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Adaptive Prediction Models for Data Center

Resources Utilization Estimation
Shuja-ur-Rehman Baig , Waheed Iqbal , Josep Lluis Berral , Abdelkarim Erradi , and David Carrera

Abstract—Accurate estimation of data center resource utiliza-
tion is a challenging task due to multi-tenant co-hosted appli-
cations having dynamic and time-varying workloads. Accurate
estimation of future resources utilization helps in better job
scheduling, workload placement, capacity planning, proactive
auto-scaling, and load balancing. The inaccurate estimation leads
to either under or over-provisioning of data center resources.
Most existing estimation methods are based on a single model
that often does not appropriately estimate different workload sce-
narios. To address these problems, we propose a novel method
to adaptively and automatically identify the most appropriate
model to accurately estimate data center resources utilization.
The proposed approach trains a classifier based on statistical
features of historical resources usage to decide the appropriate
prediction model to use for given resource utilization observa-
tions collected during a specific time interval. We evaluated our
approach on real datasets and compared the results with multiple
baseline methods. The experimental evaluation shows that the
proposed approach outperforms the state-of-the-art approaches
and delivers 6% to 27% improved resource utilization estimation
accuracy compared to baseline methods.

Index Terms—Data center, resource management, data clas-
sification, modeling and prediction, dynamic prediction model,
feature extraction.

I. INTRODUCTION

T
ECHNOLOGICAL advances in server virtualization and

cloud computing allow cost-effective hosting of multiple

applications in a secure, customizable, and isolated comput-

ing environment managed by modern data centers. This yields

higher resources utilization with reduced costs.
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Additionally, cloud consumers can acquire compute, storage

and networking resources on-demand from Infrastructure-as-

a-Service (IaaS) providers on pay-per-use basis. IaaS users can

control the leased resources and scale them to optimize their

usage accordingly to their needs. To ensure better Quality of

Service, IaaS providers distribute data center resources across

multiple geographical locations to enhance proximity to the

application users. Also, virtualization and holistic data cen-

ter management enable providers to maximize the data center

utilization while minimizing their operational cost [1].

Efficient methods for estimating resource utilization in data

centers can significantly ease self-management and usage

optimization for both users and providers. Users can dynami-

cally adjust the leased resources to minimize costs for hosting

their applications while maintaining the desired performance

and service quality [2]. Further, accurate estimates of resources

utilization enable the providers to efficiently allocate virtual

machines (VM) and other virtual resources to workloads,

migrate VMs to consolidate or balance resource usage [3],

[4], plan in advance resource capacities [5], [6], also take

awareness of energy requirements in advance for expected

workloads and users [7], [8].

Accurate estimation of future resources utilization for data

centers is challenging due multi-tenant co-hosted applications

having dynamic and time-varying workloads. While there are

several estimation methods for cloud resource utilization using

time-series learning or deep-learning networks [9], [10], [11],

all use a single model that often does not accurately capture

the workload dynamics. To address these problems, we pro-

pose a novel method to adaptively and automatically identify

the most appropriate model to accurately estimate data cen-

ter resources utilization. Our adaptive multi-methods approach

considers different scenarios encountered in a production data

center and enables selecting the the predictive method that

learns best. Our approach focuses on training estimation mod-

els using different methods then selecting the one that will

yield the best prediction given the current scenario and the

previous batch of collected data.

To test and validate our selective multi-method approach,

we have conducted experiments using Alibaba [12] and

Bitbrains [13] data center utilization datasets. We com-

pared the results of our experiments with exiting base-

line approaches that use a single model such as Linear

Regression (LR), Support Vector Machines (SVM), Gradient

Boosting Tree (GBT) and Gaussian Process also known as

Krigin (KR). Figure 1 shows the motivation to adaptively

select an appropriate method to effectively estimate resource
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Fig. 1. CPU estimation using different methods and scenarios for Alibaba
data set. Different predictors yield better estimation, each for different
scenarios.

utilization for different scenarios. The figure shows CPU uti-

lization estimations using different methods for four different

machines from Alibaba data set. Each estimation method is

trained using 55 minutes time interval data and estimated the

utilization for the next 5 minutes. We observed that different

predictors yield better resource utilization estimation for dif-

ferent scenarios. Therefore, it adds value to build a system to

identify the best predictor for forecasting resource utilization

at each time interval.

In this paper we focused on classical machine learning

approach and did not use deep learning as the learning pro-

cess is considered as black-box [14] and to understand the

reasoning of the model’s prediction behavior is not apparent.

Deep learning works well with a large amount of high dimen-

sional data, and it is also extremely computational expensive

due to which, it requires a specialized type of hardware. The

resource utilization of data centers is a low dimensional data,

and traditional machine learning methods can be effectively

used for estimations. Moreover, deep learning performs quite

well once trained for a particular problem; however, model

miserably fails when applying on a similar type of other prob-

lems and required to retrain. Due to these reasons, we selected

the traditional machine learning approach and propose a novel

adaptive model selector method, to dynamically identify the

best prediction method for estimating resource utilization of

data centers, from a bag of trained methods with different char-

acteristics and accuracy over different data center behaviors.

