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Abstract: In this work, a new method of design adaptive controllers for SISO systems based on 
multiple models and switching is presented. The controller selects the model from a given set, 
according to a switching rule based on output prediction errors. The goal is to design, at each 
sample instant, a predictive control law that ensures the robust stability of the closed-loop system 
and achieves the best performance for the current operating point. At each sample the proposed 
control scheme identifies a set of linear models that best characterizes the dynamics of the 
current operating region. Then, it carries out an automatic reconfiguration of the controller to 
achieve the best possible performance whilst providing a guarantee of robust closed-loop stability. 
The results are illustrated by simulations a nonlinear continuous and stirred tank reactor. 
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1. INTRODUCTION 
 
The control of dynamical systems in the presence of 

large uncertainties and constraints is of great interest 
for many applications. Such problems emerge when 
there are large variations of parameters due to changes 
in the operating region. They arise from the fact that 
processes are nonlinear, and nowadays are operated in 
wider regions subject to larger disturbances, frequent 
set point changes and failures in the system. In such 
cases, the controller has to determine the specific 
situation that exists at any instant and take the 
appropriate control action. Accomplishing this rapidly, 
accurately and in stable fashion is the objective in 
control design. 

Model predictive control (MPC) is one of the few 
techniques able to cope with constraints and modelling 
errors in an explicit manner. There are many ways of 
considering modelling errors. The most popular 
approach is the minimization of worst-case controller 
cost [1]. Lee and Yu [2] summarized the development 
of so called min-max algorithms and pointed out that 
the closed-loop implementation provides a good 
performance and they also discussed computationally 

tractable approximations. The main disadvantage of 
the minmax approach is that control performance may 
be too conservative in some cases [2]. Since all 
possible plant dynamics are considered equally likely 
at every sample, the controller only focuses on the 
worst-case. Alternative formulations of robust MPC 
based on a generalized objective function [3], cost 
function constraints [4] and multiobjective optimiza-
tion [5] have being presented lately. To overcome this 
limitation, several authors have proposed nonlinear 
MPC algorithms based on neural networks [6], fuzzy 
logic [7], Hammerstein [8] and Wiener models [9,10], 
Volterra series [11], successive linearization [12], 
input-output models [13] and multiple models [14]. 

The problem described in the above is one of 
adaptive control in which, typically, controller 
parameters are adjusted on the basis of plant 
parameter estimates. However, if conventional 
adaptive control is used, experience indicates that the 
presence of large parameter errors will generally 
result in slow convergence with large tracking errors 
during the transient phase. An alternative approach 
involves the use of multiple models, switching and 
tuning. This technique was introduced in the early 
1990’s [15] and later developed in [16-18]. 

A standard switching controller consists of an inner 
loop where the candidate controller is connected in 
closed-loop with the system, and an outer loop where 
based on a performance criterion and input-output 
data the supervisor decides which controller to select 
and when to switch to a different one. The supervisor 
then selects the candidate associated with the model 
that minimizes a performance index. Implementation 
and analysis of the switching control scheme is often 
simplified by considering a finite set of candidate 
controllers. This set is called a controller cover set 
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[16]. In this framework, robustness and performance 
issues are addressed off-line when the controller cover 
set is designed. If the controller cover set consists of a 
small number of controllers, each one stabilizing a 
wide set of models, then stability is generally rapidly 
achieved, even before a large amount of information 
has been accrued, but in the long run the resulting 
performance is typically low. In contrast, if the 
controller cover consists of a large number of 
controllers, each one tailored to a narrow set of 
models, a high performance control system is 
potentially achieved, but poor performance will 
possibly occur until there is sufficient data to obtain 
an accurate estimate of the process model. 

An alternative approach, based on a probability 
measure computed on-line was suggested recently. 
Campi et al. [29] has proposed a hierarchical 
switching scheme based on a probability measure of 
the likelihood of the different models, which is 
estimated on-line from the data is obtained by the 
control system. This probability measure is employed 
to select a controller that suitably compromises 
robustness versus performance, given the current level 
of uncertainty. As time goes by, the probability 
distribution becomes more sharply peaked around the 
model that best describes the system. 

The main contribution of this work is a robust 
adaptive predictive controller based on receding 
horizon and multiple models, switching and tuning 
techniques. The control law is designed by a multi-
objective optimization that employs a set of LTI 
models to characterize the system dynamic with a 
minimum error at every sample. This set is built from 
a bigger one, which is employed to describe the 
system in the operating domain; using switching 
techniques. The switching is performed directly in the 
objective function and constraints of the optimization 
problem. The proposed approach to adaptive control 
corresponds to having an infinite number of 
controllers in the multiple-model implementation, 
with the additional benefit of constraints handling. 

The paper is organized as follow: Firstly, in Section 
2 the formulation of the predictive feedback control is 
revisited. The meaning of the design parameters is 
discussed. The original formulation is modified by 
changing the constraint employed to guarantee the 
closed loop stability. Then, in Section 3 the multiple 
models, switching and tuning approach is introduced. 
This involves modifying the objective function and 
the constraints employed by the optimization problem 
to design the controller. At the end of this section, a 
robust switching strategy that takes account of the 
uncertainty during the controller design is introduced. 
Section 4 shows the results obtained from the 
application of the proposed algorithm to a nonlinear 
continuous stirred tank reactor. Finally, the 
conclusions are presented in Section 5. 

2. ROBUST PREDICTIVE FEEDBACK  
CONTROL 

 
MPC is an optimal control approach involving the 

direct use of a system model and on-line optimization 
technique to compute the control actions such that a 
measure of the closed-loop performance is minimized 
and all constraints are and will be fulfilled [1]. The 
basic formulation implies a control philosophy similar 
to an optimal open-loop control law which includes, 
in a simple and efficient way, constraints present in 
the system. However, as pointed out by Lee and Yu 
[2] this formulation can give poor closed-loop 
performance, especially when uncertainties are 
assumed to be time-invariant in the formulation. This 
is true even when the underlying system is time-
invariant. When the uncertainty is allowed to vary 
from one time step to next in the prediction, the open 
loop formulation gives robust, but cautious, control. 

