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PART I

INTRODUCTION

Our Vision of Technology

Insertion of Nonlinear/Intelligent Signal Processing 
into 

Emerging Broadband/Wideband Telecommunications 
Technologies
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What is Broadband Communications? 
HIGH DATA TRANSFER RATES 

to DEVICES transmitting information

• 2G Wireless Networks
• voice only

• 3G Wireless Networks
• voice and data

• 4G Wireless Networks
• Complete merger of computer, telephone, audio, 

video, motion, and Internet 
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What is NONLINEAR SIGNAL 
PROCESSING?

• Complete (Linear and Nonlinear) Analytical 

Processing of Data

<CHALLENGES AND OPPORTUNITIES>

• Nonlinear System/Filter MODELING

• Nonlinear System/Filter IDENTIFCATION

• Nonlinear System/Filter DESIGN

• Including: ADAPTATION, LEARNING, EVOLUTION, 

DISCOVERY, & INVENTION/INNOVATION 
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Merger of 
BROADBAND & NONLINEAR 

Will enable:

• Dramatic Increase in Signal Power Eliminating resulting 
Nonlinear Distortion And Spectral Leakage

• Suppression of Non-Gaussian Noise present in emerging 
applications

• Computational Intelligence to play the role of natural 
intelligence in human/device and device/device 
communications 



7Lab. for Intelligent Signal Processing and Communications University of California, Irvine

Merger of BROADBAND & 
NONLINEAR 

Therefore: 

FUTURE DIRECTION

• As humans, electronic sensing and robotic 
devices, and Internet become seamlessly 
integrated, NONLINEAR SIGNAL PROCESSING 
will play an increasingly prominent role in 3G, 4G, 
5G, 6G, … Wireless Networks/Internet in the 21st

Century
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Physical Layer Issues toward future 
generations Wireless Communications

• MIMO (Multiple Input Multiple Output)
• Spatial Multiplexing
• Space Time Coding

• Turbo and LDPC code

• Smart Antenna

• Multi-Carrier (MC) / Orthogonal Frequency 
Division Multiplexing (OFDM)



PART II 

What is  MC/OFDM
- Key Advantages

- Major Stumbling Block: PAPR
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Orthogonal Frequency Division 
Multiplexing (OFDM)

• Multi-carrier modulation/multiplexing technique

• Available bandwidth is divided into several sub-
channels

• Data is serial-to-parallel converted

• Symbols are transmitted on different sub-carriers 
(IDFT is used)

• Well-suited for broadband data transmission in 
wireless channel.
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Block diagram of OFDM system
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OFDM signal

• where  denotes QAM symbol,         is the number of 
subcarriers,          and         is  subcarrier frequency 
which can be represented as

1
2

0

1( ) [ ] k

N
j f t

k
x t X k e

N
π

−

=

= ∑
N

kf thk
1 1

k
s

f k k
N T T

= ⋅ = ⋅

/f B W N∆ =

L



13Lab. for Intelligent Signal Processing and Communications University of California, Irvine

Advantages of OFDM

Robustness in multi-path propagation 
environment
Efficient frequency utilization
High speed transmission systems possible

OFDM is used in several standards
(IEEE 802.11 a/g/n…etc)

OFDM is a Prime Candidate for Several Next 
Generation Wireless System
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Main Disadvantage of OFDM

• High Peak-to-Average Power Ratio 
(PAPR)
• Summation in IDFT causes large PAPR and 

issue of amplifier non-linearity arises
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The problem of nonlinear HPA
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PART III

Some of the Available Techniques for 
Mitigation of PAPR in 

MC/OFDM Transmission:
Brief Review
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PAPR reduction techniques

(1) Clipping and Filtering

(2) Coding

(3) Partial Transmit Sequence (PTS)

(4) Selective Mapping (SLM)

(5) Interleaving

(6) Tone Reservation / Injection

(7) Active Constellation Extension (ACE)

(8) Companding
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PAPR reduction techniques

• Clipping and Filtering

where           is maximum allowable amplitude 
after clipping and         is phase of input signal.

• To reduce Out of Band Radiation (OBR), Filtering 
is necessary 
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PAPR reduction techniques

• Coding

• Reduce PAPR by block coding

• Need a lot of redundancy

• Usually no error correction capability



20Lab. for Intelligent Signal Processing and Communications University of California, Irvine

PAPR reduction techniques

• Partial Transmit Sequence (PTS)

• Data block is partitioned several disjoint subblocks.

• Each sub-block is weighted by a phase factor to 
reduce PAPR.

• SI (Side Information) is necessary. 
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PAPR reduction techniques

• Selective Mapping (SLM)

• From one input signal, generate several different 
OFDM signals

• Among them, choose the signal which shows 
minimum PAPR

• SI (Side Information) is necessary. 
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PAPR reduction techniques

• Inter-leaving

• Several inter-leavers are used to generate several 
OFDM signals.

• The performance is depending on the number of 
inter-leavers and design of inter-leavers.
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PAPR reduction techniques

• Tone Reservation (TR) / Injection (TI)

• Some of sub-carriers are reserved for PAPR 
reduction of OFDM signal (TR).