The data center telemetry contains burstiness behavior which

represents sudden spikes and peaks of resource utilization. In

general, it is challenging to predict the burstiness behavior,

and we address this issue with the help of an adaptive selec-

tion of an appropriate prediction method at every estimation

step. After some experiments and model selection, we chose

Random Decision Forests (RDF) as the best mechanism for

learning the expected accuracy for each candidate predictor.

Our proposed method trains on the statistical features of his-

torical resource utilization and predictor correctness for sliding

windows of a specific size, to identify which predictor will

produce the best forecast given the current resource utilization.

We evaluate our method by comparing its decision and fore-

casting capabilities with baseline methods, using datasets from

Alibaba and Bitbrains monitored data centers. Results show

that the proposed method outperforms the baseline methods

for both of the datasets. Notice that in this work we focus

on CPU resource consumption as the primary resource on

high-performance computing data centers, but our solution is

generic and can be used to predict utilization of all system

resources. The main contributions of this work are:

• A novel method to dynamically select the best prediction

model for estimating and forecasting cloud resource uti-

lization for a given recent time window of observed

resource utilization.

• Use RDF for choosing an appropriate prediction model

to be used for estimating data center resource utilization.

• A comparison of different baseline models, currently used

in the state-of-the-art, as candidate models for resource

utilization estimation, aside of validation for the presented

approach.

• Analyze the impact of different window sizes on the

proposed resource estimation systems.

The rest of the paper is organized as follows. Related

work is presented in Section II. Our proposed resource

estimation system is explained in Section III. Prediction meth-

ods and Adaptive Model Selector (AMS) are explained in

Section IV. Feature extraction and selection is discussed in

Section V. We provide details about the experimental evalua-

tion in Section VI. The experimental results are presented in

Section VII. Finally, conclusion and future work are discussed

in Section VIII.

II. RELATED WORK

Data center resource utilization and workload prediction

is an active research area. Recently, there have been sev-

eral attempts to use machine learning methods for predictions

of data center resources. For example, recent work by

Kim et al. [15] proposed an ensemble approach which

uses multiple predictors together to produce an output. The

proposed ensemble technique uses Linear Regression, SVM,

ARMA, and ARIMA together to predict future workload for

the data centers by dynamically determining the weight of

each predictor using the regression method. Another recent

work by Rahmanian et al. [16] also proposed an ensemble-

based approach to predict CPU utilization of application

usage of VMs. The proposed approach uses automata the-

ory to adjust the weight for each predictor in the ensemble

method to predict the CPU usage. Subirats and Guitart [17]

proposed an ensemble-based prediction strategy which fore-

casts the infrastructure energy requirement by predicting

the future CPU utilization of VMs. Their ensemble-based

approach uses the moving average, exponential smoothing,

linear regression, and double exponential smoothing methods.

Chen et al. [18] propose an ensemble model based on the fuzzy

neural network to predict the resource demand. They use the

second moving average (SMA), exponential moving method

(EMA), autoregression model (ARM), and trend seasonality
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model (TSM) as base predictors. Cetinski and Juric [19]

combine statistical and machine learning methods to predict

application specific workload volume. Tseng et al. [20] used a

multi-objective genetic algorithm to forecast resource utiliza-

tion and energy consumption in data centers. Jiang et al. [21]

proposed ensemble prediction mechanism to predict the cloud

workloads for capacity planning in data centers. They used

five prediction algorithms named as moving average, autore-

gression, artificial neural network, support vector machine, and

gene expression programming to predict the future workload

estimations.

There have been several efforts to use typical time series

solutions to predict data center resource utilization. For exam-

ple, Calheiros et al. [22] used autoregressive integrated moving

average (ARIMA) method to predict the arrival rate for the

applications hosted on the cloud. Liao et al. [23] use typ-

ical time series prediction methods namely autoregressive

moving-average, moving average, and auto-regressive together

as an ensemble approach to predict CPU usage of VMs.

The proposed method combines the output of time series

prediction techniques as input to another linear prediction

model to predict CPU utilization of VMs. Vazquez et al. [24]

used various time series prediction models to forecast the

number of requests which helps in the dynamic scaling of

cloud resources proactively. For this purpose, they evaluated

the autoregressive model (AR), moving average model (MA),

simple exponential smoothing, double exponential smoothing,

automated ARIMA method, and neural network autoregression

method. Dmytro et al. [25] use ARIMA to forecast load on

the cluster which helps in scheduling the data center resources

by migrating the VMs. Fang et al. [26] used ARIMA to

predict the future CPU utilization and several requests for the

applications hosted in the cloud.

There have been several efforts to employ deep learn-

ing methods for predicting data center resource utilization.

For example, Zhang et al. [9] use autoencoders to predict

the CPU utilization of VMs. The authors used tensor rank

decomposition technique to reduce the training time by com-

pressing the input parameters. Qiu et al. [27] used a deep

belief network using multiple-layered restricted Boltzmann

machines (RBMs) and a regression layer to predict the CPU

usage of VMs. The RBMs are used to extract high-level

features, and the regression layer is used to predict CPU uti-

lization. Zhang et al. [11] also use RBMs to predict CPU

and RAM utilization in data centers. They use backprop-

agation as global supervised learning to minimize the loss

function. Mason [10] predict the CPU consumption of the

host by using evolutionary Neural Networks (NN). To train

the network weights of neural networks, they used Particle

Swarm Optimization (PSO), Differential Evolution (DE),

and Covariance Matrix Adaptation Evolutionary Strategy

(CMA-ES). Song et al. [28] use long short-term memory

(LSTM) model to predict the host load. To train the recurrent

networks, the authors used truncated back-propagation through

time technique. Duggan et al. [29] predict host CPU utiliza-

tion by using Recurrent Neural networks. They also use the

back-propagation through time (BPTT) technique to train the

network.