A way to solve these problems is to introduce a 
feedback action in the predictive controller [5]. This 
idea implies the use of the closed-loop prediction error 
instead of the open-loop prediction error to compute 
the future control actions. For a stable SISO system 
described by a FIR model, the predictive control law 
is given by 

0
0 1

ˆ( ) ( , ) ( ),v w
j j vj j

u k q e J k j q u k j+= =
= − + −∑ ∑  

(1) 

where v and w are the error and the control horizons 
of the control law, qj j = 0,1,…,v+w are the control 
law’s parameters, u(k–j) is the past control action at 
time k–j and ê0(J,k–j) is the J step ahead predicted 
error based on measurements until time k–j 

( )0 1ˆ ( , ) ( ) , ( ).e J k j e k j J z u k j−− = − − −P
 (2) 

In this equation e(k–j)=r(k–j)–y(k–j) is the measured 
error at time k–j and 1( , )J z−P  is the transfer 
function of the open-loop predictor given by [5] 

( )1 1
1 1

, ,N Nj j
J j jj J j

J z a z h z h z− − − −
= + =

= + −∑ ∑P
 

(3) 

where N is the FIR model length, ãj is the step 
response coefficient and jh

~
is the Markov coefficient 

of the model of the system respectively. 
The control law (1) has three set of parameters to be 

tuned: the error and the control horizons (v and w), the 
prediction time J and the parameters qj j=0,…,v+w. It 
includes a feedback action-based on present and past 
errors e(k–j) j=0,…,v– which improves the closed-
loop system response [19]. This is the main reason 
why the control law (1) reduces the effect of non 
measurable disturbances more aggressively than a 
standard model predictive control. 

The stability of the predictive feedback controller 
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depends on the parameters qj j = 0,…,v+w and the 
prediction time J simultaneously. This result is 
summarized in the following theorem. 

Theorem 1: Given a system controlled by a 
predictive feedback controller (1), the closed-loop 
system will be robustly stable if and only if 

1

1 10

1
,

w
N Nj vj

J i i iv
i J ijj

q
a h h h

q
+=

= + ==

−
+ > + −

∑
∑ ∑

∑  
(4) 

where hj is the Markov coefficient of the system. 
Proof: See Appendix A.                      
Assuming that a polytopic linear model (PLM)W  

of m linear FIR models characterizes the behavior of 
an uncertain, as well as a nonlinear, stable system up 
to a desired accuracy ε over a bounded region D , the 
robust stability problem becomes the problem of 
finding a set of parameters qj and J such that (4) is 
satisfied for all models ofW  
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where jlh  is the Markov coefficient of the lth model 
l=1,…,m of the PLMW . 

If the prediction time J is given, the stability 
problem reduces to the problem of finding a set of 
parameters qj j=0,…,v+w, so that (4) is satisfied for all 
models ofW simultaneously. This condition can be 
written as a set of m linear inequalities 

1
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j J jjj

q
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+=
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∑
… (6) 

to be satisfied simultaneously. 
Equations (4)-(6) guarantee the robust superstability 

of the closed-loop system [19]. These stability 
conditions have being formulated as a condition on 
the models and controller parameters, rather than in 
terms of closed-loop eigenvalues position. Superstable 
systems are a narrower class than stable systems. In 
the parameters space, the stabilization problem 
becomes convex and numerous problems presenting 

serious difficulties within the framework of the 
standard theory, such as simultaneous stabilization of 
more than two models and robust stabilization under 
parametric uncertainty, are solved easily for this class 
of systems. 

Conditions for superstability have been introduced 
by several authors [20-22] and they have been applied 
to control problems [22,23]. Discrete superstable 
systems enjoy numerous important properties [22,24]. 
For this work the most relevant are: 
1. Superstability guarantees the existences of a 

positively invariant set, 
2. Superstability implies the existence of a non 

quadratic Lyapunov function, and 
3. Superstability is retained in the time varying case, 

as well in the presence of time varying and 
nonlinear perturbations. 

In the following sections we will employ these 
properties to guarantee the stability of the LTV system, 
used to approximate the original nonlinear system. 
The LTV system will be built from the set of LTI 
modelsW using a switching strategy. In the following 
paragraph we will introduce an optimization program 
to solve the controller design problem. The structure 
of the resulting controller is shown in Fig. 1. 

Given a prediction horizon J and the structure of 
the control law, the parameters qj j=0,…,v+w can be 
found solving the following nonlinear optimization 
problem [5] 

u(k) 

Q (k) 
r(k)

C(Q(k) ,z - 1) 

Control 
objectives 

and 
constraints 

Plant 
y(k) 

d(k) 

P(J,z - 1) 

Optimizer 

0ˆ ( , )y J k

 
Fig. 1. Structure of the predictive controller. 
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where V is the overall number of sampling instants 
considered. 

