
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Engineering, Computing and Mathematics

2008-09-03

Adaptive Predictive Control Using

Neural Network for a Class of

Pure-feedback Systems in Discrete-time

Ge, SS

http://hdl.handle.net/10026.1/1306

10.1109/TNN.2008.2000446

IEEE Transactions on Neural Networks

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 9, SEPTEMBER 2008 1599

Adaptive Predictive Control Using Neural Network
for a Class of Pure-Feedback Systems

in Discrete Time
Shuzhi Sam Ge, Fellow, IEEE, Chenguang Yang, Student Member, IEEE, and Tong Heng Lee, Member, IEEE

Abstract—In this paper, adaptive neural network (NN) control
is investigated for a class of nonlinear pure-feedback discrete-time
systems. By using prediction functions of future states, the
pure-feedback system is transformed into an -step-ahead pre-
dictor, based on which state feedback NN control is synthesized.
Next, by investigating the relationship between outputs and states,
the system is transformed into an input–output predictor model,
and then, output feedback control is constructed. To overcome the
difficulty of nonaffine appearance of the control input, implicit
function theorem is exploited in the control design and NN is
employed to approximate the unknown function in the control.
In both state feedback and output feedback control, only a single
NN is used and the controller singularity is completely avoided.
The closed-loop system achieves semiglobal uniform ultimate
boundedness (SGUUB) stability and the output tracking error
is made within a neighborhood around zero. Simulation results
are presented to show the effectiveness of the proposed control
approach.

Index Terms—Discrete-time system, neural network, pure-feed-
back system.

I. INTRODUCTION

T HE last decade has witnessed an ever increasing research
in adaptive neural network (NN) control since the intro-

duction of NN for identification and control of nonlinear dy-
namical systems [1]. In the literature of adaptive NN control,
NN is mostly used as approximation models for the unknown
nonlinearities. Through years of progress, adaptive NN control
has been shown to be particularly useful for control of highly
uncertain, nonlinear, and complex systems owing to NN’s ex-
cellent function approximation ability, and much significant de-
velopment has been achieved [2]–[4].

For continuous-time systems, much research has been carried
out on adaptive NN control of affine nonlinear systems that are
feedback linearizable. An indirect NN control was presented for
the systems with unknown constant control gain in [5]. For sys-
tems with unknown functions as control gains, adaptive NN con-
trol has been constructed in [6], where a switch action is taken
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to avoid potential singularity problem. In [7], adaptive NN con-
trol via backstepping design was presented for a class of min-
imum phase nonlinear systems with known relative degree. In
[8], the combination of NN and backstepping has been proposed
for multiple-input–multiple-output (MIMO) nonlinear systems
in block-triangular form.

In contrast to the large amount of work on affine systems,
only a few results are available in adaptive NN control of non-
affine continuous-time systems, because of the lack of mathe-
matical tools for nonaffine systems compared with affine sys-
tems, e.g., the feedback linearization used for many affine sys-
tems is not directly applicable to nonaffine systems. To control
continuous-time nonaffine systems in normal form, adaptive NN
control design using implicit function was first proposed in [9],
and NN inverse control was studied in [10] to invert the non-
linear dynamics such that the resulting tracking error dynamics
are almost linear. Based on implicit function theory, adaptive
NN control using backstepping was constructed for two special
classes of nonaffine pure-feedback systems [11]. However, to
extend the control design to more general nonaffine pure-feed-
back form, one technical difficulty arises when NN is used to
approximate the control in backstepping design; and will
be involved as inputs to NN. This will lead to a circular con-
struction of the practical control as indicated in [12], in which
the difficulty was solved by proposing an input-to-state stability
(ISS) modular approach with implicit function theory used to
ensure the existence of desired virtual controls.

Comparing to nonlinear continuous-time systems, adaptive
control is less developed for nonlinear discrete-time systems.
The same concepts in continuous time and discrete time may
have different meanings. For example, the “relative degrees”
defined for continuous-time and discrete-time systems have
totally different physical explanations [13]. As a consequence,
many elegant control schemes for continuous-time systems
may be not suitable for discrete-time systems. For instance,
Lyapunov design for nonlinear discrete-time systems becomes
much more intractable than for continuous-time systems be-
cause the linearity property of the derivative of a Lyapunov
function in continuous-time is not present in the difference of
the Lyapunov function in discrete time [14]. However, there
are still considerable advances in NN control for discrete-time
systems [15]–[18]. For systems with general relative degree,
multilayer NN control was studied through backpropagation
[15] and for nonlinear discrete-time systems in normal form,
NN control with filtered tracking error was proposed in [16].