Recurrent Neural Networks are a hot topic on many

modeling scenarios, including resource management for Data-

Centers. However, RNNs imply a set of trade-offs to have

into consideration on scenarios where data-streams must

be constantly modeled or evaluate. Moreover, the selection

of hyper-parameters for RNNs and their different methods

(LSTMs, GRUs, etc.) imply extra decisions to be searched

and tuned, while simpler methods can provide similar accuracy

(or lower but good-enough accuracy) with less computational

and human-tuning effort. One of the problems of time-series

algorithms like RNNs, time-series related NNs like CRBMs,

or filters like period-adaptive-Kalman, is that most rely on a

delay or memory hyper-parameter on their design, on a sce-

nario where behavior regimes and their length may not be

known a-priori. Not to say that interpretability is a require-

ment on knowledge discovery, to help data-center architects

to improve the DC infrastructure. In conclusion, it is true that

advances have been done on RNNs towards DC management,

but in this work, we advocate for more simpler (in terms of

training and operability) and more readable models.

The work in this area most relevant to ours [30] adap-

tively picks either Regression (LR) or Support Vector Machine

(SVM) predictors to estimate CPU utilization of VMs. The

proposed method dynamically select LR for slow chang-

ing workloads and SVM for rapidly changing workloads.

Moreover, most of the existing works use ensemble-based

approaches in which multiple estimation methods are col-

lectively used to produce the final output whereas in our

proposed solution the final output is produced using only a

single machine learning predictor which is dynamically iden-

tified using the recent resource utilization observations. Our

approach uses four different estimators and dynamically iden-

tifies the estimator using a machine learning approach and time

series features. To the best of our knowledge, no existing work

which uses time series features to adaptively identify and use

the best prediction method to minimize the estimated error of

cloud resource utilization. Table I presents the comparison and

explain how proposed solution is different from existing state

of the art work.

III. PROPOSED SYSTEM OVERVIEW

The overall proposed system is illustrated in Figure 2.

Different steps are numbered and labeled to explain the work-

ing flow of the system. The system work in the following

steps:

• Historical resource utilization logs of the data center

are divided into sliding windows of a fixed size con-

sists of the last k intervals. Then each sliding window

data is used to fit different prediction models includ-

ing Linear Regression (LR), Support Vector Machine

(SVM), Kriging (KR), and Gradient Boosting Tree (GBT)

to predict the next interval resource utilization. The

system selects the prediction method yields a minimum

prediction error for the given sliding window data.

• For each sliding window, the system identifies a specific

set of features as explained in Section V.
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TABLE I
COMPARISON OF RELATED WORK WITH PROPOSED SOLUTION

Fig. 2. Purposed system overview to learn adaptive model selector and using
it to estimate the data center resource utilization.

• The selected features and identified prediction methods

are logged as training data. For each historical sliding

window, the training data set contains the corresponding

feature vector and the best prediction method.

• Once training data is prepared, the system builds a clas-

sifier using Random Decision Forest (RDF) to predict the

best model for a given sliding window data. We call this

classifier “Adaptive Model Selector”. We explain this in

Section IV-B.

• Once the Adaptive Model Selector is trained than the

system predicts the data center resource utilization in real

time. For the current time interval t, system select last k

observation to extract features and then use the Adaptive

Model Selector to identify the best prediction method to

predict the resource utilization for the t+1 time interval.

• The selected prediction method is used to train a regres-

sion model using the last k interval’s observed resource

usage data to estimate the resource utilization for the t+1

future time interval.

IV. MACHINE LEARNING METHODS

In this work we use Machine Learning (ML) techniques for

two main purposes: first, predict future workload behaviors

and traces; second, from a set of ML methods and a context,

choose one that predicts the workload better. The ensemble

presented here focuses on different algorithms for regression

used to predict the workload, while a trained decision maker

selects at each time a regression model that is expected to

produce the most accurate prediction.

In this section, we introduce the different algorithms used

for the prediction and decision-making processes.

A. Workload Prediction Methods

To predict workload, we explore a diversity of Machine

Learning techniques commonly used in the literature, ones

more complex than others with different properties each. The

learned regression models are to predict our target variable

which is next data point in time series from known input
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features [33] such as skewness, standard deviation, kurtosis,

autocorrelation for different lags, absolute sum of changes,

etc. As the data we are dealing is in the form of a time series,

evaluation of prediction must be based not just on accuracy

but also on the significance of results which is often a difficult

problem on regression analysis.

Our presented methodology shows a multi-model approach,

where different models are trained, each one with a different

set of strong and weak properties. The models are applied to

a dynamic window to predict future interval workloads. The

studied models for workload prediction are: Linear Regression,

Support Vector Machines for regression, Gradient Boosting,

and Gaussian Process Regression.

