
4

Adaptive Prefetching on POWER7: Improving Performance
and Power Consumption

VÍCTOR JIMÉNEZ, Barcelona Supercomputing Center and Universitat Politècnica de Catalunya

FRANCISCO J. CAZORLA, Barcelona Supercomputing Center and Spanish National

Research Council

ROBERTO GIOIOSA, Pacific Northwest National Laboratory

ALPER BUYUKTOSUNOGLU and PRADIP BOSE, IBM T. J. Watson Research Center

FRANCIS P. O’CONNELL and BRUCE G. MEALEY, IBM Systems and Technology Group

Hardware data prefetch engines are integral parts of many general purpose server-class microprocessors in
the field today. Some prefetch engines allow users to change some of their parameters. But, the prefetcher
is usually enabled in a default configuration during system bring-up, and dynamic reconfiguration of the
prefetch engine is not an autonomic feature of current machines. Conceptually, however, it is easy to infer
that commonly used prefetch algorithms—when applied in a fixed mode—will not help performance in many
cases. In fact, they may actually degrade performance due to useless bus bandwidth consumption and cache
pollution, which in turn, will also waste power. We present an adaptive prefetch scheme that dynamically
modifies the prefetch settings in order to adapt to workloads’ requirements. We use a commercial processor,
namely the IBM POWER7 as a vehicle for our study. First we characterize—in terms of performance and
power consumption—the prefetcher in that processor using microbenchmarks and SPEC CPU2006. We then
present our adaptive prefetch mechanism showing performance improvements with respect to the default
prefetch setting up to 2.7X and 1.3X for single-threaded and multiprogrammed workloads, respectively.
Adaptive prefetching is also able to reduce power consumption in some cases. Finally, we also evaluate our
mechanism with SPECjbb2005, improving both performance and power consumption.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of Systems—
Design studies; D.2.8 [Software Engineering]: Metrics—Performance measures; B.3.m [Memory

Structures]: Miscellaneous

General Terms: Algorithms, Measurement, Performance

Additional Key Words and Phrases: Adaptive system, prefetching, performance, power consumption

This work is supported by a Collaboration Agreement between IBM and BSC. It is also supported by the
Ministry of Science and Technology of Spain under contract TIN-2007-60625 and grant JCI-2008-3688.
This work was done while R. Gioiosa was at Barcelona Supercomputing Center.
Author’s addresses: V. Jiménez, Barcelona Supercomputing Center, Jordi Girona, 29, 08034 Barcelona,
Spain; email: victor.javier@bsc.es; F. J. Cazorla, Barcelona Supercomputing Center, Jordi Girona, 29, 08034
Barcelona, Spain; R. Gioiosa, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA
99352; A. Buyuktosunoglu and P. Bose, IBM T. J. Watson Research Center, 1101 Kitchawan Rd., Yorktown
Heights, NY 10598; F. P. O’Connell and B. G. Mealey, IBM Systems and Technology Group, 11400 Burnet
Rd., Austin, TX 78758.
c©2014 Association for Computing Machinery. ACM acknowledges that this contribution was authored or
co-authored by a contractor or affiliate of the U.S. Government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government
purposes only.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2014 ACM 2329-4949/2014/05-ART4 $15.00
DOI:http://dx.doi.org/10.1145/2588889

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

4:2 V. Jiménez et al.

ACM Reference Format:

Jiménez, V., Cazorla, F. J., Gioiosa, R., Buyuktosunoglu, A., Bose, P., O’Connell, F. P., and Mealey, B. G. 2014.
Adaptive prefetching on POWER7: Improving performance and power consumption. ACM Trans. Parallel

Comput. 1, 1, Article 4 (May 2014), 25 pages.
DOI:http://dx.doi.org/10.1145/2588889

1. INTRODUCTION

Hardware data prefetch is a well-known technique to help alleviate the so-called mem-
ory wall problem [Wulf and McKee 1995]. Many general purpose server-class micro-
processors in the field today rely on data prefetch engines to improve performance for
memory-intensive workloads. Some prefetch engines allow users to change some of
their parameters. In current commercial systems, however, the hardware prefetcher
is typically enabled in a default configuration during system bring-up, and dynamic
reconfiguration of the prefetch engine is not an autonomic feature. Nonetheless, com-
monly used prefetch algorithms—when applied in a fixed, nonadaptive mode—will not
help performance in many cases. In fact, they may actually degrade it due to use-
less bus bandwidth consumption and cache pollution. In this article, we present an
adaptive prefetch scheme that dynamically adapts the prefetcher configuration to the
running workload, aiming to improve performance; we also show some cases where
our mechanism reduces memory power consumption too.

