

(d),max
D,k,i

∣

∣

∣
is the maximum achievable rate. Note that this

initial mapping is necessary for each DoF since the effective precoded channel power Λ̄
(d)2
D,k,i

depends on the dth DoF. For instance, to calculate the threshold P
(2,1)
D,th use the 2nd DoF (d = 2)

to compute Ω
(2)
D,k,i, Λ̌

(2)2
D,k,i, and P

(2),max
D,k,i , ∀k, i, then assign the best CU k̄ to the subcarrier i

according to (F.8). Next, apply (F.7) to get P
(2,1)
D,th . It is worth to note that the initial subcarrier

mapping depends on the assumption of interference-limited CR in which C2 of (4.14) is tighter

than C1. Thus, once the CR system is power-limited (i.e. C1 is tighter than C2), the initial

subcarrier mapping is no longer accurate.

F.3 Proof of Theorem 2

The KKT conditions are sufficient for optimality [BV04] since our problem is convex. The

main KKT condition holds zero gradient equality as

∂LD

∂PD,k,i

=0 (F.9)

We can solve (F.9) by using the following rules and properties [PP12]

∂(ln |X|) = Tr(X−1∂(X))

∂Tr(AXT )

∂X
= A

Tr(AXB) = Tr(BAX)

(AB)−1 = B−1A−1

The gradient (F.9) can be derived as follows

∂LD

∂PD,k,i

=
∂

∂PD,k,i

[

τD
M

K
∑

k=1

M
∑

i=1

θk,i log2
∣

∣INc
+ Λ̌2

D,k,iPD,k,i

∣

∣

−µD

(

M
∑

i=1

K
∑

k=1

θk,iTr(F̂H
D,k,iF̂D,k,iPD,k,i)− PT

)

−
M
∑

i=1

δD,i

(

K
∑

k=1

θk,iTr (ΩD,k,iPD,k,i)− Tr(Ithl,i)

)]

=
τD

M ln 2

Tr
[

(

INc
+ Λ̌2

D,k,iPD,k,i

)−1
∂
(

Λ̌2
D,k,iPD,k,i

)

]

∂PD,k,i

−µDF̂
H
D,k,iF̂D,k,i − δD,iΩD,k,i

=
τD

M ln 2

(

INc
+ Λ̌2

D,k,iPD,k,i

)−1
Λ̄2

D,k,i − µDF̂
H
D,k,iF̂D,k,i − δD,iΩD,k,i

= 0 (F.10)
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Then, reforming (F.10) and separating the power matrix gives (4.22).
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