Linear Regression: Linear Regression (LR) is one of

the simplest but effective approaches in machine learning

modeling and prediction specifically when a linear relation

exists among variables. LR assumes there is a linear rela-

tion between output variable Y and input variables X =
{x1 . . . xn}, and attempts to find a vector W T = {w1 . . .wn}
and a scalar b where Ỹ = X · W + b while minimizing the

error ǫ = |Y − Ỹ |. Minimization is usually performed using

the Least Squares Error approach, although other approaches

using the deviation or specific cost function exist. LR vari-

ants include Polynomial and Multinomial Regression, where

variable relations are assumed more complex, thus learning

algorithms also become more complex.

Support Vector Regression: Support Vector Machine (SVM)

methods are common for classification although they can be

used for regression as Support Vector Regression machines

(SVR) [34]. The advantage of SVMs is that non-linear func-

tions can be learned as linear ones thanks to a transformation

of data known as the kernel trick.

SVMs allow learning non-linear functions by mapping them

into a higher dimensional feature space, using a defined kernel

function. Input X are mapped into an h-dimensional feature

space using a predefined non-linear kernel function to produce

a linear model. Similar to LR, we can express SVMs as Ỹ =
k(X ) · W + b, where k is the function making the space for

X linear. SMVs error minimization consists on building two

margin functions (support vectors) X ·W + b ± ǫ, where final

error ξ is computed for those elements outside the margins.

As a disadvantage, margin ǫ can become an hyper-parameter.

Gradient Boosting: Gradient Boosting is the combination

of the Gradient Descent optimization and Boosting tech-

niques [35], [36]. As any other boosting technique, the learned

model is the composition of weaker models focusing on

subsets of data, forming a stronger model when combined.

Usually, decision and regression trees are used on Gradient

Boosting techniques, but any other modeling technique can be

used for boosting.

On Gradient Boosting, a model is fitted as Ỹ = f (X ) min-

imizing ǫ = |Y − Ỹ |. Then function f can be fine-grain tuned

using another function h fitted to ǫ, learning and correcting

the errors on the first function, and so on recursively. This

recursion can continue until we rest satisfied with the resulting

aggregation of models.

Gaussian Process Regression: Gaussian Process Regression

(also known as Kriging) [37] is a non-parametric regression

method, where the modeled function is trained after a Gaussian

process using the covariances of previous examples. This pro-

cess is used mainly for interpolation which requires some

example observation points. Kriging method predicts by com-

puting the weighted average of the values for neighbors from

the known examples. Kriging models can model non-linear

as well as linear behavior. Typical regression methods are

extended by statistical models based on stochastic processes.

However, Kriging also estimates the associated statistical vari-

ations using the distribution and correlation of observed data.

Recently, Kriging is used for self-adaptive provisioning of

resources in cloud-hosted applications [38].

B. Adaptive Model Selector (AMS)

On multi-model methodologies, different regression models

produce predictions altogether, and a trained expert system

decides which prediction is followed, or how they are aggre-

gated into a final prediction. Such a trained expert can be

a machine learning model, like in Boosting methods. In our

proposed solution, before producing workload predictions, we

use a trained decision maker to choose the best predictor to

be used. The decision maker will classify each scenario into

the best-expected predictor for it.

Our decision maker input will be features [33] such as

skewness, standard deviation, kurtosis, autocorrelation for dif-

ferent lags,the absolute sum of changes, etc., and it will output

the regression method which is expected to be the best. At

each time step, the decision maker predicts the best regres-

sion model and then produces the workload prediction using

the predicted regression model. Here we present the different

classification models studied in this work.

K-Nearest Neighbors: The k-Nearest Neighbors (k-NN)

algorithm allows to memorize a set of characteristic exam-

ples, and classify new data instances by finding the k nearest

neighbors, and returning the class of the majority (or the prob-

abilities per class on those k examples). The nearest neighbors

are those examples with minimum distance, often euclidean,

Hamming or Manhattan distances. Here we select k-NN as

one of the tentative classifiers, as it is one of the easier mod-

els to train (it memorizes the training set), in exchange of

the not-so-easy search process when predicting a new data

instance.

Naïve Bayes: The Naïve Bayes algorithm is a classifier

based on computing the likelihood of a feature given each

class, then use the Bayes theorem to compute the condi-

tional probability of a class given that feature. The method

extracts from data the probabilities of each feature value

P(Feature = X), each class P(Class = C), and each likeli-

hood of features per class P(Feature = X | Class = C). This

method assumes independence among features, in contrast to

Bayesian Networks. The probabilities per class are the prod-

uct of their probabilities per feature, and the algorithm returns

the class with a higher probability (or the rank of classes per

probability).

We selected Naïve Bayes as one of the classifiers for its low

complexity, as training implies keeping the count of element
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occurrences, then probabilities can be computed on demand at

prediction time.

Multilayer Perceptron: Multilayer Perceptron (MLP) is a

kind of Artificial Neural Network (ANN) used for both clas-

sification and regression problems for non-linear systems.

The most commonly used ANN for classification problem is

“one-hidden layer” Feed-Forward ANN, where the ANN is

composed of a single layer of perceptrons (neuron units) and

an output layer.