We use the IBM POWER7 [Sinharoy et al. 2011] as the vehicle for this study, since:
(i) this represents a state-of-the-art high-end processor, with a mature data prefetch
engine that has evolved significantly since the POWER3 time-frame; and (ii) this prod-
uct provides facilities for accurate measurement of performance and power metrics.
POWER7 contains a programmable prefetch engine that is able to prefetch consecu-
tive data blocks as well as those separated by a non-unit, constant stride [Sinharoy
et al. 2011]. The processor system is provided to customers with a default prefetch
setting that is targeted to improve performance for most applications. But users can
manually override the default setting via the operating system, if needed. Users can
specify some parameters such as the prefetch depth and whether strided prefetch and
prefetch for store operations should be enabled or not. Workloads present different
sensitivities to changing the prefetch configuration, even within the class of scientific-
engineering applications, which are generally amenable to data prefetch. While the
optimal prefetch setting—if known—can lead to a significant performance improve-
ment, the corollary to this, as we show later in this article, is that blindly setting a
configuration may reduce performance and waste power consumption.

Our contributions are summarized below. Note that this work expands our recent
work [Jiménez et al. 2012], considering both performance and power consumption, as
well as enlarging the benchmark set used for characterizing the prefetcher in IBM
POWER7, and evaluating our adaptive prefetch mechanism.

— We first provide a motivation for adaptive prefetching, showing how the different
prefetch configurations in POWER7 affect performance and power consumption
for several workloads. To that end, we use both microbenchmarks and the SPEC
CPU2006 benchmark suite [Henning 2006].

— We present a runtime-based adaptive prefetch mechanism capable of improving per-
formance via dynamically setting the optimal prefetch configuration, without the
need for a priori profile information. We evaluate the performance benefits of adap-
tive prefetching. Our adaptive scheme increases performance up to 2.7X and 1.3X
compared to the default prefetch configuration for single-threaded and multipro-
grammed workloads, respectively. We also show that our mechanism is able to re-
duce memory power consumption in some cases.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

Adaptive Prefetching on POWER7: Improving Performance and Power Consumption 4:3

— We evaluate the impact of our adaptive prefetch mechanism on a Java server-side
workload (SPECjbb2005). For that benchmark, adaptive prefetching is able to both
improve performance by 21% and reduce memory power consumption by 22%.

— We also study the implementation of such an adaptive prefetch scheme within the
OS kernel. After implementing our adaptive mechanism into the Linux kernel, we
have observed similar performance improvements to those obtained by the
userspace implementation.

This article is organized as follows. Section 2 provides background for reading the
article. Section 3 describes the POWER7 processor, providing information on the dif-
ferent knobs that control the prefetcher. It also characterizes the effect of the different
knobs on performance and power consumption. Section 4 describes the methodology
that we use in this article. Section 5 shows the implementation of an adaptive pre-
fetch mechanism and evaluates its impact on performance and power consumption.
Section 6 shows a possible OS-based implementation. Finally, Section 7 presents the
conclusions of this article.

2. RELATED WORK

There is a significant record of past research in data prefetch (e.g., [Baer and Chen
1991; Jouppi 1990; Palacharla and Kessler 1994]). Most of the initial proposals were
based on sequential prefetchers. They prefetch sequential memory blocks relying on
the fact that many applications exhibit spatial locality. Although sequential prefetch-
ers work effectively in many cases, there are applications with nonsequential data
access patterns that do not benefit from sequential prefetching. That motivated the
research on more complex prefetchers that try to capture the nonsequential nature
of these applications. Prefetch techniques targeting pointer-based applications have
been studied [Ebrahimi et al. 2009; Roth et al. 1998; Yang and Lebeck 2000]. Joseph
and Grunwald [1997] study Markov-based prefetchers and present solutions to limit
the bandwidth devoted to prefetching. [Solihin et al. 2002] use a user-level memory
thread in order to prefetch data, delivering significant speedups even for applications
with irregular accesses. Yet, most of these prefetch designs have not been implemented
in a real processor. Limit studies and prefetch analytical models have been presented
in Emma et al. [2005] and Srinivasan et al. [2004].

With the advent of CMP processors, interaction between threads is taken into ac-
count when designing a prefetch system. Ebrahimi et al. [2011] and Lee et al. [2008]
study the effect of thread-interaction on prefetch, and propose techniques to design
prefetch systems that improve throughput or fairness. The impact of prefetching and
bandwidth partitioning in CMPs has been studied in Liu and Solihin [2011].