1045-9227/$25.00 © 2008 IEEE
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Noncausal problems will be encountered if we directly apply
backstepping design to discrete-time systems in lower trian-
gular form, because discrete-time systems are described by
difference equations, which involve state variables at different
instants. To solve the noncausal problem, coordinate-transfor-
mation-based backstepping, the approach that “looks ahead”
and chooses the control law to force the states to acquire their
desired values, was proposed in [19] for parameter-strict-feed-
back discrete-time systems, but it is not clear how to extend this
technique to more general systems. To control more general
strict-feedback discrete-time systems, system transformation
using prediction functions of future states was studied in [17],
in which adaptive NN backstepping design has been applied to
the transformed system without noncausal problem.

Similarly to continuous-time systems, it is noticed that most
of the results for controlling discrete-time systems are limited
to affine systems that are feedback linearizable. To control
nonaffine discrete-time systems, implicit function-theory-based
adaptive NN control was first studied in [20] and it is further
developed with multilayer neural network (MNN) for general
nonlinear autoregressive moving average with eXogenous
inputs (NARMAX) systems in [21]. A novel linearization
based on the NN identified model was proposed in [22] and
then NN control was designed with restriction on the control
growth . In [23], the nonaffine discrete-time system
was decomposed into a linear part and a nonlinear part, and
the nonlinear part was compensated by using an additive NN
control. This method was also adopted in [24], where multiple
models with a switching action were used for control design.

In this paper, as an effort to further explore adaptive NN con-
trol of nonaffine systems in discrete time, we will study direct
adaptive NN control of pure-feedback systems based on predic-
tion approach, with implicit function theorem exploited to assert
the existence of a desired control input.

The main contributions of the paper are as follows.
1) By states and outputs prediction, the pure-feedback

discrete-time systems are transformed into an -step
predictor and then transformed into an input–output
model. After transformation, both state feedback and
output feedback controls are synthesized with employ-
ment of a single NN.

2) To solve the difficulty of nonaffine appearance of con-
trol input, implicit function theory is used to assert the
existence of an ideal control.

3) The proposed NN control achieves SGUUB stability
and the bounds of the closed-loop signals are explicitly
given.

Throughout this paper, the following notations are used.
• stands for nonnegative integers.
• denotes the Euclidean norm of vectors and induced

norm of matrices.
• means that is defined as .
• represents the transpose of a vector or a matrix.
• stands for -dimension zero vector.
• and denote the ideal neural weight and the es-

timate of neural weight at the th step, respectively. Let
denote the estimate error.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. System Representation

Consider the following single-input–single-output (SISO)
discrete-time systems in pure-feedback form:

(1)

where , , are
system states, and

are unknown nonlinear functions, and
are system input and output, respectively, and denotes

the external disturbance, which is bounded by a constant , i.e.,
.

Assumption 1: System functions ,
, and in (1) are continuous with

respect to all the arguments and continuously differentiable with
respect to the second argument.

Assumption 2: There exist constants
such that , , where

, ,
and .

This assumption implies that the partial derivatives, ,
, are strictly either positive or negative. Without

losing generality, it is assumed that the signs of the partial
derivatives are all positive. Let us introduce the notations:

and , which are to be used in the
control design later.

Assumption 3: The system functions ,
, and are Lipschitz functions.

The control objective is to synthesize an NN control
for system (1) such that all signals in the closed-loop systems
are bounded and the output tracks a bounded reference
trajectory , where is a compact set.

Remark 1: The nonaffine pure-feedback form described in
(1) includes a large class of systems. Actually, many cascaded
physical systems that can be expressed in lower triangular form
fall into this category, e.g., direct current (dc) motor system [25],
coupled tank system [26], aircraft flight control system [27],
Duffing oscillator [28], continuous stirred tank reactor (CSTR)
system [29], etc.