Data passes through the hidden layer to the output produc-

ing a value for each class, then the class with a higher value

is chosen. Neurons aggregate input data, usually through a

linear function Xo = Xi · W + bias , then passes outputs

Xo to the next layer (here the output layer). Output neurons

also pass their produced aggregation through sigmoid func-

tions to approximate their outputs to 0 or 1 Y = sigm(Xo).
Fitting those functions is done by passing data repeatedly

and comparing the network output with the real output, then

updating neurons weights W and bias using Gradient Descent

techniques.

Neural networks can be complicated to fine-tune, as their

architecture must be treated as a hyper-parameter, decid-

ing how many neuron units are in the hidden layer, how

many times data must be passed for training, etc. We used

Keras [39] sequential model to implement MLP for classi-

fication. We evaluated MLP with different number of hidden

layers and found that with three hidden layers, it yields the best

results.

Since we are using four machine learning predictors for

evaluation purposes, the output layer contains 4 neurons.

We use “relu” as the activation function for hidden lay-

ers and “softmax” for output layer. We use “adam” as

optimizer and “categorical crossentropy” as loss function.

The total epochs used are 1000 with batch size equal

to 2000.

Random Decision Forest: Random Decision Forests (usu-

ally referred as Random Forests) are an ensemble method

for classification and regression, based on the aggregation

of specialized decision trees [40]. The ensemble builds

a set of decision trees, trained from different data sub-

sets, then predicted data is classified as the most voted

class from all decision trees (the trend). The main rea-

son to use random forests is to prevent over-fitting single

decision tree models and get a more accurate and stable

prediction.

Random Forests are known to produce decent results for

classification and regression problems, without the need for

much tuning or hyper-parameters. For our experiment, we tune

the number of trees and set it to 50.

Gradient Boosting: Gradient Boosting can also be used

for both regression and classification problems. For meth-

ods where the boosted algorithm is already a classification

problem, the most voted class from all partial models is

selected. For regression boosted algorithms, we can turn out-

puts into binary values using similar approaches like in SVMs,

considering each value as a class and its value between

−1 and 1 as its scoring.

Fig. 3. Example of time series features that are extracted from TSFRESH [41]
library. These features consist of statistical and time series features such as
minimum, maximum, variance, standard deviation, number of peaks, auto-
correlation at different lag intervals, entropy, kurtosis, skewness, fourier
transformation, mexican hat wavelet transformation, and etc.

V. FEATURE EXTRACTION AND SELECTION

Appropriate features can play an important role to improve

the prediction accuracy of machine learning models. In our

data set, the resource utilization of data centers is available as

a time series data. We explore multiple ways to extract time

series features from the given data set which includes manual

extraction, automatically extraction by the help of open source

libraries such as Cesium [42], TSFRESH [41]. However we

selected TSFRESH as it provides us most useful and a com-

prehensive set of time series features which is not available

in any other library. Time Series Feature extraction based on

scalable hypothesis tests (TSFRESH) [41], [43] is an open-

source Python library available to extract features for a given

time series data. In our proposed system, we used TSFRESH

to extract features for data center resource utilization data

available as time series. TSFRESH automatically calculates

a large number of time series characteristics based on scalable

hypothesis tests.

Figure 3 shows some of the features that TSFRESH extracts

for the given time series data. It provides hundreds of statis-

tical and time series features including minimum, maximum,

variance, mean, standard deviation, sum of values, autocor-

relation of the specified lags, measure of non linearity in the

time series, Mexican hat wavelet, first and last location of min-

imum and maximum, number of peaks, quantile, and sample

entropy etc. However all of these features are not necessary,

and appropriate features should be identified to improve the

performance of machine learning methods [44], [45].

The proposed system filters the features obtained from

TSFRESH using another open-source library available for

feature selection [46]. We selected this library because

it includes a comprehensive set of functions to filter

the features by using different approaches for identify-

ing the most appropriate features for time series clas-

sification. The library provides five different methods to

filter features for missing values, single unique
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Fig. 4. Box plot of CPU utilization for randomly selected 100 machines from Alibaba data set.

values, collinear features, zero importance

features, and low importance features. However,

in our proposed system, we only used three methods

to filter the features obtained through TSFRESH. First,

we apply three methods to filter the feature. First, we

apply single unique value method which remove the

features with identical unique values. Second, we apply

identify collinear which remove the features which

are highly correlated with one another. We used 98% cor-

related threshold in this method to ensure only remove the

features which correlated 98%. Finally, we apply zero

importance features which uses Gradient Boosting

Machine (GBM) learning model to identify the features which

have zero importance for the given set of features. After apply-

ing these methods, we obtain one hundred and six features

in total which include standard deviation, kurtosis, skewness,

absolute some of the changes, auto-correlation at different

lags, partial auto-correlation at different lags, the first location

of minimum, linear least-squares regression [47], and many

others.

VI. EXPERIMENTAL EVALUATION

In this section, we explain the datasets used to evaluate our

proposed method, the details about the experiments used to

validate it, the baseline methods used for comparison, and the

used evaluation metrics.

A. Datasets

1) Alibaba Data Set: The first data set we use is the Alibaba

cluster logs [12], publicly available, containing performance

traces of 1,313 machines for 12 hours duration. The Alibaba

monitored cluster provides interactive services and batch pro-

cessing workloads. The metrics represented are CPU, memory

and disk utilization for all machines, aggregated on 5-minute

averages. For simplification purposes, we are focusing and

experimenting with CPU time series. The average CPU uti-

lization in the Alibaba data set is 26.46%, with a standard

deviation of 10.66% CPU. Figure 4 shows a CPU utilization

sample for 100 randomly selected machines from the data set.

