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ADAPTIVE PREDICTIVE PATH FOLLOWING CONTROL BASED ON

LEAST SQUARES SUPPORT VECTOR MACHINES FOR

UNDERACTUATED AUTONOMOUS VESSELS

Chenguang Liu, Huarong Zheng, Rudy R. Negenborn, Xiumin Chu and Shuo Xie

ABSTRACT

Since vessel dynamics could vary during maneuvering because of load

changes, speed changing, environmental disturbances, aging of mechanism,

etc., the performance of model-based path following control may be degraded

if the controller uses the same motion model all the time. This article proposes

an adaptive path following control method based on least squares support

vector machines (LS-SVM) to deal with parameter changes of the motion

model. The path following controller consists of two components: the online

identification of varying parameters and model predictive control (MPC)

using the adaptively identified models. For the online parameter identification,

an improved online LS-SVM identification method is proposed based on

weighted LS-SVM. Specifically, the objective function of LS-SVM is modified

to decrease the errors of parameter estimation, an index is proposed to

detect the possible model changes, which speeds up the rate of parameter

convergence, and the sliding data window strategy is used to realize the

online identification. MPC is combined with the line-of-sight guidance to

track straight line reference paths. Finally, case studies are conducted to verify

the effectiveness of the proposed path following adaptive controller. Typical

parameter varying scenarios, such as rudder aging, current variations and

changes of the maneuverability are considered. Simulation results show that

the proposed method can handle the above situations effectively.

Key Words: path following, least squares support vector machines (LS-

SVM), parameter identification, model predictive control

(MPC), autonomous surface vessels (ASV)
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I. Introduction

Autonomous vessels have received much attention
because of their low labor cost, safety, and high
efficiency. Path following control of autonomous
vessels has been studied significantly in recent years
[1–7]. One of challenges in path following control is
the fact that vessels are usually underactuated without a
sway thruster [4]. It means that the maneuverability of
an underactuated vessel degrades compared with a full-
actuated vessel during path following control because
the sway motion for the underactuated vessel can not be
controlled directly. Another challenge is the guarantee
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of control robustness under disturbances and changes
of vessel dynamics [8]. Robust control and adaptive
control are usually used to solve the second challenge
[3, 9, 10]. Robust control is to design a constant gain
feedback controller provided that uncertain parameters
or disturbances are within some set, and aims to achieve
robust performance and stability in the presence of
bounded modeling errors [11]. Adaptive control is to
design a controller that must adapt to a controlled
system with variable parameters or uncertainties [12].
Adaptive control is different from robust control in
that it does not need a priori information about the
bounds on these uncertain or time-varying parameters
[11]. Considering that it is difficult to predict the range
and strength of disturbances or uncertainties during path
following in advance, an adaptive control method is
more suitable to deal with these uncertainties.

The principle of adaptive control is shown in
Figure 1. The model-based controller calculates the
optimal input according to reference trajectories and
an updated motion model. The updated motion model
is obtained with a parameter identification method
that utilizes system input and output data. Vessels
dynamics are varying when there exist disturbances
or uncertainties, for instances, changes of vessel
properties, environmental disturbances, equipment
aging, etc. To avoid the degradation of control
performance, it is needed to identify the motion
model online and adjust the control law accordingly.
The method of support vector machines (SVM) is
introduced for classification and function estimation
based on structural risk minimization principle in
[13, 14]. SVM solutions are characterized by convex
optimization problems to avoid local minimums with
classical neural networks approaches [15, 16]. Least
squares support vector machines (LS-SVM) based
classifiers were proposed by Suykens [17], which
works with equality constraints instead of inequality
constraints and a sum squared error cost function (SSE).
LS-SVM simplifies the problem with the solution
characterized by a set of linear equations rather than
a convex quadratic program [18, 19]. LS-SVM can
deal with two classes of problems: classification and
function estimation, regression or system identification
[17]. As aforementioned, the second class of problem
is focused in this article, i.e., system identification
for the vessel motion model using LS-SVM. Suykens
et al. [18] proposed a weighted LS-SVM method for
nonlinear function estimation and solved the robustness
and sparse approximation problems with LS-SVM
. In [19], an online trained LS-SVM is proposed
by means of incremental updating and decremental

pruning algorithms. Similarly, an online LS-SVM was
derived with adding and deleting a data pair by Li et al.
[20].

Model-based 

Controller

Updated 

Motion Model

System

States Outputs
Parameter 

Identification

Corrected parameters

inputReference 

trajectories

Figure 1. Adaptive control principle

Once the motion model is identified, a vessel can
follow reference paths with a series of control actions
generated by the path following controller with this
model. There have been many control methods used
for path following [5, 21, 22]. One of difficulties for
path following controller design is to satisfy rudder
magnitude constraints [5]. Model predictive control
(MPC) offers a good choice to handle this challenge
because of its advantage of considering constraints
explicitly [23, 24]. Since MPC relies on a system model
for trajectory predictions, prediction models should be
updated when system dynamics change. Therefore, the
aforementioned LS-SVM and MPC can be combined.
Shi et al. [25] propose a nonlinear model predictive
controller based on a nonlinear autoregressive external
input (NARX) model with LS-SVM solving the model
identification problem. Li et al. combine a generalized
predictive control with the online LS-SVM and the
proposed algorithm can recursively modify the model
by adding a new data pair and deleting the least
important data at each sampling period [20].