The objective function F(⋅) (equation (7a)) measures 
the future closed loop performance of the system. It 
should consider all models used to represent the 
controlled system, and it can be given by a general 
expression 

( )1
( ) ( ), ( , ), ( , ) [0, ],m

l l l ll
F f r k i y i k u i k i Vγ

=
⋅ = + ∈∑ (8) 

where γl≥0 are arbitrary weights and fl is the 
performance index for model l measured by any 
weighting norm 

ˆ( ) ( , ) ( , ) [0, ], 1 .p p
l Q R

f e i k u i k i V p⋅ = + ∈ ≤ ≤ ∞
 
(9) 

The first constraint (equation (7b)) is the corrected 
open loop prediction ŷl

0(J,k+i) for each model, which 
is employed to compute the control action ul(i,k). It 
only uses the information available until time k+i. The 
second constraint (equation (7c)) is the closed loop 
prediction ŷl(i,k) for each model, which is employed 
to evaluate the system performance and constraints 
and to compute ŷl

0(J,k+i). It uses all the information 
available at time k+i. The third equation (equation 
(7d)) denotes the control law (1). Finally, the last 
constraint (equation (7e)) is the stability condition (6), 
which included ensuring superstability of the closed-
loop system. 

The optimization problem (7) contains a set of 
constraints for each model of W , with control 
actions u(k–j) j=1,…,w and past errors e(k–j) 
j=0,1,…,v as common initial conditions and the 
parameters of the control law as common variables. 
The optimization problem readjusts the control law 
(1) until all design conditions are simultaneously 
satisfied, by a numerical search through a sequence of 
dynamic simulations. This reduces the computational 
burden in the minimization of the performance 
measure and fulfillment of constraints. Furthermore it 
replaces the open-loop prediction by a stable closed-
loop prediction, thereby avoiding the ill-conditioning 
problems. 

This formulation of predictive control allows for 
including constraints in the structure and parameters 
of the control law qj j=0,…,v+w since they are the 
decision variables of the optimization problem (7). In 
this way, the resulting control law will combine 
features from predictive and variable structure control 
techniques [25,26]. This idea will help to improve the 
performance and robustness of the closed-loop system 
and to overcome the performance limitations imposed 
by the use of a time-invariant control law [25]. For 
example, the integral mode, which is employed to 
remove the steady-state error, can be included in the 
control law only when the system has reached its 
settling time. In this way, the closed-loop poles can be 

placed freely during the transient period, so that the 
performance is optimized and the integral mode is 
included after the transient has finished. 

The stability of the closed-loop relies on the 
feasibility of the optimization problem (7). If there is 
no other constraint than the stability constraint (7e), 
the optimization problem is always feasible [22]. 
However, if there are constraints in the input (gu(⋅)) 
and output (gy(⋅)) variables 

( ) [ ] [ ]
( )

( ), ( , ), ( , ) 0 0, , 1, ,

( , ), ( , ) 0,
y l l

u l l

g r k i y i k u i k i V l m

g y i k u i k

+ ≤ ∈ ∈

≤
 

the feasibility of the resulting optimization problem 
can be guaranteed by adding slack variables to 
constraints 

( )
( )

( ), ( , ), ( , ) 0,

( , ), ( , ) 0,
y l l y y

u l l u u

g r k i y i k u i k

g y i k u i k

υ υ

υ υ

+ ≤ ≥

≤ ≥
 

and penalizing their deviation in the objective 
function F 

( ) 2 2

1

( ) ( ), ( , ), ( , ) .
m

l l l l y u
l

F k f r k i y i k u i kγ υ υ
=

= + + +∑
 

 
3. MULTIPLE MODELS, SWITCHING AND 

TUNING CONTROL 
 
In many industrial applications it is frequently the 

case that during the design of a controller the plant is 
assumed approximately linear, with a given 
uncertainty. In practice, this assumption involves a 
simplification that is too strong. The resulting 
controller often leads to either intolerable constraint 
violations or over conservative control actions [2]. 

In order to guarantee constraint fulfillment for 
every possible realization of the system within a 
polytopic linear model (PLM) ,W  it is clear that the 
control action has to be chosen safe enough to cope 
with the effect of the worst realization [27]. However, 
to improve the system’s performance and robustness 
over a wider operational range and satisfy constraints, 
it is necessary to employ a better approximation to 
design the control law. A way of implementing this 

 

I2(k)

Current plant 
dynamic

System 
operating 

region (D) 

Gp1 Gpj 

Gp2

Gp3

Gpm 

Gpm-1I1(k)

I3(k) Im(k) 

Im-1(k) 

 
Fig. 2. Geometrical interpretation of index (11). 
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idea is to build a LTV ε-accurate model [28] from the 
PLM W using a switching rule. In this way, the 
closest model to the current system dynamic is 
identified (Fig. 2) and, then it is employed to design 
the control law. This idea implies the combination of 
multiple models, switching and tuning control 
(MMST) [15-17], with receding horizon techniques. 

Generally, the switching algorithm is implemented 
by first computing performance indices Il(k) l=1,…,m 
based on the output prediction error 

ˆ( ) ( ) ( ) 1, , ,l lk y k y k l mε = − = …  

where ŷl(k) is the output of the l-th model. Then, based 
on performance indices Il(k), a supervisor selects the 
candidate controller that is better tuned to the 
currently estimated system model 

 
{ }min 1, ,

( ) min ( ) ( ).l jl m
I k I k I k

=
= =

…   
(10) 

The compromise between robustness and performance 
is made off-line when the controller cover set is 
designed [16,17]. 

The switching criterion Il(k) plays a crucial role in 
the design of multiple MMST systems. The switching 
criterion depends upon the prior information assumed 
about the plant, and is chosen to ensure stability as 
well as to improve the performance 1 . The most 
common index employed in switching control can be 
presented as follows 

0

2 2( ) ( ) ( ) 1, ,k k i
l l l l l li N

I k k k l mα ε β λ ε−
=

= + =∑ … ,
 
(11) 

where αl≥0, βl≥0, λl∈[0,1] and N0 is the time instant 
when the change happens. Different performance 
indices can be obtained with different parameter 
values. For example, if βl=0, the indices (11) become 

 
2( ) ( ) 1, , ,l l lI k k l mα ε= = …   (12) 

which ensures a fast adaptation response. However, 
the type of index defined in (12) is sensitive to 
uncertainties, disturbances and noise, deteriorating the 
performance of the adaptive systems. An index that 
overcomes these problems can be obtained by fixing 
α=0, in this case the index (11) becomes 

 0

2( ) ( ).k k i
l l l li N

I k kβ λ ε−
=

= ∑   
(13) 

This index is less sensitive to noise and disturbance 
than index (12) because all prior data, including the 
most recent measurement, is exponentially weighted. 