B. HONN Approximation

There are many well-developed approaches used to ap-
proximate an unknown function. Artificial neural networks
(ANNs) are one of the most frequently employed approxi-
mation methods due to the fact that ANNs are shown to be
capable of universally approximating any unknown function
to arbitrary precision [30]–[32]. Similar to biological neural
networks, ANNs consist of massive simple processing units
that correspond to biological neurons. With the highly parallel
structure, ANNs are of powerful computing ability and intel-
ligence of learning and adaptation with respect to fresh and
unknown data. Higher order neural network (HONN) is a kind
of linearly parametrized neural network (LPNN), and because
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Fig. 1. HONN structure.

of its higher order interaction between neurons, HONN is of
strong capacity and can approximate any continuous function
to any desired accuracy over a compact set [4]. The structure of
HONN is expressed as follows:

(2)

(3)

where is the input to HONN, is the NN nodes
number, is a collection of not-ordered subsets
of , specified by the designer, ’s are prescribed
nonnegative integers, is an adjustable synaptic weight vector,
and is a monotonically increasing and differentiable sig-
moidal function. In this paper, it is chosen as a hyperbolic tan-
gent function, i.e., . The
HONN structure is shown in Fig. 1, where the dashed lines mean
they may be connected or unconnected depending on , and
is the power of the function.

For a smooth function over a compact set ,
given a small constant real number , if is sufficiently
large, there exists a set of ideal bounded weights such that

(4)

From the universal approximation results for neural networks
[33], it is known that the constant can be made arbitrarily
small by increasing the NN nodes number .

Lemma 1 [18]: Consider the basis functions of HONN (2)
with being the input vector. The following properties hold:

(5)

where denotes the maximal magnitude eigenvalue of
.

C. Preliminaries

The following lemmas and definitions will be used for control
design and stability analysis in the remainder of this paper.

Definition 1 [18]: The future state variables of a discrete-time
control system is said to be semidetermined future states (SDFS)
at time instant , if it can be determined based on the available
system information up to time instant , and controls up to time
instant under the assumption that the dynamics of the plant
and the disturbance are known.

Definition 2: Let be an open subset of . A mapping
is said to be Lipschitz on , if there exists a

positive constant such that

for all .
Definition 3 [34]: A trajectory of the closed-loop

system is said to be semiglobally uniformly ultimately bounded
(SGUUB), if for any a priori given compact set, there exists a
feedback control, a bound , and a number , such
that the trajectory of the closed-loop system starting from the
compact satisfy for all .

Lemma 2 [35]: Let with
and rank where

is an ma-
trix. Then, there exists a neighborhood of in and a
unique function such that and

, for all .
Lemma 3: Under Assumptions 1–3, the states, and input of

system (1) satisfy

(6)

where , , , and are some finite constants.
Proof: See Appendix I.

Lemma 4: Let , where ,
, . If the following inequality holds:

(7)

where and , then we have

(8)

Proof: See Appendix II.
Corollary 1: Let , where ,

. If the following inequality holds:

(9)

where and , then we have

(10)

where .
Proof: See Appendix III.

Motivated by the result in continuous time [8], we have the
following lemma.
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Lemma 5: Define a positive–definite function
for system (1), with and given by

where , , is output tracking
error, and are ideal NN weight and its
estimation, is the estimate error, and
and are some positive constants. If the following inequality
holds:

(11)

where , , and , then given any
initial compact set defined by

where and are the coefficients introduced in Lemma 3,
and are defined as

(12)
Then, we have the following conclusions.

1) The states and the NN weight estimate re-
main in the compact set defined by

2) The states and the NN weight estimate will
eventually converge to the compact set defined by

(13)

where constants

(14)

Fig. 2. Three compact sets (continuous-time case is documented in [8]).

(15)

Proof: See Appendix IV.
Remark 2: The three compact sets defined in Lemma 5,

the initial compact set , the bounding compact set , and
the steady-state compact set , are illustrated in Fig. 2. It is
noted in (14) and (15) that the size of only affects
the bounding compact set but not affects the steady-state
compact set .

Remark 3: According to Lemma 5, given any initial condition
, if there is a control that guarantees the validness of (11) on

the bounding compact set , then the closed-loop signals are
SGUUB in accordance with Definition 3.

III. TRANSFORMATION FOR STATE FEEDBACK CONTROL

In this section, we will show that the future states
in system (1), , are SDFS, and then,

the system is transformed into an -step predictor, which only
involves current states and input.