This article proposes an adaptive path following
control method based on an improved online LS-SVM
and an MPC algorithm for varying vessel dynamics.
The improved parameter identification method is based
on the weighted LS-SVM. This proposed method
modifies the existing objective function of LS-SVM to
increase parameter estimation accuracy, and proposes
an index to speed up the rate of parameter convergence.
Moreover, some abnormal identified parameters are
ignored to avoid the bad performance if parameters
are not satisfied within relevant predefined rational
limitations. A sliding data window strategy combined
with the proposed LS-SVM, namely λ-LS-SVM, is
applied to realize online identification. The proposed
adaptive method effectively improves the robustness
and accuracy of path following control, especially under
disturbances or uncertainties.

The remainder of this article is organized as
follows. Path following modeling for a motion model
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and a predictive path following scheme is presented
in Section II. In Section III, the LS-SVM based
online parameter identification method is proposed. In
Section IV, two simulation case studies are carried out
to verify the performance of the proposed methods
under disturbances and maneuverability changes. In the
Section V, the conclusions and future directions are
presented.

II. Path following modeling

In this section, a vessel motion model involving
nonlinear Nomoto dynamics and rudder servo system
is presented, and a path following scheme is proposed
with Line-of-sight (LOS) guidance and MPC controller.

2.1. Vessel motion model

In path following, the sway speed for an
underactuated vessel always stays small and the surge
speed can be deemed as constant in the body-fixed
coordinate system [4, 5, 26]. To realize the adaptive
control based on the online identified model while
taking into account nonlinear characteristics of ship
dynamics, the Nomoto second order nonlinear model
is proposed to use as the vessel motion dynamic model
which is as follows:

T1T2
...
ψ + (T1 + T2) ψ̈ + ψ̇ + βψ̇3 = K

(

δ + T3δ̇
)

+ d0,
(1)

where ψ is the heading and ψ̇ = r in which r is the
angular velocity of yaw; δ is the rudder angle; K is
the Nomoto gain; T1, T2 and T3 are maneuverability
indices; |d0| 6 dmax is a bias term due to disturbances
and unmodeled dynamics [27]; β is a nonlinear
coefficient. To use model (1), parameters T1, T2, T3, K,
d0 and β should be identified.

Compared with other models that do not pertain
to Nomoto ones, model (1) only has one input, namely
the rudder angle, and one output, namely the heading.
The involved two parameters, i.e., rudder angle δ
and heading ψ can be obtained easily and precisely
with angular transducer gyrocompass, respectively.
Furthermore, in order to avoid bad identification
performance when system input keeps unchanged, a
persistent input excitation scheme is introduced in our
simulations. Therefore, model (1) is selected for path
following motion model of underactuated vessels in this
article.

The rudder of a vessel is usually driven by a
steering engine. Characteristics of the rudder servo
system are modelled by [28]:

TCδ̇ + δ = KCδC, (2)

where δC is the helm order controlled by a course
controller, δ is the actual rudder angle, KC is the rudder
gain (KC = 1 in this article), and TC is the rudder time
constant.

Here, a model is proposed that combines (1) and
(2) for the path following of vessels. When setting

system states and input as x = [ψ, r, ṙ, δ]
T

and u = δC,
(1) and (2) are transformed to the following state-space
form:

ẋ = f (x,u) =









r
ṙ

g(x)
1
TC

(u− δ)









, (3)

where g(x) is denoted by:

g(x) =
1

T1T2

[

Kδ +
KT3
TC

(u− δ) + d0 (4)

− (T1 + T2) ṙ − r − βr3
]

.

2.2. Predictive path following scheme with LOS

2.2.1. Path following controller

The block diagram of the proposed adaptive
predictive path following controller is shown in Figure
2. LOS guidance transfers predefined paths to objective
headings. Model predictive controller calculates an
optimal input, i.e., rudder angle, for the ship with
the updated states, the updated Nomoto and rudder
model, and the objective heading. λ-LS-SVM updates
the parameters of the Nomoto and rudder model in real-
time. Ship changes the heading according to the input of
rudder angle with the influence of load changes, speed
changing, disturbances, aging of mechanism, etc.

Model Predictive  

Controller

Updated Nomoto 

& rudder Model 

Ship

Updated 

States
λ-LS-SVM

K, T1, T2, T3, d0, β, TC

Rudder angleLOS 

Guidance
heading

1.load changes; 2.speed changing; 3. 

disturbances; 4. aging of mechanism, ...