                                                        
1 A switching scheme based on a different criterion to measure 

the distance between two models, like gap-metric or a 
probability measure, can be employed. However, this topic is 
out of scope of this paper. 

The parameter λ determines the rate at which data 
enter into the calculation of index Il(k) and the depth 
of memory. It therefore introduces a lag in the 
selection of the model which is proportional to λ: as 
λ→1 all the data is equally considered and the lag is 
bigger, but when λ=0, the index (13) becomes (12).In 
the predictive feedback control framework analyzed in 
Section 2, the switching scheme can be implemented 
by calculating and comparing the above indices every 
sampling instant, generating the switching variables 
Sl(k) from 

 ( )( ) ( ) 1, , ,l lS k H I k l m= ∆ = …   (14) 

where  

 min( ) ( ) ( ) 1, , ,l lI k I k I k l m∆ = − = …   (15) 

and H(x) is the Heaviside unit step function given by 

 
{ 1 0,( ) 0 0.

xH x xσ
≥= <    

(16) 

Then, the objective function (8) -employed in problem 
(7)- is modified by replacing the weight γl with the 
switching variables Sl(k) for each model and including 
them in the design constrains gy(⋅) and gu(⋅), which 
represent the output and input constraints respectively 

( ) [ ]
1

( ) ( ), ( , ), ( , ) 0, ,
m

l l l l
l

F S k f r k i y i k u i k i V
=

= + ∈∑ (17a) 

( ) [ ]
( )

( ), ( , ), ( , ) 0 1, ,

( ), ( , ), ( , ) 0.
y l l l

u l l l

g S k y i k u i k l m

g S k y i k u i k

≤ ∈

≤
(17b) 

Finally, the structure of predictive feedback controller 
must be modified by including the vector of switching 
variables 

[ ]1( ) ( ) ( )mk S k S k=S  

as external inputs of optimizer (Fig. 3). In this way, 
the control law (1) is designed for problem (7) but 
with objective function and constraints (17). It will 
employ only the closest model to the current plant 
dynamic to measure the performance and evaluate the 
constraints while the stability constraint will be 
applied to all models. Then, a better closed-loop 
performance will be obtained because only the closest 
model to the current dynamic is used to evaluate the 
controller performance and constraints during the 
controller design. 

The controller is computed such that all the closed-
loop systems resulting from the elements of W are 
superstable at each sampling time. This is a sufficient 
condition to guarantee the stability of the switching 
sequence. This result is summarized in the following 
theorem. 
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Theorem 2: Given a system represented by a PLM 
of m LTI models, ,W and controlled by the predictive 
controller (1) designed by problem (7) with objective 
function and constraints given by (17), the resulting 
closed loop system is exponentially stable for any 
switching sequence. 

Proof: To guarantee the stability of closed loop 
system for any switching sequence it is necessary to 
probe the stability of the PLM for any switching 
sequence, which implies the stability of the nonlinear 
system over the domain D  [28]. 

Since the optimization problem (7) guarantee the 
superstability of all closed-loop systems resulting 
from of the PLM ,W  it follows from Lemma 4 that 
the superstability of each individual model of ,W  
implies the superstability PLM itself. From Lemma 2 
follows that the error trajectory will monotonically 
decrease in norm for all futures samples 

( )( ) ( ) max 0, ( ) ( ) 0,e k j k j e k k j jσ η
∞ ∞

+ ≤ + − + ∀ >  

where 

 

1 1

1

( ) ( ) 0,

( ) ( ) .

j m
l li l

m
l ll

k j S k i j

k j S k j

σ σ

η η
= =

=

+ = + >

+ = +
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∑  

(18) 

Since the error converges monotonically to zero for 
any switching sequence, the resulting closed-loop for 
the PLM system is stable. 

Finally, by construction of the PLM model [28], all 
trajectories of the nonlinear system are included in the 
set of the PLMs trajectories. Thus, the stability of the 
PLMs switching sequence over D implies the 
stability of the nonlinear system switching sequence 
over D .                                   

The superstability of the PLM implies the existence 
of a common unbounded Lyapunov function2 

                                                        
2 The FIR model is a non minimum state space realization of 

the system whose states are the previous control actions 

 0, ,
( ) max ( ) 1, ,l j N

V k u k j l m
=

= − =
…

… ,
  

(19) 

which is properly nested for at least N samples  

( ) ( ) ( 1) .V k V k N V k N⊂ ⊂ + ⊆ + + ⊆  

The common Lyapunov function for the PLM W  
will exist as long as the optimization problem has a 
solution and it will be decreasing along all trajectories. 
 
3.1. Robust adaptive switched control 

Standard switching control schemes are based on 
the certainty equivalence philosophy [16,29]. At each 
switching time, the supervisor selects the candidate 
controller that is better tuned to the currently 
estimated system model. The compromise between 
robustness and performance is made off line when the 
controller cover is designed [16,17]. 

An alternative approach to robustness problem has 
been proposed by Campi et al. [29], who suggested a 
hierarchical switching scheme based on a probability 
measure of the likelihood of the different models. The 
probability measure is estimated on-line from the data 
obtained by the control system. It is employed to 
select a controller that suitably compromises 
robustness versus performance, given the current level 
of uncertainty. As time goes by, the probability 
distribution becomes more sharply peaked around the 
model that best describes the system.  