2) BitBrains Data Set: The second data set we use is

the Bitbrains data set [13], publicly accessible, containing

Fig. 5. Box plot for Bitbrain data set of 20 randomly selected VMs for
one-day data.

performance logs of 1,750 VMs for 30 days of data. The

Bitbrain monitored cluster provides interactive services and

batch processing workloads. The metrics represented are CPU,

memory, network and disk utilization for all the virtual

machines, aggregated on 5-minute averages. From this data set,

we randomly selected 20 VMs with average CPU utilization

greater than 30%, as most of the VMs with low usage do not

show critical metric patterns or utilization tends to be constant

on the lowest part of the spectrum demand. Figure 5 shows

the box-plot for one-day data of the average CPU utilization

for the selected machines.

3) Google Data Set: The Google cluster traces [48] are the

publicly available traces published by Google. To create the

CPU and the Memory utilization, the tasks of each job were

aggregated by summing their CPU and Memory consumption

every five minutes in a period of 24 hours. The dataset was

extracted over the first ten days period by filtering the utiliza-

tion of CPU and memory from 5 to 90 percent, resulting in

a total of 1,600 VMs [49]. We randomly selected 500 VMs

from this data set for the experiments and the average CPU

utilization in the selected data set is 21.89%, with a standard

deviation of 3.63% CPU.

B. Methodology

For the current experiments, we are using the Alibaba data

set to show a comprehensive evaluation of the proposed solu-

tion. Whereas, the BitBrains data set is used for testing to



1688 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 4, DECEMBER 2019

Fig. 6. Box plot for CPU utilization of selected four machines with different
characteristics from the Alibaba data set. M1 = high load, M2 = low load,
M3 = high variation, and M4 = low variation.

show that the proposed methodology does not over-fit to the

main data set (Alibaba).

To train and validate the machine learning models in the

AMS classifier, we are using a random split of 80% data for

training, and the remaining 20% for validating the models. The

test data also includes the four machines which are discussed

in the following paragraph.

As applications running on data-centers can have different

profiles, we selected four machines from the Alibaba data set

with very distinct CPU demands, to test the resource estima-

tion on different demand behaviors. Figure 6 shows the box-

plot of CPU utilization of the four selected machines: Machine

M1 serves a workload demanding high CPU resources;

machine M2 serves a workload requiring low CPU resources;

machine M3 serves a workload requiring CPU resources with

highly fluctuating demand; and finally machine M4 serves

a workload requiring CPU resources with low fluctuating

demand.

Our proposed solution is then compared with the aforemen-

tioned baseline methods, proposed by Liu et al. [30], using

Linear Regression (LR) and Support Vector Machines (SVM)

methods to estimate adaptively CPU utilization of VMs. The

combination of the two methods, LR for the slow-changing

workloads and SVM for the fast-changing ones, are here

labeled as “Liu” method. In addition, we also add the methods

namely LR, SVM, Kriging (KR) and Gradient Boosting Tree

(GBT) to consider for comparison with ours.

C. Experimental Details

1) Adaptive Model Selector Evaluation: The Adaptive

Model Selector (AMS) is in charge to estimate which of the

available ML algorithms will provide better modeling for the

current data being monitored. We performed a set of experi-

ments to evaluate different methods to make such estimation

by comparing different classifiers namely Random Decision

Forest (RDF), Gradient Boosting Tree (GBT), Multi-layer

Perceptron (MLP), K-Nearest Neighbors(k-NN), Gaussian

Naive Bayes (NB), and Support Vector Machine (SVM) with

linear kernel. These classifiers are trained and validated using

the Alibaba data set. We trained all classifiers on 80% of the

entire Alibaba data set and then tested on the remaining 20%

data to compare and identify the best classifier to used in AMS.

Training and validation data will be structured in time

windows, as explained in Section VI-C3. The classifiers are

evaluated through True/False Positive Rates (TPR and FPR),

accuracy, recall, f-measure, and precision. We also consider

the performance of the AMS by measuring the training time,

prediction time, and the size of the model on disk.

2) Resource Estimation Evaluation: Finally, when integrat-

ing the different techniques of model selection and resource

modeling, we perform a set of experiments to evaluate the

resource estimation using our proposed adaptive ensemble.

The final goal is to identify, on-line, the best regression

method that will build a prediction model for estimating the

resource utilization of the next future interval, given the current

monitored data.

As this problem is a regression one, we evaluate the com-

plete mechanism using the Root-Mean Square Error (RMSE)

as shown on Equation 1 to show how our method deviates from

the truth, also the Mean Absolute Error (MAE) as shown on

Equation 2 to show the absolute magnitude of the produced

error. Here at is the true CPU utilization and pt is the esti-

mated CPU utilization at time interval t, and n is the number

of performed estimations.

RMSE =

√

∑

n

t=1
(at − pt )

2

n
(1)

MAE =
1

n

n
∑

t=1

|at − pt | (2)

Again, training and validation data will be structured in time

windows (Section VI-C3), and then for each sliding window,

we use the AMS to identify the best regression method to

estimate the resources for the following intervals.