Measurement

Predefined 

Paths

Objective 

heading

Figure 2. Block diagram of the proposed path following controller

2.2.2. LOS guidance

In path following, given target waypoints, the ref-
erence path is generated as a sequence of straight lines
that is usually adopted [29]. A typical reference path, as
shown in Figure 3, can be considered as several straight
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line segments generated by connecting waypoints
Pn(xn, yn), Pn+1(xn+1, yn+1), Pn+2(xn+2, yn+2), etc.
LOS guidance is widely used in path following because
of its advantage on tracking the reference path precisely
in a practical, feasible and efficient way [2, 30]. In
Figure 3, the inertial motion coordinate is defined as
{n} = {xn, yn}, and the body-fixed coordinate system
is defined as {b} = {xb, yb}. Under assumptions that
the sway speed v ≈ 0 and the surge speed u stays
constant in {n}, an underactuated vessel tracks the
reference path based on the difference between the
heading angle ψ and the LOS angle ψLOS that can be
calculated with a LOS point PLOS(xLOS, yLOS). The
LOS points on the path is generated based on the
cross tracking error e and a circle of radius RLOS =
nL around Ob where L is the ship length [26]. The

Pn

Pn+1
Pn+2

ψ 



u
e

P

LOS

R0

xn

yn

nO

LOSP

bO

θ

Δ

RLOS

u

Figure 3. Path following scheme

LOS point PLOS is calculated by solving the following
equations [2]:

(xLOS − xb)
2 + (yLOS − yb)

2 = R2
LOS, (5)

yLOS − yn
xLOS − xn

=
yn+1 − yn
xn+1 − xn

. (6)

Two solutions can be obtained by solving (6) of which
the closer intersection to the current waypoint, i.e.,
Pn+1 in Figure 3, is selected as PLOS.

ψ̃ = ψ − ψP is defined as vessel relative heading
to the path, where ψP is the path direction. Then,
differential equations of e and ψ̃ can be denoted with
u = u0 and v = 0 as [31]:

ė = u sin ψ̃, (7)

˙̃
ψ = r. (8)

The LOS angle ψ̃LOS can be denoted as:

ψ̃LOS = − arcsin(
e

RLOS
), (9)

where ψ̃LOS ∈ [−π
2 ,

π
2 ]. To track the path PnPn+1, the

angle ψ̃ is made to satisfy ψ̃ → ψ̃LOS. Then, ė can be
obtained as follows:

ė = u0 sin ψ̃LOS = −
u0

RLOS
e. (10)

The Lyapunov’s second method is utilized to demon-
strate e→ 0. The Lyapunov function is set as V (e) =
e2, then V̇ (e) is obtained as follows:

V̇ (e) = 2eė = −
u0

RLOS
e2. (11)

It can be easily derived that V̇ (e) 6 0 with u0 > 0, and
V̇ (e) = 0 only when e = 0. Therefore, (10) has global
asymptotic stability, i.e., e→ 0 globally as ψ̃ → ψ̃LOS.

To guarantee that there is always a real solution to
(9), the LOS circle radius is set as [32]:

RLOS =

{

3L, for e 6 3L,

e+ L, otherwise.
(12)

Another key point for path following is to switch to
the next waypoint Pn+2 relies on whether the vessel is
within an acceptance circle around the current waypoint
Pn+1 or not. If the vessel position Ob satisfies (13), the
waypoint will be changed to Pn+2.

(xb − xn+1)
2 + (yb − yn+1)

2
6 R0

2, (13)

where R0 stands for the acceptance circle radius. To
guarantee that the solutions to (5) always exist,RLOS >

R0 is needed. R0 is usually set as a constant based on
ship length, and R0 is taken to equal 2L as [26].

2.2.3. Nonlinear MPC controller for path following

MPC methods utilize a system model for trajectory
prediction and optimization. (3) is taken as the system
model. Considering that path following aims at making
the cross error e, the ship relative heading ψ̃ and the
rudder angle δ all converge to 0, the state-space equation
(3) is transformed with (8) and (7) to:

ẋ = f (x,u) =













u0 sin(ψ̃)
r
ṙ

g(x)
1
TC

(u− δ)













, (14)

where x =
[

e, ψ̃, r, ṙ, δ
]T

, u = δC.
For numerical simulations and implementation

in practical applications, proper sampling is needed
to obtain discrete-time dynamics for prediction. For
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the continuous-time model (14), the commonly used
Runge-Kutta method is adopted for sampling [33]. The
sampled model of (14) is shown as follows:

x̂(k + 1) = fd (x̂(k), û(k)) . (15)

To minimize the cross error and energy consumption,

the errors between the state vector x =
[

e, ψ̃, r, ṙ, δ
]T

and the reference state vector xr =
[

0, ψ̃LOS, 0, 0, 0
]T

should be minimized. Therefore, at each control step
time k, the following quadratic cost function J(k) is
minimized:

J(k) =

NP
∑

i=1

x̂e(k + i)TQx̂e(k + i) (16)

+

NC
∑

i=1

û(k + i− 1)TRû(k + i− 1),

where x̂e(k + i) = x̂(k + i)− xr(k + i) in which
xr(k + i) is the reference state vector at time step
k + i; NP stands for the length of the prediction
horizon; Q and R are weighting matrices. Meanwhile,
considering the limitations of the actuator, input
constraints should be satisfied during path following as:











(15),

û(k + i− 1) = û(k +NC − 1), NC < i 6 NP,

δmin 6 û(k) 6 δmax,
(17)

where δmin and δmax are the limit values. where NC

stands for the length of the control horizon and satisfies
NP > NC.

Therefore, at time step k (k > 0), the optimization
problem needs to be solved:

u
∗(k) = argmin

u

J(k), (18)

subject to (17).
Problem (18) is a nonlinear programming problem

since cost function (16) and constraint (15) are
nonlinear. The algorithm of predictive path following
is summarized in Algorithm 1.