In the switching and tuning framework presented in 
this work, the robustness can be obtained using a 
subset of models which lays into a distance δ(k) to the 
current system dynamic 

 { }( ) ( ) ( ) ( ) 1, ,l lk Gp z I k k l mδ= ∆ ≤ = …M  (20) 

instead of the closest model (Fig. 4) to design the 
control law. In this way, the control algorithm will 
build an ε-accurate model [28] every sample to 
approximate the nonlinear model, which will be used 
by the optimization problem (7) to design the control 
law. This idea will be implemented by modifying the 
switching function (16) in the following way 
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Fig. 3. Structure of the controller. 
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where 
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min 1, ,
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≠

=

= − ≥

= =

…

…   

(22) 

and modifying the optimization problem (7) in two 
ways: 
1. The switching variables ( )kS  are included into 

stability constraints (7e) 

((
( ) )

1 ( ) 1

( )1 0

( )

ˆ 1

w N
l j v jj j J k

N v
jl j J k jj j

S k q h

h h a q

+= = +

= =

+ −

− − <

∑ ∑
∑ ∑

 
l = 1,…,m.

(23) 

2. The prediction time J will be computed at each 
sampling time using (6) such that only stabilizes 
the models involved in the control law design. 

The modification of the switching rule implies the on-
line building of an ε-accurate model3, whose accuracy 
is defined by δ(k) and ρ 

( )min( ) ( ) ( ) ,k k kε ρ ε δ= +  

and characterizes the region of the operational space 
D employed to design the control law (Fig. 4). In this 

way, these parameters define the number of models to 
be included in ( )kM  at each sample. 

In the first samples after a change, several models 
can have similar behavior and it is difficult to 
distinguish between them. Therefore, the set ( )kM  
will include more models than required to represent 
the system, providing closed-loop robustness 
according to the information available at each 
sampling time. As the time goes by, the indexes Il(k) 
l=1,…,m will clearly differentiate and the set ( )kM  
will reduce the size (Fig. 5) until only the models 
required to represent the system with the desire 
accuracy will belong to ( )kM . At least, it will 
include the two closest models to the current dynamic. 
In this way, the control law superstabilize the actual 
system’s operating region, and their neighborhoods. 
As the time goes, the control law will change as the 
stabilization region is moving through the operating 
regions until the steady-state would be achieved. This 
is equivalent to a dynamical partition of the operating 

                                                        
3 The minimum accuracy of the adaptive scheme is given by 

the accuracy of the PLM, which depends on the number of 
models m. Assuming that the regimes at uniformly 
distributed over the operating space D , an upper bound of 
the number of models mM required to have an accuracy ε was 
obtained by Angelis [28, chap. 4 pp. 36]. 

 

region during the controller design, which is carried 
out during the model selection trough the switching 
rule. 

Using similar arguments to Theorem 2, but applied 
to ε-accurate model resulting from the switching rule 
(21)-(22), the set ( )kM , the stability of the closed-
loop system for any switching sequence can be 
guaranteed using the properties of superstable systems. 
This result is summarized in the following theorem.  

Theorem 3: Given a nonlinear system represented 
by a set of models W  and controlled by the control 
law (1) designed by problem (7) with the switching 
rule (21)-(22), the resulting closed loop system is 
exponentially stable for any switching sequence. 

Proof: The superstability of the models included 
in ( ) 0k j j+ >M  implies that the error trajectories 
of the resulting ε–accurate model will be 
monotonically decreasing in norm for all future 
samples 

( )( ) ( )max 0, ( ) ( ) 0,e k j k j e k k j jσ η
∞ ∞

+ ≤ + − + ∀ >  

where σ(k+j) and η(k+j) are give by (18). Since the 
error trajectories of the ε–accurate model converge 
monotonically to zero for any switching sequence, the 
resulting closed loop is exponentially stable. 

Finally, for ε small enough, the stability of the ε–
accurate implies the stability of the nonlinear dynamic 
over D  [28].                                

Under this condition, a set of nested positively 
invariant sets and piece-wise Lyapunov functions 

( 1) ( ) 0
( 1) ( )
k j k j j

V k j V k j
+ + ⊆ + ∀ >
+ + ⊆ +

C C
 

will exists, and the system trajectory will be confined 
to increasingly smaller regions, where the associated 
controller will be designed leading to control loops 
with response times that decrease, regulation proceeds 
much faster than if a single controller only were 
employed. 

, 

 

M (k ) 

M (k+1) 
• 
• 
• 

M (k+j) 
• 
• 
• 

M (k+N ) 

W 

 
Fig. 5. Time evolution of model subset M(k). 
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4. SIMULATIONS AND RESULTS 
 
Consider the problem of controlling a continuously 

stirred tank reactor (CSTR) in which an irreversible 
exothermic reaction is carried out at constant volume. 
This is a nonlinear system originally used by 
Morningred et al. [13] for testing predictive control 
algorithms. The objective is to control the output 
concentration Ca(t) using the coolant flow rate qC(t) 
as the manipulated variable. The reactor has a second 
output, the temperature of the reactor T(t). The inlet 
coolant temperature TCO(t) (measurable) and the feed 
concentration CaO(t) (non-measurable) represent the 
disturbances. The output concentration Ca(t) has a 
measured time delay of td=0.5 min. The nonlinear 
nature of the system is shown in Fig. 6, where the 
open-loop response to changes in the manipulated 
variable is shown.  

Fig. 6 shows the dynamic responses to the 
following sequence of changes in the manipulated 
variable qC(t): +10 ltmin–1, –10 ltmin–1, –10 ltmin–1 the 
reactor control is quite difficult due to the change in 
the dynamics from one operational condition to 
another and the presence of zeros near the imaginary 
axis. Besides, the CSTR becomes uncontrollable when 
qC(t) goes to beyond 113 ltmin–1. 