3) Window Size Sensitivity: A specific observation win-

dow size is required to train the AMS. In this experiment,

we evaluate the effect of different window sizes on the

proposed solution by quantifying the estimation error using

Alibaba dataset. We tested window sizes of 20, 40, 60, 80 and

90 minutes of data to train and validate the proposed solution

for resource estimation. To segment the data set into train-

ing/validation sets, we performed a random split 80%/20%.

We organized the training data into windows of the aforemen-

tioned sizes, and evaluate the models and ensemble, using

the RMSE and MAE metrics to quantify the effect of each

different window size.

VII. EXPERIMENTAL RESULTS

A. AMS Evaluation

The Adaptive Model Selection method is evaluated through

the aforementioned quality metrics for different classifiers, and

check not only accuracy but also the performance requirements

for each, like time for training and predicting, and size of the

resulting model.

Table II shows the evaluation results of the AMS using

the selected features of the raw data set to identify the best

prediction method for CPU resource utilization estimation



BAIG et al.: ADAPTIVE PREDICTION MODELS FOR DATA CENTER RESOURCES UTILIZATION ESTIMATION 1689

TABLE II
AMS EVALUATION RESULTS USING DIFFERENT CLASSIFIERS

FOR ALIBABA DATA SET

TABLE III
TIME AND SPACE EFFICIENCY OF AMS USING DIFFERENT

CLASSIFIERS FOR ALIBABA DATA SET

using Alibaba data set. The table shows true positive rate

(TPR), false positive rate (FPR), true negative rate (TNR),

false negative rate (FNR), precision, recall, f-measure, and

accuracy for using kNN, Multi-layer Perceptron, Naive Bayes,

RDF, and GBT as classification methods in AMS to identify

the prediction method which can be used to estimate the CPU

resources with high accuracy. The RDF outperforms all other

classifiers. We observed that KNN, as second best classifica-

tion method in AMS also provides comparable and closest

results to RDF.

To profile the time and space efficiency of different classi-

fiers for AMS using Alibaba data set, we profile training time,

testing time, and the size of the trained model on the disk.

Table III shows the time and space efficiency of AMS using

different classification methods. We observed Naive Bayes

classifier is efficient by consuming the least time to train

and test the AMS. Whereas, the classification performance of

Naive Bayes is significantly lower than RDF specifically for

precision, recall, f-measure, and accuracy.

Although kNN classification performance is comparable to

RDF, however, training, testing, and disk size of AMS using

kNN is worst comparing to other classification methods. The

RDF training and test time are reasonably good, and it outper-

forms other classification methods for all evaluation metrics.

Therefore, we chose RDF classifier to use in our proposed

AMS.

Figure 7 shows the Receiver Operator Characteristics (ROC)

curve using RDF with AMS for different classes. ROC curves

for all the classes are better than the random classifier. We

observed that the proposed AMS with RDF efficiently classi-

fies the test data for all the classes. The area under the ROC

curves is 0.84, 0.89, 0.90, and 0.90 for SVM, LR, GBT, and

KR labels respectively.

Overall, we observed that using RDF in AMS performs

excellently to identify appropriate prediction method to use

adaptively for the given data for resource estimations.

B. Resource Utilization Estimation

Table IV shows RMSE and MAE for CPU utilization esti-

mations on test data of Alibaba data set for the proposed

Fig. 7. ROC curves using RDF with AMS for different classes.

TABLE IV
RMSE AND MAE FOR RESOURCE ESTIMATION USING THE PURPOSED

SYSTEM FOR ALIBABA DATA SET

Fig. 8. Comparison of normalized RMSE for baseline methods with the
proposed method using Alibaba data set.

Fig. 9. Box plot of absolute error computed for each estimation using baseline
and proposed methods for Alibaba data set.

and baseline methods. The proposed method outperforms all

baseline methods by yielding minimum RMSE and MAE.

To compare the proposed method with baseline methods we

normalized the RMSE with relative to the proposed solution,

as shown in Figure 8. We observed 27%, 35%, 37%, 38%,



1690 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 4, DECEMBER 2019

Fig. 10. Actual vs proposed method CPU prediction for Alibaba data set for four selected machines. M1 = Heavy workload, M2 = Low workload,
M3 = High variation, M4 = Low variation. The window size used to train the prediction model is 60 minutes.

Fig. 11. Model selection of Adaptive Model Selector (AMS) for Alibaba data
set for four selected machines. M1 = Heavy workload, M2 = Low workload,
M3 = High variation, M4 = Low variation.

and 41% less estimation error comparing to GBT, LR, KR,

Liu, and SVM baseline methods.

Figure 9 shows the box plot for absolute error computed for

each estimated CPU utilization using Alibaba data set for the

proposed and baseline methods. We observed the proposed

method outperforms the baseline methods to minimize the

absolute error.

Figure 11 shows the recommendations proposed by AMS

as a function of time for the selected four machines. The

proposed method dynamically selects the most appropriate

prediction model based on time series features of recent win-

dow. Figure 10 shows the comparison of actual and estimated

Fig. 12. Absolute error frequency of CPU utilization estimation for machine
M1 (High Load).