III. LS-SVM based adaptive path following

control

To make the path following control method
proposed in section II become adaptive to disturbances
and uncertainties, in this section, an LS-SVM method is
proposed for the parameter identification of the vessel

Algorithm 1 Predictive path following

1: Initialize waypoints {P1, P2, ..., Pn} and system
states x(0), and set k = 0;

2: while ASV has not arrived at the destination do

3: Measure current states x(k), and calculate x̂(k +
i) with u(k + i− 1) for i = 1, 2, ..., NP as (15);

4: Solve (18) and obtain the optimal control input
sequence at k, i.e., Û

∗(k) = {û∗(k), û∗(k +
1), ..., û∗(k +NP − 1)};

5: Apply the first element û∗(k) to vessel dynamics
and set u(k) = û

∗(k);
6: k = k + 1;
7: end while

motion model. Then, based on this adaptively identified
model, an adaptive path following control approach
is proposed with a sliding data window strategy and
a model switching scheme. Furthermore, in order to
avoid bad identification performance when system input
keeps unchanged, a persistent input excitation scheme is
introduced in our simulations.

3.1. LS-SVM based parameter identification

LS-SVM can be used both for machine classifier
and system identification [17, 19]. This article focuses
on the latter. Firstly, LS-SVM for function estimation
is introduced, after which the parameter identification
method with LS-SVM is elaborated on in detail.

3.1.1. LS-SVM for function estimation

Given a training data set of N points {xk, yk}
N
k=1

where xk ∈ R
n is the kth input data and yk ∈ R is the

kth output data. The regression model for the SVM is
as follows:

y(x) = w
Tφ(x) + b (19)

where w is the weighting vector that can be infinite
dimensional; φ(x) is a nonlinear function that maps
the input space into a higher dimensional space; b is
the bias. The LS-SVM optimization problem has an
objective function as follows [17, 18]:

min
w,b,e

{

J(w, e) =
1

2
w

T
w +

1

2
γ

N
∑

k=1

e2k

}

, (20)

subject to:

yk = w
Tφ(xk) + b+ ek, k = 1, ..., N, (21)

where ek ∈ R are the error variables defined by (21); γ
is the positive real constant that determines the relative
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importance of the terms ek. To solve the problem (20) -
(21), a Lagrange function is defined as follows:

L(w, b, e, α) = J(w, e)−
N
∑

k=1

αk

[

w
Tφ(xk) + b+ ek − yk

]

,

(22)
where αk ∈ R is a Lagrange multiplier. The relevant
conditions for optimality of (22) are given by:







































































∂L

∂w
= 0 → w =

N
∑

k=1

αkφ(xk),

∂L

∂b
= 0 →

N
∑

k=1

αk = 0,

∂L

∂ek
= 0 → αk = γek,

∂L

∂αk

= 0 → w
Tφ(xk) + b+ ek − yk = 0,

k = 1, ..., N.

(23)

In (23), αk = γek means the support values are nonzero
and proportional to the errors, while many support
values are zero in the classical SVM [17]. This feature
of LS-SVM could cause sparseness and robustness
problems [18]. To solve the two problems, weighted
LS-SVM methods are widely applied [18, 34]. In the
weighted LS-SVM, objective function is changed to:

min
w,b,e

{

J(w, b, e) =
1

2
w

T
w +

1

2
γ

N
∑

k=1

vke
2
k

}

, (24)

where vk is the weighting factor. After elimination of w
and e from (23), the solution is obtained as follows:

[

0 1T

1 Ω+ Vγ

] [

b
α

]

=

[

0
Y

]

, (25)

where 1 = [1, 1, ..., 1]
T

, α = [α1, α2, ..., αN ]
T

, Y =

[y1, y2, ..., yN ]
T

, and Ωkl stands for the item at the
kth row and lth column of Ω, which follows Mercer’s
condition [18]:

Ωkl = K(xk, xl) = φ(xk)φ(xl), k, l = 1, ..., N, (26)

where K(xk, xl) is a kernel function that can be chosen
as linear kernel, polynomial kernel, RBF kernel or MLP
kernel [35]. The linear kernel, i.e., K(xk, xl) = xkxl, is
chosen in this article because of the need of parameter
identification detailed in the next section. The diagonal
matrix Vγ is given by:

Vγ = diag{
1

γv1
, ...,

1

γvN
}. (27)

The values of vk can be defined in different patterns. In
[18], vk defined as follows:

vk =



















1, if |ek/ŝ| 6 c1,

c2 − |ek/ŝ|

c2 − c1
, if c1 6 |ek/ŝ| 6 c2,

10−4, otherwise,

(28)

where c1 and c2 are the constants typically chosen as
c1 = 2.5 and c2 = 3; ŝ is the estimation of the standard
deviation of the LS-SVM error variables ek, which is as
follows:

ŝ =
IQR

2× 0.6745
, (29)

where, the IQR is the difference between the 75th
percentile and 25th percentile.

The resulting LS-SVM model for function
estimation is as follows:

y(x) =

N
∑

k=1

(αkx
T
k )x+ b, (30)

where α and b are the solution to (25).