We have chosen as operating space region the cube 
specified by 

1

1

( ) 0.085 0.045  ,  ( ) 440 7.5 ,

( ) 10 5 min .C

Ca t mol lt T t K

q t lt

−

−

− = − =

− =
 

It is possible [28, chap. 4 pp. 36] to approximate the 
nonlinear model of the reactor within the specified 
working space, using m=4 linear models, leading to an 
estimate error ε=0.007. Using subspace identification 
techniques four discrete linear models for can be 
determined from the composition responses shown in 
Fig. 6. Notice that those changes imply three different 
operating points corresponding to the following 
stationary manipulated flow-rates: 100 ltmin–1, 110 
ltmin–1, and 90 ltmin–1. As in Morningred’s work, the 
sampling time period was fixed at 0.1 min, which 

gives about four sampled-data points in the dominant 
time constant when the reactor is operating in the high 
concentration region. 

Table 1 shows the four process transfer functions 
obtained. They define the polytopic linear model 
associated with the nonlinear behavior in the 
operating region being considered. They should be 
associated to the m vertex models in the above 
problem formulation. 

The controller must be able to follow the reference 
and reject the disturbances present in this system 
having a settling time of 5 min for an error of 2%. 

0 0

0 0

( ) 1.02 ,
( ) 0.02 50.

y k r k N
e k r k N

≤ ∀ >
≤ ∀ > +   

(24) 

where r0 is the reference value and N0 is the time of 
change. Besides, a zero-offset steady-state response is 
demanded for the steady-state controller 

01
( ) 1 50.w

j vj
q k k N+=

= ∀ > +∑   
(25) 

To guarantee the system controllability over the 
whole operational region a hard constraint is 
physically used on the coolant flow rate at 110 ltmin–1. 
Therefore, an additional restriction for the more 
sensitive model (Model 1 in Table 1) must be 
considered for the deviation variable u(k) 

1 0( ) 10 .u k k N≤ ∀ >    (26) 

This assumes that the nominal absolute value for the 
manipulated variable is around 100 ltmin–1 and the 
operation is kept inside the polytope whose vertices 
are defined by the linear models. The constraints (24)-
(26) are then included in the optimization problem (7). 

Now, define the parameters of the predictive 
feedback control law. The orders of the controller's 
polynomials are adopted arbitrarily such that the 
resulting controllers include the predictive version of 
popular PID controller (v=1 and w=2). The controller 
predictor ),( 1−zJP  was built using the nonlinear 
model of the reactor. The prediction time J is chosen 
such that it guarantees the closed-loop stability for 
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Fig. 6. Open-loop response of the CSTR. 

Table 1. Vertices of polytopic model. 
Operating conditions Model 

Model 1 
qC = 100, ∆qC = 10 

3 5

2
0.186 10

1.894 0.941
z

z z

− −

− +
 

Model 2 
qC= 110, ∆qC = -10 

3 5

2
0.216 10

1.727 0.779
z

z z

− −

− +
 

Model 3 
qC= 100, ∆qC = -10 

3 5

2
0.115 10

1.710 0.755
z

z z

− −

− +
 

Model 4 
qC= 90, ∆qC = 10 

4 5

2
0.831 10

1.792 0.824
z

z z

− −

− +
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each model. They were chosen such that they satisfy 

1
1, , .Nl l

J ii J
a h l m

= +
> =∑ …

  
(27) 

The results are summarized in Table 2, where the 
prediction time for each model is shown. 

The objective function employed to measure the 
closed-loop performance for each model ofW  is 

2 2
1

( , ) ( ) 1,2,3,4,V
l l l li

f e k i k u k i lθ
=

= + + ∆ + =∑ (28) 

where the time span is defined by V=150 and the 
control weight θl was fixed in a value such that the 
control energy has a similar effect than errors in the 
tuning process (θl=10–3 l=1, 2, 3, 4). 

In these simulations the robust switching scheme 
with time-varying radius is employed. It uses the 
reactor temperature T(k) as decision variable because 
it has no time delay. It is implemented using the index 
(11) with the parameters given by 

0.6, 0.4 1,2,3,4.l l lα β= = =  

To make more efficient the calculation of the indexes, 
the term corresponding to the moving average part of 
the index is implemented in a recursive way 

( ) 0( ) ( ) ( ) 1 ( ) ( 1) ( ) 0.l l l l l lZ k k k k Z k Z Nλ ε λ= + − − =  

Since the environment where the system operate is 
non stationary, a variable forgetting factor λl(k) [30] is 
employed for each index, whose values are limited 

0 1 1,2,3,4.l lλ≤ ≤ =  

The parameter ρ is set to 1.5 to increase the 
robustness of the system during the initial samples of 
the transitions between models and have a good 
transient response. 

Finally, the optimization of the control law will be 
stopped when the system has achieved its settling time 

0( ) 0.02 , 1, , 5,e i r i k k k≤ = − −…  (29) 
( ) 0.5.u i∆ ≤

 

The multiple models and switching (MMS) 
controller was designed following the procedure 
proposed by Rantzer and Johansson [31]. The state 
space was divided in four regions or cells, with model 
1 effective in cell 1 (Ca>0.09 and ∆Ca>0), model 2 
effective in cell 2 (Ca≥0.09 and ∆Ca≤0), model 3 
effective in cell 3 (Ca<0.09 and ∆Ca<0) and model 4 
effective in cell 4 (Ca<0.09 and ∆Ca>0). A piecewise-
quadratic Lyapunov function (PQLF) of form 

{( ) in cell 1,2,3,4T
lV x x P x l l= =  

is sought, where matrices Pi are parameterized so as to 
ensure that the function is continuous across the 
boundaries. Namely, following Johanson and Rantzer 
[32] the matrices Pi are parameterized as 