CPU resources using baseline methods and with the proposed

system for the four selected machines. The proposed method

to estimate the CPU utilization shows significantly closer to

the actual resource utilization for all of the machines serving a

significantly different type of workloads. Moreover, it is hard

to forecast in the presence of burst. For example, Figure 10 for

M3 we observe a burst between 460 to 530 seconds, and the

proposed solution tries to minimize the estimation error using

different estimator as reflected in Figure 11. The proposed

solution dynamically switches between different estimators to

yield prediction with better accuracy.

To quantify and visualize the error for each estimation, we

show absolute error frequency computed for machines M1
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Fig. 13. Absolute error frequency of CPU utilization estimation for machine
M3 (High Variation).

and M3 using baseline and proposed methods in Figure 12

and Figure 13 respectively. Where M1 serves a workload

demanding high CPU resources consistently, and M3 served

a workload requiring CPU resources with fluctuating demand.

We observed that the proposed method always yield minimum

error to estimate the CPU resource utilization for a different

type of workloads. We also observed that the proposed method

yield minimum absolute error for each estimation comparing

to the baseline methods for both M1 and M3 machines.

C. Window Size Sensitivity Analysis

Figure 14 shows the RMSE and MAE for different windows

sizes with the proposed system to estimate CPU resource esti-

mation. We observe that increasing window size reduce the

estimation error untill window size 60; however, after that, the

error starts rising. The 20 minutes window size only contains

four observations to fit the prediction models for an estimation

which yields a maximum error. This experiment identifies that

60 minutes window size is optimal to use with the proposed

system to minimize the estimation error. Therefore, in all of

our experiments, we used 60 minutes window size with the

proposed and baseline methods.

D. Evaluation Using BitBrains Data set

Table V shows RMSE and MAE for estimating CPU uti-

lization on test data using Bitbrains data set for the proposed

and baseline methods. The proposed method outperforms all

baseline methods by yielding minimum RMSE and MAE.

To show the comparison of the proposed method with base-

line methods, we normalized the RMSE with relative to the

proposed solution. Figure 15 shows the comparison of baseline

methods with the proposed solution by calculating normalized

RMSE for the Bitbrains data set. We observed 6%, 39%, 42%,

54%, and 54% less estimation error comparing to GBT, LR,

KR, SVM, and Liu baseline methods, respectively.

Figure 16 shows the box plot for absolute error computed

for each estimated CPU utilization using Bitbrains data set

for baseline and proposed methods. We observed the proposed

Fig. 14. RMSE and MAE using different window sizes with the proposed
system for resource utilization estimation.

Fig. 15. Comparison of normalized RMSE for baseline methods with the
proposed method using Bitbrains data set.

TABLE V
RMSE AND MAE FOR RESOURCE ESTIMATION USING THE PURPOSED

SYSTEM FOR BITBRAINS DATA SET

method produces less absolute error compared to the baseline

methods.

E. Evaluation Using Google Data set

After performing additional experiments using the Google

dataset, the same used by Liu [30], we realized that while such

dataset presents a behavior with less variance than Bitbrains

(more than 80% of the machines report standard deviations

below 4 in a range of 0 to 100), and all methods behave with

similar good accuracy, also both methods Liu’s and ours are

better than the individual machine learning algorithms. But

then, for the Bitbrains and Alibaba datasets with higher vari-

ance and more extreme behavior, and while Liu’s method does

not adapt that well, our method still does and improve the

individual algorithms. Table VI shows RMSE and MAE for

estimating CPU utilization on test data using Google data set
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Fig. 16. Box plot of absolute error computed for CPU utilization estimation
using baseline and proposed methods for Bitbrain data set.

TABLE VI
MSE AND MAE FOR RESOURCE ESTIMATION USING THE PURPOSED

SYSTEM FOR GOOGLE CLUSTER DATA SET

for the proposed and baseline methods. The proposed method

outperforms all baseline methods by yielding minimum RMSE

and MAE.

VIII. CONCLUSION

Building new methods for estimating resource utilization in

data centers is an active and challenging problem, as most

of the state-of-art techniques are based on specific machine

learning methods, able to adjust to particular scenarios, but

ineffective on extremely diverse environments. Therefore, we

present a novel approach to adaptively and automatically iden-

tify the most appropriate machine learning method to be

used for predicting future resource utilization, given recent

observations of such resources.

In our proposed methodology, we use Random Decision

Forest classifiers to determine, from a set of available

machine learning techniques, which one is most appropriate

for predicting resources on a next time interval, having mon-

itored the previous one. The RDF is trained on the statistical

features extracted from historical observations and samples of

the best method identified for each time window. Our selected

available methods include several techniques used in the cur-

rent state of the art, as regression methods, neural networks,

statistical learning, and bayesian approaches.

The proposed method is evaluated on real traces collected

from Alibaba and Bitbrains data-center monitoring datasets,

and our proposed approach can improve prediction accuracy

from 6% to 27% over current methodologies. We also focused

on the importance of monitoring time window sizes when

modeling and predicting and evaluated different sizes. We

found that 60 minutes of historical resource utilization obser-

vation can effectively be used to build the prediction model to

estimate the future resource utilization.

We conclude that our methodology can help to identify the

appropriate machine learning methods for each specific sce-

nario over time, and future work will focus on investigating

adaptive window size for modeling and predicting data cen-

ter resource utilization. We also plan to extend the proposed

system for online retraining automatically to adapt for chang-

ing characteristics. Moreover, we also intend to investigate the

prediction for t + n intervals.
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