3.1.2. Parameter identification of the path following
model with LS-SVM

To obtain parameters of a model that needs to be
identified, a discrete model pattern is defined as follows:

y(x) = θ
T
x. (31)

A forward difference method is utilized to
discretize the Nomoto model (1) and rudder model (2).
The nth order forward difference ∆n

h[f ](x) of function
f(x) is defined as:

∆n
h[f ](x) =

n
∑

i=0

(−1)i
(

n
i

)

f(x+ (n− i)h), (32)

where h > 0 is the spacing of difference; n is the order

of forward difference;

(

n
i

)

= n(n−1)···(n−i+1)
i!(n−i)! is the

binomial coefficients with

(

n
0

)

and

(

n
n

)

equaling 0. It

can be assumed that f (n)(x) ≈ ∆n

h
[f ](x)
hn when h is small

enough [36]. Based on these, the Nomoto model (1) is
transferred to:

∆3
h[ψ](t) =

1

T1T2

{

−(T1 + T2)h∆
2
h[ψ](t)− h2∆1

h[ψ](t)

− β[∆1
h[ψ](t)]

3 +Kh3δ(t)

+h3d0 +KT3h
2∆1

h[δ](t)
}

.
(33)
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The rudder model (2) is transferred to:

[δC(t)− δ(t)]h = TC∆
1
h[δ](t). (34)

For (33), y1, θ1 and x1 with the pattern of (31) are
defined as follows:

y1 = ∆3
h[ψ](t), (35)

θ1 =
1

T1T2















T1 + T2
K
d0
1
β

KT3















, x1 =















−h∆2
h[ψ](t)

h3δ(t)
h3

−h2∆1
h[ψ](t)

−[∆1
h[ψ](t)]

3

h2∆1
h[δ](t)















. (36)

For (34), y2, θ2 and x2 with the pattern of (31) are also
defined as follows:

y2 = [δC(t)− δ(t)]h, θ2 = TC, x2 = ∆1
h[δ](t). (37)

Compare (30) with (31), the solution of θ when
|b| ≈ 0 is obtained as follows:

θ̂ =

N
∑

k=1

(αkxk), (38)

where θ̂ denotes the approximate value of θ. To
guarantee |b| to be small enough, (24) is updated as
follows:

min
w,b,e

J(w, b, e) =
1

2
w

T
w +

1

2
γ

N
∑

k=1

vke
2
k +

1

2
γb2.

(39)
Therefore, the relevant conditions of (39) for optimality
is accordingly as:







































































∂L

∂w
= 0 −→ w =

N
∑

k=1

αkφ(xk),

∂L

∂b
= 0 −→

N
∑

k=1

αk = γb,

∂L

∂ek
= 0 −→ αk = γvkek,

∂L

∂αk

= 0 −→ w
Tφ(xk) + b+ ek − yk = 0,

k = 1, ..., N

(40)

the solution is changed accordingly to:

[

−γ 1T

1 Ω+ Vγ

] [

b
α

]

=

[

0
Y

]

, (41)

where Vγ = diag{ 1
γv1

, ..., 1
γvN

}. If
[

−γ,1T,1,Ω+ Vγ

]

is singular or very close
to singular, a small changes can be taken to
avoid no solution for [b,α] with adding a
term 10−8IN+1 to

[

−γ,1T,1,Ω+ Vγ

]

to be
[

−γ + 10−8,1T,1,Ω+ Vγ + 10−8IN
]

as in [37],
where IN is an identity matrix with dimension N .

According to the solution of θ̂ in (38), θ̂1 and θ̂2

can be denote as follows:

θ̂1 =

N
∑

k=1

(α1kx
T
1k), θ̂2 =

N
∑

k=1

(α2kx
T
2k), (42)

where α1 = [α11, α12, ..., α1N ]
T

, α2 =
[

α21, α22, ..., α
T
2N

]

can be solved with (25).
To identify each parameter of model (36),

algebraic transformations are just needed to θ1,
i.e., K = θ1(2)/θ1(4), T3 = θ1(6)/θ1(2), d0 =
θ1(3)/θ1(4), β = θ1(5)/θ1(4). Considering that T1 and
T2 can be exchanged in model (36), one of them can be
specified if some conditions are given, e.g., if T1 > T2,
T1 = (θ1(1) +

√

[θ1(1)]2 − 4θ1(4))/(2θ1(4)),

T2 = (θ1(1)−
√

[θ1(1)]2 − 4θ1(4))/(2θ1(4)).

3.2. Online LS-SVM based adaptive path following

control

Adaptive path following control strategy in this
article means that optimal inputs are calculated using
recursively identified motion models (1) and (2) as
the prediction models in MPC. The motion model
recursive training data are generated online during the
path following of the vessel. Considering that (33)
would be inaccurate if state data sampling time h
is not small enough, and the control sampling time
Ts can not be so small because of the limitations of
actuator physical properties and the time for solving
optimization problems, it is reasonable to set different
values for h and Ts.