A. Future States Prediction

It is noted in system (1) that among the future states at the
th step, only the last state depends on the con-

trol input, while other states are independent of .
Therefore, they can be predicted at the th step provided that
the system dynamics are known exactly. This implies that these
states are SDFS. The prediction functions of one step ahead
states are as follows:

...

... (16)
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where

For convenience, (16) is written as vector functions

(17)

According to Assumption 2, it can be checked that

(18)

Moving one step forward in (16) and using the predicted states
vector in (17), we see that the first states at the th
step are still independent of control , and thus, they are
SDFS

...
...

...

... (19)

where

Similar to the notation in (17), the above vector functions are
denoted as

(20)

Continuing the procedure above iteratively, after steps,
it is noted that the first state at the th step can be
predicted by the states at the th step as follows:

(21)
where vector-valued functions ,

, , are defined consistently via the above
procedure. Then, we see that is still an SDFS.

For consistency, we denote

(22)

B. The -Step-Ahead Predictor Form

If the dynamics of systems (1) is exactly known, it has been
shown from (17)–(22) that the future states ,

, are SDFS and can be obtained by the prediction
functions , which are functions of current states.

Substituting these predicted future states into system (1), it is
obtained

...

(23)
where is defined in the following for
continuity:

(24)

Remark 4: To facilitate the control design, we consider com-
bining the equations in (23) together rather than applying
backstepping to (23) directly as in [17], where NNs are re-
quired to generate a control input.

Replacing in the first equation of (23) with the
right-hand side of the second equation yields

Continuing to iteratively replace in the above
equation with the right-hand side of the th equation in (23),

, until appears at the last step, we obtain

(25)

where

(26)

Now the original pure-feedback system (1) is transformed into
the -step-ahead predictor.

IV. STATE FEEDBACK ADAPTIVE NN CONTROL

The -step-ahead predictor function (25) can be written as

(27)

where
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According to Assumption 3, there exists some finite constant
such that

(28)

For , from (18) and (23), it is easy to show that

(29)

Denote and we have

(30)

From (29), it is clear that

According to Lemma 2, there exists a continuous ideal control
input such that

(31)

Substituting this ideal control into (30) results in
, . This means that the ideal control

is an -step deadbeat control because, after steps, we
have , if . It is known that
is bounded, then will be bounded. According to Lemma 3,
the ideal control input is bounded. From Section II-B,
there exists an NN with ideal weight vector such that

can be approximated in the following manner:

(32)

where and is the NN function approxi-
mation error that can be made arbitrary small by increasing NN
neurons number .

Consider the following control with an adaptive HONN as an
approximator of :

(33)

where is a scaling factor and is the
estimate of ideal NN weight and it is updated by the adap-
tation law

(34)

where and are NN tuning parameters to be
chosen.

Remark 5: It should be noted that the update law (34) is pre-
sented at the th step, and the weight is obtained

using information at the th step. On the other hand, the
control (33) employing is presented at the th step and
it only involves information at th step.

Theorem 1: The closed-loop adaptive system consisting of
the plant (1), the adaptive NN control (33), and the NN adap-
tation law (34) achieves SGUUB stability, provided that As-
sumptions 1–3 hold, and the design parameters ,

, and are suitably chosen such that

(35)

Furthermore, the tracking error and the NN weight estimation
error are ultimately bounded as

where

(36)

and is the NN approximation bound defined in (4).
Proof: Adding and subtracting on the

right-hand side of (30) leads to

(37)

where
and the last equality is obtained by using mean value theorem.
For convenience, denote

Combining (32), (33), and (37) yields

(38)

where is the NN weight estimation error.
First, we assume that the NN approximation ability is never

violated such that (38) always holds, while we will show that
it is indeed the case if initially the NN approximation range is
constructed to cover a specified compact set, and the so-called
circular argument in the literature does not apply here in this
very proof. Choose a positive–definite function as

(39)

It can be derived from (34) that

(40)
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From (38), it can be derived that

where

Noting the facts

we have the following inequality from (40):

(41)

Combining with

(42)

yields

(43)

where

(44)

If the parameters are chosen such that the following inequality
holds:

then (43) becomes

(45)

Let , , and . Noting
that and and applying Lemma 5, we
obtain the bounds on states and NN weights vector. According
to Lemma 3, the control input is also bounded.