• Increase the constellation size so that each of the 
points in the original basic constellation can be 
mapped into several equivalent points in the 
expanded constellation (TI).
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PAPR reduction techniques

• Active Constellation Extension (ACE)
• Some of the outer signal constellation points in the 

data block are dynamically extended toward the 
outside of the original constellation such that the 
PAPR of the data block is reduced.

• Companding
• Compress the signal before going through the HPA 

and de-compress  the signal at the receiver



PART IV

New Adaptive Pre-Distorters (APD) 
for Elimination/Mitigation 
of Nonlinear distortion 
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PRE-DISTORTER
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New Pre-Distorters

• New model-based PDs for TWTA and SSPA developed 
by us will be described 

• (Re.: Byung Moo Lee and R. J. P. de Figueiredo, "Adaptive Pre-Distorters for 
Linearization of High Power Amplifiers in OFDM Wireless Communications," 
Circuits, Systems & Signal Processing, vol.25, no.1, Feb. 2006, pp.59-80)

• Rather than general approximation of nonlinear 
systems, we use exact inverses of Saleh’s TWTA 
model and Rapp’s SSPA model (our approach can be 
applied to other similar analytic models based on 
analogous analytic processing of the signal).

• Much lower complexity than other approaches and 
little time delay

• Fast learning capabilities because of few parameters
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Pre-distorter-equipped TWTA system
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Pre-distorter-equipped SSPA system
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Simulation Result of TWTA With and Without PD, 
IBO=6dB, SNR= 20dB
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Simulation Result of TWTA With and 
Without PD
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Simulation Result for SSPA
With and Without PD, IBO =6dB, SNR=20dB
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Simulation Result of SSPA with and 
without PD
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PART V 

Emerging Development: Intelligent/Nonlinear 
Approach

Combination of our ADP with a 
Tree-

PTS Algorithm

for mitigation of PAPR in MC/OFDM

(to appear in Proc. of ICASSP 2006)
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RECALL: Partial Transmit Sequence (PTS) 
PAPR reduction technique
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Tree Algorithm
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The T-PTS is generalization of PTS 
technique

• By adjusting two adjustable parameters in T-
PTS technique, we can get almost any level of 
intermediate complexity and performance
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Two Core Steps

• Instead of keeping all of PAPRs and phase 
information, we keep S of PAPRs and phase 
information in each subblock where 1 ≤ S ≤W.

• Instead of keeping information until the end of 
subblock, we keep until T th subblocks and 
continue iteratively where 1 ≤ T ≤ M.
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Example of T-PST algorithm (1)

• Let us assume S=2, T=2.
• In the first subblock, calculate PAPRs of the OFDM signals after rotate 

phases of subblocks using W phases factors
• Keep only S = 2 phase factors which show minimum PAPRs among W 

phase factors
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Example of T-PST algorithm (2)

• From each node (in this case from x(b11) and x(b12) , calculate PAPRs
of the OFDM signals after rotate using W phase factors at the second 
subblock.

• Find the minimum S PAPRs in the second subblock at each node, in 
this case S = 2.

• The (T −1)th = 1th parent node of minimum PAPR node is a final 
decision for the first subblock.
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Example of T-PST algorithm (3)

ChooseDiscard

x(b12)

x(b23) x(b24)

x(b23) x(b24)

x(b11) x(b12)

x(b21) x(b22)
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Simulation Results, N=64, L=4, M=4

• Compared to ordinary PTS(ML), the new T-PTS  algorithm 
reduces complexity  by 62.5% by degradation of only about      

0.2 dB w. r. t. PAPR
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Simulation Results, N=64, L=4 M=8

• Compared to ordinary PTS(ML), T-PTS achieves 0.54% reduction 
in computational complexity with only 1 dB degradation w.r.t. 
PAPR
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Complexity, M=4
(Expressed in terms of no. of iterations)

• S=1, 2, 3, 4,  T=2
• Around 20% ~ 60% computational complexity
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Complexity, M=8
(Expressed in terms of no. of iterations)

• S=1, 2, 3, 4,  T=2
• Around 0.15% ~ 0.54% computational 

complexity
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Complexity

• (Depicted graphically)
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PART VI
Conclusion

An adaptive nonlinear pre-distortion technique that increases 
the linear range of the High Power Amplifier (HPA) and hence 
mitigates the effects of high PAPR in MC/OFDM systems has 

been presented

Other techniques for PAPR reduction have been briefly reviewed 
and, amongst these, a new technique called PTS-Tree algorithm 

has been described  

Other work in progress is outlined in the following slide
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Conclusion (cont)

WORK IS BEING FINALIZED ON THE FOLLOWING PROJECTS (to be 
presented at forthcoming conferences)

• A New Tree-PTS Algorithm for intelligent compromise between 
performance and complexity (presented in this lecture)

• An adaptive power management technique for PAPR reduction 

• Combination of two or more PAPR reduction techniques
• Better performance is expected by combination of two or more 

PAPR reduction techniques

• A new technique for efficient power control in Multi-Carrier 
DS/CDMA via Pricing Strategy

• Application of these techniques to MIMO-MC/OFDM systems



Thank you!
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