3.2.1. Sliding data window strategy

Since the training sample set will become larger
and larger if the old training data are not pruned, it is
necessary to prune part of the old data when adding new
training samples as [38]. Considering that the control
period Ts is much longer than training data period h,
it is not necessary to identify the model at every state
data sampling time. Therefore, the sliding data window
strategy is utilized to update the training data. The
procedure of sliding data window switching, as shown
in Figure 4, is as follows:
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1. The sliding data window size is set as Nw, based
on which parameters θ̂1(tk) and θ̂2(tk) can be
identified with the LS-SVM at time tk;

2. With new training data added into the sliding data
window ceaselessly, the sliding data window size
keeps increasing;

3. When the sliding data window size is equal to
Nw +Nu at time tk+1, the first Nu training data
are deleted from the training data set, and new
parameters θ̂1(tk+1) and θ̂2(tk+1) are identified
with the new training data set;

4. Recursively conduct steps 1 – 3 until there is no
new training data.

... 

...

Nu

Nu

t

tk

tk+1

   1 2
ˆ ˆ,

k k
t tθ θ

   1 1 2 1
ˆ ˆ,

k k
t t θ θ

…

Sliding data window (Nw)

: old deleted data; : new added data

Figure 4. Sliding data window strategy

3.2.2. Model switching scheme

The accuracy of parameter identification depends
on the training data quality. It is possible to obtain
outliers because of measurement errors. Therefore, it is
necessary to improve the robustness of the LS-SVM.
In the weighted LS-SVM (28), the weighting vk is set
small when the error |ek| is big. However, when the
system model parameters changes, it could happen that
a small amount of new training data generated with the
changed model are mixed with a large amount of old
training data generated by the unchanged system model
in the sliding data window strategy. In this scenario, the
unexpected identifying results could emerge because of
the inconsistency of training data generated by different
models. Moreover, it is beneficial for better control
performance if the changed model parameters can be
identified earlier. In this way, the key is the criterion for
recognizing the changes of model parameters. Adopted
from the fact that the magnitude of the identification
errors increases denoted in [39], a parameter changing
index λk is proposed as follows:

λk =
1

Nu

∣

∣

∣

∣

∣

Nw
∑

i=Nw−Nu+1

ek−1
i

∣

∣

∣

∣

∣

, (43)

where eki stands for the ith identification error generated

with the identified parameters at time k, which is

defined as (21). The index λk > 0 describes the average

error of new updated data subset in the training set with

the old identified model at time k − 1. If λk is large,

it means that the new training data subset is generated

by different models, i.e., the model parameters have

changed; otherwise, it means that the new training data

subset is generated by the same model or the slightly

varied model. If model parameter changes are detected,

then weighting is added for the new data to improve the

parameter convergence rate. The new weighting v̄k are

defined as follows:

v̄k =

{

c3vk, if k < Nw/2,

c4vk, otherwise,
(44)

where vk is defined as (28); c3 and c4 are constants with

0 < c3 < 1 and c4 > 0.

An identified model can not be used if this

identified parameters are not satisfied vessel’s maneu-

verability demand, for instance, when K < 0 or T < 0.

Therefore, identified parameters can be utilized to judge

the reliability of an identified model.

Based on the foregoing in this section, an improved

weighted LS-SVM algorithm, termed λ-LS-SVM, for

path following is proposed as Algorithm 2.

3.2.3. Persistent input excitation

Input excitation is important on the performance

of parameter identification. When a vessel is tracking

a straight line, the rudder control input δC is mostly

constant if environmental disturbances d0 are also

constant. White noise signals are usually used for

input excitation because they have a flat spectrum

over the range of frequencies [40]. Persistent input

excitation is used in this article adding white Gaussian

noises to the control input. However, considering

that the added white Gaussian noises may affect the

system performance, their magnitudes should be kept

small. The control inputs added with persistent input

excitation uper is as follows:

uper(i) = uori(i) + uadd(i), i = 1, 2, ..., (45)

where, uori(i) is the original control input, and uadd(i)
is the added excitation input. The added excitation

input is independently and identically distributed, i.e.,

uadd(i) ∼ N (0, σ2).
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Algorithm 2 λ-LS-SVM for path following

1: Initialize model parameters Θ0 =
{

θ̂1(0), θ̂2(0)
}

and set k = 1;
2: while ASV has not arrived at the destination do

3: Obtain training data set Tk with sliding data
window strategy, and calculate λ1k of θ̂1(k) and

λ2k of θ̂2(k) by (43);

4: Calculate θ̂1(k) and θ̂2(k) by the weighted LS-
SVM method by (42) with weighting v1n(k) and
v2n(k) (n = 1, 2, ..., Nw) calculated as (28);

5: Calculate λ1k and λ2k as (43);
6: if λ1k < λ1c and λ2k < λ2c then

7: θ̂1(k) and θ̂2(k) keep unchanged;

8: else if λ
1(2)
k > λ

1(2)
c then

9: The new weighting v̄
1(2)
n (k) of identification

errors are obtained with v
1(2)
n (k) as (44);