Now we show that the validness of NN approximation indeed
holds given any initial condition , if the NN used in (33)
is predesigned with approximation range covering a specified
compact set.

From Remark 2, we see that the bounding compact set
is determined by initial condition and control parameters.
Thus, given any initial condition , because the bounding com-
pact set is determined, if NN is constructed such
that its approximation range covers the determinant compact set

, then NN approximation ability always holds.
It implies that given any initial condition , with employment
of an NN whose approximation range is over corresponding ,
the NN control (33) guarantees the boundedness of closed-loop
signals. According to Definition 3, the closed-loop signals are
SGUUB.

In addition, according to Corollary 1, it can be seen that the
tracking error and the NN weight estimation error are ultimately
bounded as

where and are defined in Theorem 1. This completes the
proof.

V. TRANSFORMATION FOR OUTPUT FEEDBACK CONTROL

To design output feedback control, in this section, we con-
sider transforming the system into an input–output model.

A. Transformation to Input–Output Model

Let us rewrite the first equation of (1) as

(46)
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Noting Assumption 1 and according to Lemma 2, can be
seen as a function of and , i.e.,

(47)

where is the implicit function asserted by Lemma 2. In
the same manner, from the second equation of (1), can be
expressed as a function of , , and as

(48)

where is the implicit function asserted by Lemma
2. Continuing the same procedure, we can see that ,

, can be expressed as

(49)

where is the implicit function asserted by Lemma 2 and
, , are defined consistently. Then, it is easy

to derive a vector function only dependent on outputs to express
as

...

...

(50)

Now let us rewrite the equations in system (1) as follows:

... (51)

Then, replacing in the first equation of (51) with
the right-hand side of the second equation yields

(52)

Using the chain rule of derivative, we will have

(53)

Continuing to replace in (52) with the right-
hand side of the th equation in (51), , we
have

(54)

where , , are defined recursively. Sim-
ilarly, we have

(55)

where , , are also defined recursively.
Continuing the substitution until control appears on the
right-hand side of (54), we have

(56)

In the same manner, we have

(57)

From the definition of vector functions , (56) can be further
written as

(58)

Accordingly, we have

(59)

B. Future Outputs Prediction

Control design based on (58) is not straightforward due to
the existence of future outputs. Hence, let us consider applying
output prediction approach [18]. For convenience, we define
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Moving back steps in (58), we obtain

(60)

It means that the output is a function of current and
past outputs and past input
and disturbance .

Moving one step forward, we obtain the following equation
from (60):

(61)

Substituting (60) into (62), becomes a function of
and and disturbance

. Define

(62)

If we continue to substitute recursively, it is easy to prove
that is a function of , , and

, as expressed in the following:

(63)

Moving one step ahead in (63), we have the following:

(64)

Substituting (60) into (64), and introducing the following
definition:

we can see that on the right-hand side of (64), there will be no
future outputs and the control input appears. Then, we see
that is a function of , , and . It is defined
as

(65)

It is easy to check that is a continuous function and it is
continuously differentiable over . Therefore, (65) can be
expressed by the mean value theorem [36] as

(66)

where

According to Assumption 3, there exists a constant such that

(67)

VI. OUTPUT FEEDBACK ADAPTIVE NN CONTROL

The dynamics of the tracking error is
given by

(68)

It is trivial to show that

therefore, there exists ideal control input satisfying

(69)

where is a compact set corresponding to and . Using
the ideal control , we will have after steps
if . It implies that the ideal control is an

-step deadbeat control. According to Lemma 3, the ideal con-
trol is bounded.

As mentioned in Section II-B, there exist an ideal NN weights
vector , such that can be approximated by
an HONN as follows:

(70)

where is the NN approximation error. Consider using
an online adaptive HONN as to approximate . Then,
the output feedback adaptive NN control is given as

(71)

where is a scaling parameter to be specified
and the NN weights vector is updated by the following adapta-
tion law:

(72)

where and are NN tuning parameters to be
chosen.