T
l l lP F TF= , 

where the matrix T is to be determined and Flx=Fjx l≠j 
on the shared cells boundaries. Note that these 
matrices are not uniquely determined by the partition. 
This formulation relaxes the requirement of a 
common quadratic Lyapunov function in two ways. 
Firstly, we do not require a single positive-definite 
matrix P to simultaneously satisfy 

0 1,2,3,4.T
l lA P PA l+ < =  

Secondly, when implementing the search for such a 
function as a system of LMI, xT(Al

TP+PAl)x is not 
required to be negative for all non-zero x but only for 
those x in the cell i where the dynamics are given by 
the system matrix Al. The problem of finding a PQLF 
for the system was formulated as a feasible problem 
for a system of LMIs and solved numerically [32]. 
The switching rule employed by this controller is 
similar to that one that is used by the adaptive 
predictive controller. 

A robust MPC based on the worst-case 
minimization was developed to compare the closed-
loop responses. The predictor was built using the 
model 2 assuming that the parameters are corrupted 
by some error ξi i=0, 1, …, p due to modelling error, 
i.e., ai=ai2+ξi i=0,1,…,p, such that ai⊂[ai2–ξi, ai2+ξi]. 
The uncertainty bound ξi was calculated form the 
vertex of the polytopic models 

( )21,3,4
max 1, , .i j i ij

a a i pξ
=

= − = …  

The error for the remaining parameters of the model 
has been computed in a similar way. Here it is 
assumed that the parameters’ error is an independently 
identical uniform distributed variable. The remaining 
tuning parameters (the optimization horizon N, the 
control horizon NU, control weight R, and the error 
weight Q) were set to 

3200, 5, 510 , .UN N R I Q I−= = = =  

The optimization problem was solved, at each step, 
using a min-max algorithm. 

The simulation tests are similar to Morningred’s 
work and consist of a sequence of step changes in the 
reference signal. The set point was changed in 
intervals of 10 min. from 0.09 mollt–1 to 0.125, returns 
to 0.09, then steps to 0.055 and returns to 0.09 mollt–1. 
Fig. 7 shows the results obtained when comparing the 
adaptive predictive controller with a standard MMS 

Table 2. Prediction time for each region. 
 Model 1 Model 2 Model 3 Model 4
J 12 11 9 10 
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and a robust MPC. The superior performance of the 
adaptive predictive controller proposed in this work is 
due to the combination of a switching scheme with the 
on-line design of the controller. In this way, the 
adaptive predictive controller is able to identify the 
local model and to optimize the closed-loop response 
whilst at the same time satisfying the constraints by 
modifying the controller’s parameters (Fig. 9(a)). 

The parameters of the adaptive controller are 
modified with changes in the reactor’s operating 
region. They revealed an initial transient behavior, 
after each change, before achieving their steady state 
values (Fig. 9(a)). The major changes happen during 
the transitions from and to model 1 because the 
behavior of this model is different to others (see Fig. 
6). This fact can be appreciated in the behavior of the 
switching variables, which show jitter during the first, 
third and fourth reference changes. These transitions 
correspond to changes to and from models 2, 3, and 4; 
which have similar dynamics and only differ in the 
gain. 

The MMS shows a similar performance to the 
adaptive predictive controller; however the 
manipulated variable generated by the switching 
controller reveals bumps (Fig. 8) due to the switch 
between the different controllers. In this application, 
the bumps on the manipulated variable do not affect 
the output due to the high speed dynamics of the 
system. 

5. CONCLUSIONS 
 
A simple framework for the design of a robust 

predictive feedback controller with multiple models 
was presented. The approach was to relate the control 
law performance to the prediction of performance. 
The resulting controller identifies, at each sample, the 
closest linear model to the actual operational point of 
the controlled system, and reconfigures the control 
law so that it ensures robust stability of the closed-
loop system. The reconfiguration of the controller is 
carried out by switching the function used to measure 
the closed-loop performance and the constraints. 

The results obtained by simulating a continuously 
stirred tank reactor with significant non-linearities 
illustrate the effectiveness of the proposed controller. 

 
APPENDIX A: ROBUST STABILITY 

CONDITION 
Using the open-loop predictor (3) and the FIR 

representation of the system, the characteristic closed-
loop equation with the predictive feedback controller 
(1) is given by 

( )

1 1

1 0 0 1

0 1 0 1

( ) 1
w v v N

n n n J i
n v J n n i

n n n i J

v N v
n i n i

n i i n i
n i n i N

T z q z a z q z q z h z

q z h h z q z h z

− − − − − −
+

= = = = +

∞
− − − −

= = = = +

= + + +

+ − +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 

The stability of the closed-loop system depends on 
both: the prediction time J and the controller 
parameters (qn n=0,…,v+w). It may be tested by any 
usual stability criteria. First, the following lemma is 
introduced. 

Lemma 1: If the polynomial 1
0

( ) i
ii

T z t z∞− −
=

=∑  
has the property that 

1

1
inf ( ) 0
z

T z−

≥
> ,    (30) 

then the related closed-loop system will be 
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asymptotically stable [21]. 
Applying Lemma 1 to characteristic closed-loop 

equation we have 

( )

1 1

1 0 0 1

0 1 0 1

( ) 1

.

w v v N
n n J i n

n v J n n i
n n n i J
v N v

i n i n
n i i n i

n i n i N

T z q z a q z q h z

q h h z q h z

− − − − − −
+

= = = = +

∞
− − − −

= = = = +

≥ − − −

− − −

∑ ∑ ∑∑
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The worst case happens when z=1, thus the closed-
loop will be stable if 

1 0 0 1

0 1 0 1

1

0,

w v v N

n v J n n i
n n n i J

v N v

n i i n i
n i n i N

q a q q h

q h h q h

+
= = = = +

∞
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∑ ∑ ∑ ∑
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(31) 

which is equivalent to 

1

1 1 1
0

1 w
N N

n vn
J i i i iv

i J i i Nnn

q
a h h h h

q

∞
+=

= + = = +
=

−
+ > + − +∑ ∑ ∑ ∑

∑
.(32) 

The closed-loop stability depends on both parameters: 
the prediction time J and the controller parameters qn 
n=0,1,…,v+w. So, for the controller design the 
prediction time J is fixed and then he parameters are 
tuned. 