10: end if

11: if K < 0 or T1 < 0 in θ̂1(k) then

12: θ̂1(k) = θ̂1(k − 1);
13: end if

14: Set Θk =
{

θ̂1(k), θ̂2(k)
}

as predictive models

for MPC at k;
15: k = k + 1;
16: end while

IV. Case study

The proposed approach is applied to path following
control in different scenarios including aging of rudder
equipment, variable current and changes of the vessel
maneuverability. The simulation experiments in these
scenarios are implemented based on a motion model
from a scale model ship in our laboratory. The main
geometric parameters of the model ship are: ship
length L = 0.95 m, ship breadth B = 0.24 m, ship
mass M = 5.40 kg, nominal speed U = 0.80 m/s.
The initial parameters in (3) with the surge speed
u0 = 0.80 m/s are: K = 0.5060 s−1, T1 = 1.2481 s,
T2 = 0.1245 s, T3 = −0.0757 s, d0 = −1.2370 ◦/s,
β = 0.0081 s2 and TC = 0.1000 s. The simulation
parameter is set to: the state data sampling time
h = 0.01 s and the control sampling time Ts = 0.5
s; Nw = 1200, Nu = 50 for sliding data window;
γ = 1015, c3 = 0.01, c4 = 0.99, λ1c = 10−5 and λ2c =
10−2 for λ-LS-SVM; NP = 10, NC = 8, −30◦ 6 δC 6

30◦, Q = diag [1, 1, 0.01, 0.01, 0.001] and R = 0.01 for
MPC controller. The simulation experiments for the
following three cases are conducted on the platform of
MathWorks Matlab R2016b.

4.1. Case 1: aging of rudder equipment

The ship steering gear system consists of
several electrohydraulic steering subsystems: telemo-
tor position servo and rudder servo actuator [28].
These components lead to time-delay and non-
synchronization feature between rudder command and
real rudder angle as denoted in (2). In this case, it is
assumed that the time-delay constant TC changes from
TC0 = 0.1 s to TC1 = 1.0 s at time T = 12.00 s because
of aging or maintenance. The waypoints of path are set
to: (1,1), (15,1), (15,10), (29,10). The path following
performance and cross error e of adaptive control with
the λ-LS-SVM, the adaptive control with weighted LS-
SVM and the non-adaptive control method (traditional
MPC method with LOS guidance) is shown in Figure 5
and Figure 6, respectively. To verify the performance
of path following with different control methods, an
evaluation index ea, i.e., average cross error (ACE), for
path following performance is defined as:

ea =
1

NT

NT
∑

i=1

|e(i)|, (46)

where NT is the total number of steps, and e(i) is
the cross error e at time i after the model parameters
change, which is shown in Figure 3. The smaller ea is,
the better the performance will be. In this case, ACE
values ea for the λ-LS-SVM based adaptive control,
the weighted LS-SVM based adaptive control and the
non-adaptive control method are 0.495 m, 0.508 m and
0.502 m, respectively. It can be seen that λ-LS-SVM
based adaptive control has the best performance with
the smallest ea when model parameters changes. Note
that the model accuracy hardly has an impact on the
tracking performance when the objective heading keeps
unchanged. The differences of ea between the λ-LS-
SVM based adaptive control method and the other two
methods are not big because most of the time during
path following the objective heading does not need to
be changed.

Apart from ACE, the cross error e convergence
rate also plays an important role in evaluating the
performance of path following. Specifically, in this
article, the moment, tc, when |e| keeps below 0.05 m
after the model parameters change is an index of the
cross error convergence rate. In this case, the values
of tc are 35.5 s, 36.0 s and 38.5 s for the λ-LS-SVM
based adaptive control, the weighted LS-SVM based
adaptive control and the non-adaptive control method,
respectively. It can be seen that the λ-LS-SVM has the
fastest cross error convergence rate.
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From Figure 7, parameter TC converges to
reference value in the finite time and TC does not appear
some outliers with λ-LS-SVM, while the weighted LS-
SVM has generated some abnormal values. In Figure 8,
all λ2k for λ2k > λ2c are in a transition training data area,
where the training data set for identification consists of
two different models. It illustrates that λ2k can become
the indication of model changes.
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Figure 5. Path following performance of rudder aging
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Figure 6. Error comparison during path following of rudder aging
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Figure 7. TC variation during path following of rudder aging

4.2. Case 2: variable current

Current has an effect on the ship maneuverability
because of d0 changing in model (1). Usually,
current can be thought as constant in the inertial
motion coordinate system during a period of time
[7]. However, the constant current can also change

0 10 20 30 40 50 60

k

0

0.05

0.1

0.15

k

2

c

2

transition training period

Figure 8. λ2
c variation during path following of rudder aging

the ship maneuverability in varying degrees because
the direction of current changes in the body-fixed
coordinate system if ship heading changes. Hence, it
is necessary to detect the variation of d0 deduced by
current during path following. In this case, it is assumed
that the parameter d0 changes from d00 = −1.2370 ◦/s
to d01 = −4.0000 ◦/s at time T = 12.00 s. The ship
can track the reference trajectory with the λ-LS-SVM
based adaptive control method better than that with the
weighted LS-SVM based adaptive control and the non-
adaptive control method, which is shown in Figure 9
and Figure 10. ACE values ea for the λ-LS-SVM based
adaptive control, the weighted LS-SVM based adaptive
control and the non-adaptive control method are 0.427
m, 0.488 m and 0.544 m, respectively. It can be seen
that λ-LS-SVM based adaptive control has the best
performance in term of the cross error. In this case,
the values of tc are 32.0 s, 33.5 s for the λ-LS-SVM
based adaptive control and the weighted LS-SVM based
adaptive control method, while the non-adaptive control
cannot keep |e| < 0.05 m during path following. It can
be seen that the λ-LS-SVM has a faster cross error
convergence rate than the weighted LS-SVM based
adaptive control and the non-adaptive control method.