Theorem 2: Consider the adaptive closed-loop system con-
sisting of the system (1), adaptive NN control (71), and NN
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adaptation law (72). Under Assumptions 1–3, and with design
parameters , , and satisfying

(73)

the closed-loop system is SGUUB stable and the tracking error
and NN weight estimation error will eventually be bounded as

where

(74)

and is the NN approximation error bound defined in (4).
Proof: It is similar to the proof of Theorem 1 and is thus

omitted.
Remark 6: From Theorems 1 and 2, there is a tradeoff to

make the ultimate bound of the output tracking error and the NN
weights vector estimate error smaller. The NN approximation
error bound can be made smaller by increasing NN nodes
numbers and . However, in order to satisfy (35) and (73), we
will need to choose smaller and , which will increase the
ultimate bound. The method to avoid the tradeoff and to obtain
an arbitrary small ultimate bound will be the topic for future
research.

VII. SIMULATION RESULTS

To demonstrate the effectiveness of the proposed NN control,
the following CSTR system in [29] will be used for simulation:

(75)

where is the concentration and is the temperature,
, , , and are scalar param-

eters [29], and is unmeasured disturbance.
It is noted that in system (75), the state variable appears to
be nonaffine. The control objective is to make the output track
a smooth reference signal , which is generated by passing a
discontinuous set-point step signal with amplitude 0.4 0.2
into the following linear model [34]:

(76)

where the natural frequency 5.0 rad/min and the damping
ration .

Denoting and and by using first-order
Taylor expansion, the CSTR system (75) can be approximated
by a discrete-time model as

(77)

where

with sampling period and
.

For system (77), it is obvious that Assumption 1 holds. As-
sumptions 2 and 3 are not strictly satisfied, but it is seen in
the simulation results that practically the proposed controls still
work well. Consider a operation ranges and

. It is easy to check that
and and the partial directives , ,
and are upper bounded in the operation range. In this
operation range, we have such that .

It should be noted that the discretized model (77) is only used
for analysis. The simulation is carried out on original system
(75).

A. State Feedback Control

The structure of NN control (33) is shown in Fig. 3(a) where
the gain and the NN is constructed according to
(2) and (3) with 18 neurons. For the control parameters,
they can be specified as long as criteria in (35) is satisfied. First,
we choose and . The gain can be
chosen as an arbitrary sequence satisfying . In the
simulation, it is simply chosen as and we choose

The simulation is carried out with the initial states
, and for the initial weights vector ,
, each element is selected as a standard uniform dis-

tributed random number divided by 10. The results are presented
in Figs. 4(a), 5(a), and 6(a). Fig. 4(a) shows the output and
the reference signal . Fig. 5(a) illustrates the boundedness
of the control input and the norm of NN weights vector

and Fig. 6(a) shows state . It can be seen that all
the signals are bounded in the operation range.

B. Output Feedback Control

The structure of NN control (71) is shown in Fig. 3(b) where
the gain and the NN is constructed according to
(2) and (3) with 30 neurons. The initial system states are

. The initial weight estimate ,
, is chosen in the same manner as that for state feedback

control design. The design parameters are chosen as
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Fig. 3. NN control structure. (a) State feedback control structure; (b) output
feedback control structure.

, , and , which satisfy the criterion in
(73) The simulation results are presented in Figs. 4(b), 5(b), and
6(b). Fig. 4(b) shows the output and the reference signal

. Fig. 5(b) illustrates the boundedness of the control input
and the norm of NN weight , and Fig. 6(b) shows

state .

C. NN Learning Performance

To demonstrate the NN learning performance, we define the
following mean square errors (MSEs):

(78)

as measurement of NN learning error. According to (31) and
(69), the smaller the NN approximation error and

are, the smaller and are. If
and , we have and

.
The MSEs of state feedback and output feedback NN

learning are demonstrated in Fig. 7(a) and (b). It is noted that
the NN learning performance is satisfactory, i.e., the defined
MSEs and are made to be bounded around zero.

D. Discussion and Comparison

From the previously presented simulation results, it is seen
that all the signals are bounded in the operation range. Ac-
cording to Fig. 4, in the initial period of simulation, the system
output does not track the reference trajectory very well. How-

Fig. 4. System output and reference trajectory. (a) State feedback NN control;
(b) output feedback NN control.

ever, as the simulation time increases, the output tracking be-
comes much better. This is because the initial NN weights are
set to be zero. Thus, NN has to be sufficiently trained before it is
able to generate NN control outputs that would facilitate a good
trajectory following.