If the controller denominator verifies 

1
1w

n vn
q +=

=∑     
(33) 

the stability condition (32) becomes 

1 1 1

N N

J i i i i
i J i i N

a h h h h
∞

= + = = +

> + − +∑ ∑ ∑ .
  

(34) 

This is condition was derived by Giovanini [19] for 
the predictive feedback controller. This equation mean 
that the prediction time J and controller parameters qn 
n=0,1,…,v+w could be independently fixing. The 
same result is obtained if v=1 and qv+1= –1. 

 
APPENDIX B: PROPERTIES OF SUPER-

STABLE SYSTEMS 
Consider the local approximation to a system model 

is given by the discrete model 

0( 1) ( ) ( ) (0)
( ) ( )

x k Ax k Bu k x x
y k Cx k
+ = + =

=   
(35) 

where x(k)∈Rn, A∈Rn×n, B∈Rn×m and the ∞ norm for 
the vector and matrices are given by 

( ) 1[1, ] [1, ]
( ) max ( ) , max .n

i ijji n i n
x k x k A a

∞ ∞ =∈ ∈
= = ∑  

Definition 1: The system (35) is superstable 

if 1A
∞

< . 
This is a sufficient condition introduced by some 

[20-22] for different linear models (polynomials, FIR 
and state space) and it was later applied to control 
problems by several authors [5,22-24]. 

Superstable systems enjoy numerous important 
properties [24], for this work the most relevant are: 

Lemma 2: Superstability implies the existence of a 
positively invariant set. 

Proof: Given a sequence of bounded amplitude 
inputs, the system states are given by 

1
1

( ) ( ) ( ).jj i
i

x k j A x k A Bu k j i−
=

+ ≤ + + −∑  
(36) 

If the input sequence is bounded, ( ) 1 0,u k j
∞

≤ ∀ >  
the norm of the states is given by 

( )

1

1
( ) ( ) 0

max 0, ( )

jj i

i

j

x k j A x k A B j

x kη σ η

−

∞ ∞ ∞ ∞= ∞

∞

+ ≤ + ∀ >

≤ + −

∑
(37) 

where and 1 .A Bσ η σ
∞ ∞

= = −  
This estimate (37) implies that the norm of the 

system states decreases monotonically4 

( )( ) max 0, ( ) 0,jx k j x k jσ η
∞ ∞

∆ + ≤ − ∀ ≥
 

(38) 

and for any state that satisfied ( )x k η
∞

≤ , the system 
states will be bounded by 

( ) 0,x k j jη
∞

+ ≤ ∀ >
   

(39) 

consequently, the cube 

{ }:nx R x η
∞

= ∈ ≤C  

is a positively invariant set.                     
Lemma 3: Superstability implies the existence of a 

non quadratic Lyapunov function. 
Proof: From (38) is clear that the system states 

monotonically decrease at the rate 

( )( ) ( ) 0,jx k j A x k jη
∞ ∞ ∞

∆ + ≤ − ∀ >
 

(40) 

when the states are outside of the invariant set 
, ( ) : ( )x k x k η

∞
∀ >C . 

For the particular case of a system without 
inputs, ( ) 0,u k ≡  the states will be bounded by  

( ) ( ) .jx k j A x k
∞ ∞ ∞

∆ + ≤
  

(41) 

It follows from this equation that superstable systems 
has the nonquadratic Lyapunov function  

( )( ) ( ) .V x k x k
∞

=
   

(42) 

                                                        
4  This property can be extended to inputs with outliers 
║x(k)║∞ < 1  ∀k≠N, ║x(N )║∞ > 1. 

,         , 
, 

, 
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This function grows linearly in any direction, 
( ) ( ) , 0,nV x V x x Rλ λ λ= ∀ ∈ ∀ ≥  and it is piecewise-

linear and non differentiable, however it has lateral 
derivatives. At the same time, it has also the properties 
of the conventional Lyapunov function: V(x)≥0, V(x) 
= 0 for x= 0, it is convex and grows to infinity. 

These results can be easily extended to time varying 
systems, as well in the presence of time varying and 
nonlinear perturbations. In this case, the following 
condition must satisfied for all k 

( )
( ) 1,

( ), ( ) , 0 1 ,

A k r

f x k k x k rµ ν ν
∞

∞

≤ <

≤ + ≤ < −
 

(43) 

which lead to the results showing in (37)-(42) with 
parameter η and σ given by 

, .
1

r µσ ν η
σ

= + =
−    

(44) 

The proof follows literally the same lines as of 
Lemma 2 and 3.                              

Lemma 4: The superstability of systems employed 
to build a polytopic linear model implies the 
superstability of time varying system and the 
existence of a common Lyapunov function. 

Proof: Given a polytopic linear model [28] 
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where ωl(z(k)) l=1,…,m are scheduling functions  
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and z(k) is a general scheduling variable [28]. The 
superstability of individual systems  

1 1, ,lA l m
∞

< = …  

implies the superstability of the time varying system 
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Since each system (Al,Bl) l=1,…,m is superstable they 
admit a Lyapunov function Vl(x)=║x║∞ l=1,…,m, 
such that 
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and a positively invariant set 
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