Similarly with Case 1, system model parameter d0
can be identified with λ-LS-SVM during d0 varying,
and can keep at a stable value when system model
does not vary, shown in Figure 11. In Figure 12, all
λ1k for λ1k > λ1c are in a transition training data area. It
also illustrates that the λ2k can become the indication of
model changes.

4.3. Case 3: change of maneuverability

In this case, it is considered that there exist errors
and outliers in training data set because of sensor mea-
surement errors and malfunction. The maneuverability
model parameters {K,T1, T2, T3, d0, β, TC} change
from {0.5900, 0.9526, 0.0247, 0.2215, -1.2370, 0.0001,
0.1000} to {6.0000, 3.0000, 1.0000, -0.6000, -4.0000,
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0.0020, 0.5000} at time T = 18.00 s. Waypoints of a

path named Path 1 are set to: (1, 1), (12, 1), (17, 13),

(28, 13), (33, 25). Measurement errors are denoted by

Gaussian distribution whose mean µ = 0 and standard

deviation σ = 0.2. The outliers are set as Figure 16.

The path following performance and error compar-
ison of adaptive control with the λ-LS-SVM, adaptive
control with the weighted LS-SVM and the non-
adaptive control is shown Figure 13 and Figure 14. It
can be found that adaptive control with λ-LS-SVM has
less tracking error (ea = 0.449 m) than the others (ea =
0.451 m for adaptive control with the weighted LS-
SVM and ea = 0.502 m for the non-adaptive control)
from Figure 14, and it is proven with model parameters
identification results shown in Figure 15. Similar to
Case 2, the values of tc are 52.0 s, 51.5 s for the λ-LS-
SVM based adaptive control and the weighted LS-SVM
based adaptive control method, while the non-adaptive
control method cannot keep |e| < 0.05 m during path
following. It can be seen that the λ-LS-SVM control and
the weighted LS-SVM based adaptive control method
as a faster cross error convergence rate than the non-
adaptive control method.

Generally, the λ-LS-SVM can make the model
parameters converge faster and have less fluctuations
especially for TC. Moreover, ship heading and
rudder performance are shown in Figure 16 and 17,
respectively. From Figure 13 and Figure 16, it can
be found that the outliers have trivial effects on the
performance of path following using adaptive control
methods. In Figure 17, the rudder angle δ values are
satisfied with the relevant limitation.
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Figure 13. Path following performance of maneuverability change

4.4. Selection of λc value

From Fig. 8 and Fig. 12 in Case 1 and Case 2, it can
be found that λ1k or λ2k becomes larger when the model
parameters change than that when the model parameters
keep unchanged. λ1c or λ2c is used to measure whether
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Figure 14. Error comparison during path following of maneuverability
change

the parameters change or not. The magnitudes of λk are
different according to different models, for instance, the
magnitudes of λ1k of model (1) and λ2k of model (2) are
different. Therefore, λc should be assigned according
to its relevant model. If λc is set too large, the model
parameters change cannot be detected; if λc is set too
small, the model parameters change could be detected
wrongly when the model parameters does not change
actually. In Case 1, the cross error e with different λ2c
is shown in Fig. 18. The values of ea are 0.495 m,
0.501 m and 0.500 m with λ2c equal to 0.01, 0 and 0.20,
respectively. The values of tc are 35.5 s, 36.0 s and
35.5 s with λ2c equal to 0.01, 0 and 0.20, respectively.
Hence, λ2c = 0.01 is selected for Case 1. Considering
that λc is a threshold of λk to detect the change of model
parameters, λc should be a value to distinguish the
model parameters changing between 0 and maximum
of λk.

V. Conclusions and future research

The performance of model-based path following
control may be degraded when vessel dynamics vary if
the controller for path following uses the same motion
model all the time. An adaptive controller for path
following is studied in this article based on online
LS-SVM and MPC algorithms. An improved online
LS-SVM identification method is proposed based on
weighted LS-SVM in order to speed up the rate of
parameter convergence. The objective function of LS-
SVM is modified to decrease the error of parameter
estimation. An index λ for LS-SVM is designed to
detect the changes of model and speed up the rate of
model parameter convergence. A sliding data window
strategy combined with the online LS-SVM is used
to realize the online parameter identification. The path
following controller is designed based on the LOS
and MPC that utilizes the updated nonlinear 2nd order
Nomoto model with the online parameter identification

method. The simulation results show that the proposed
λ-LS-SVM method can speed up the rate of parameter
convergence, improve the tracking accuracy of path
following effectively, and make the cross error converge
faster when the vessel dynamics change.

Considering that all the experiments in this article
have been conducted in the simulation environment,
some actual experiments should be done to make the
verification of the proposed method more convincing
in the future study. Moreover, the proposed adaptive
control method is designed with the assumption that
all of system states can be measured. However, it could
be difficult to obtain all the system states in real-time.
Therefore, for future work, it is of interest to design an
adaptive controller combined with a state observer that
can provide updated information on system states and
environmental disturbances. In [41], the vessel position
error is constrained with the proposed error-constrained
line-of-sight path following method. Hence, the output
constraints should be considered to improve the safety
of vessel path following in the future work.
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