It is seen from Figs. 4 and 7 that the steady-state error is
very small and after the first rising of reference trajectory,
the output tracks the rising and falling of reference trajectory
quickly enough. The tracking performance is better at the rising
edge of reference signal (no overshoot and shorter rising time)
than at the falling edge (small overshoot and a bit longer rising
time). The asymmetric performance is due to complicated
nonlinearity of the plant.

To demonstrate the superiority over proportional–inte-
gral–derivative (PID) control, we compare the proposed
output feedback NN control (71) with a standard PID control.
In the simulation, the system initial condition is set to be

and the PID control is given in discretized
manner as

where the parameters , , and were
found by trial and error to minimize the sum of squared output
tracking errors.
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Fig. 5. Boundedness of control signal and NN weight. (a) State feedback NN
control; (b) output feedback NN control.

The proposed output feedback adaptive NN control is further
compared with the linear error observer-based NN inverse con-
trol constructed in [10], which is a continuous-time design for
nonaffine system. The system’s initial condition is also set to be

. The dynamic compensator parameters used
in the control are set to be , , ,
and . HONN with 45 neurons is used with the same
initial condition as that for our proposed output feedback con-
trol. The design parameters are , , ,

, and . The poles of the observer have
been set to be five times faster than those of the closed-loop
error system.

The comparison results are shown in Fig. 8, where it is very
clear that the two NN-based controls perform much better than
the PID control with respect to either tracking error or control
effort, though NN-based controls respond not as quickly as PID
control in the initial steps. This is because the two NN con-
trols are based on online NN learning. From the tracking per-
formance of the two NN-based controls in Fig. 8(a), it is seen
that the inverse NN control has an obvious steady-state error
while the steady-state error for our proposed output-feedback
adaptive NN control is very small.

Fig. 6. State � . (a) State feedback NN control; (b) output feedback NN control.

VIII. CONCLUSION

In this paper, we have studied adaptive NN control of non-
linear discrete-time systems in nonaffine pure-feedback form.
By future state predictions, the system is transformed to an

-step predictor for state feedback control, and by future output
predictions, the system is further transformed into a suitable
input–output model for output feedback control. Implicit func-
tion theorem is exploited to identify the existence of an ideal
control and NN is used to approximate the unknown function in
the control. Both state feedback and output feedback controls
only use one single NN and achieve SGUUB stability in the
closed loop. The results in the paper can be further extended
to other linearly parametrized approximator that also has the
property in (5), such as radius basis function (RBF) NN.

APPENDIX I
PROOF OF LEMMA 3

Proof: Consider the first equation in (1). According to the
mean value theorem, it can be written as
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Fig. 7. Output tracking error and MSE of NN learning. (a) State feedback NN
control; (b) output feedback NN control.

where . According to
Assumptions 2 and 3, we obtain

(79)

where is the Lipschitz constant, ,
, and . Similarly, the second

equation in (1) can be written as

where . In the same
manner, it can be shown that there are some finite constants
and such that

Fig. 8. Comparison of PID, NN inverse, and adaptive NN control. (a) Compar-
ison of tracking errors; (b) comparison of control signals.

(80)

where . Substituting (79) into (80) yields

(81)

where and are some finite constants.
Following the previous procedure, one can easily show that

(82)

where and are some finite constants. Then, it is easy
to obtain

(83)
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where

(84)

From the last equation in (1), one has

(85)

where and and
are some finite constants. Combining with (82) and (83), we
have

(86)

where and are some finite constants.

APPENDIX II
PROOF OF LEMMA 4

Proof: First, let us consider the following inequality of
:

(87)

where and . It is straightforward to
show that

...

and, furthermore

Now, if we choose , , then
the inequality (7) becomes (87) in Lemma 4. It is easy to see
that (8) holds.

APPENDIX III
PROOF OF COROLLARY 1

Proof: Define and
, where , ,

. It is obvious that . Then,
from the definition, we have

(88)

According to (9), it is easy to obtain

(89)

where and . Combining
(88) and (89) results in

(90)

Noting that and , we apply Lemma 4 to
(90) and it results in

(91)

It is obvious that , , there exist ,
, and , such that we can

obtain

(92)

APPENDIX IV
PROOF OF LEMMA 5

Proof: Note that . From Corol-
lary 1, we have the following:

(93)

From the definition of , we have

(94)

Combining (93) and (94), the following is obtained:

(95)
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Then, it is easy to show that

and
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