Although there are lots of studies on prefetching based on simulators, there are very
few works that deal with hardware-based measurement and characterization. Wu and
Martonosi [2011] characterize the prefetcher of an Intel Nehalem processor and pro-
vide a simple algorithm to dynamically control whether to turn the prefetcher on or off.
Their study, however, is solely oriented towards reducing intra-application cache in-
terference without taking actual system performance into consideration. In Liao et al.
[2009] construct a machine learning model that dynamically modifies the prefetch con-
figuration of the machines in a data center (based on Intel Core2 processors). They im-
prove performance for some applications by enabling/disabling prefetch. In our case,
however, the POWER7 processor not only allows us to enable/disable prefetch, but it
exposes a set of knobs to fine tune the prefetch configuration.

There are other examples of adaptive mechanisms for controlling thread execution
rate. For instance, different instruction fetch policies in the context of SMT processors
have been studied in [Cazorla et al. 2006; Choi and Yeung 2006], aiming to increase

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

4:4 V. Jiménez et al.

Table I.

Notation used in this article for referring to prefetch configurations. We use tags (W/S) to indicate
whether prefetch on stores (W) or stride-N (S) are enabled. Prefetch depth can be set to default (D) or
to any value in the range 2–7 (shallowest-deepest). The special configuration where depth is 001 turns off
the prefetcher (O). Table I(b) shows some examples with this notation.

Shortname DSCR value Description

O xx001 Off (prefetch disabled)

D xx000 Default depth

2 xx010 Shallowest

3 xx011 Shallow

4 xx100 Medium

5 xx101 Deep

6 xx110 Deeper

7 xx111 Deepest

W x1xxx Prefetch on stores

S 1xxxx Stride-N

(a) Notation

Shortname Depth
Prefetch

Stride-N
on stores

D Default No No

WD Default Yes No

SD Default No Yes

SWD Default Yes Yes

S2 Shallowest No Yes

S3 Shallow No Yes

7 Deepest No No

S7 Deepest No Yes

SW7 Deepest Yes Yes

(b) Examples

throughput or provide quality of service (QoS). Similarly, Boneti et al. [2008] explore
the usage of the dynamic hardware priorities present in IBM POWER5 processor
for controlling thread resource balancing and prioritization. Qureshi and Patt [2006]
study the problem of last-level cache partitioning between multiple applications for
improving throughput. Moreto et al. [2009] present a similar technique, but focus on
achieving QoS for the co-running applications.

3. THE POWER7 PROCESSOR

The IBM POWER7 [Sinharoy et al. 2011] processor is an eight-core chip where each
core can run up to four threads. Each core contains two 32KB L1 caches (for instruc-
tions and data), plus a 256KB L2 cache. The processor contains an on-chip 32MB L3
cache. Each core has a private 4MB portion of the L3 cache, although it can access
the rest of portions from other cores—with higher latency. A core can switch between
single-thread (ST), two-way SMT (SMT2), and four-way SMT (SMT4) execution modes.

3.1. POWER7 Prefetcher

POWER7’s prefetcher [Cain and Nagpurkar 2010; Hur and Lin 2006; IBM 2010] is
programmable and allows users to set different parameters (knobs) that control its
behavior: (i) prefetch depth, how many lines in advance to prefetch, (ii) prefetch on
stores, whether to prefetch store operations, and (iii) stride-N, whether to prefetch
streams with a constant stride larger than one cache block. The prefetcher is controlled
via the data stream control register (DSCR). The Linux kernel exposes the register
to users through the sys virtual filesystem [Mochel 2005], allowing them to set the
prefetch setting on a per-thread basis.

Table I(a) describes the possible prefetch configurations and introduces the nota-
tion that will be used throughout the article. Prefetch depth can take values from
2 (shallowest) to 7 (deepest). Additionally, there are two special values that can be
used: 001b (O) and 000b (D). The former disables the prefetcher, while the latter is the
system-predefined default depth. In POWER7 the default depth corresponds to depth
5 (deep) [Abeles et al. 2010], being automatically selected when the system boots. Pre-
fetch on stores (W) and stride-N (S) can only be enabled or disabled; they are disabled
in the default configuration. Therefore, the default configuration corresponds to con-
figuration 5 (using our notation). Every knob in the prefetcher can be independently
configured. Table I(b) shows some examples of the possible combinations that can be

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

Adaptive Prefetching on POWER7: Improving Performance and Power Consumption 4:5

Fig. 1. Microbenchmarks description. The microbenchmarks perform an array traversal either in sequen-
tial or random order. The distance between accesses is a configurable parameter. Depending on function f,
the accesses to every array element can be loads, stores or both.

formed by setting values for each prefetch knob. Additionally, it shows how the short-
names that we use in the article are constructed.

3.2. Impact of Prefetch Settings on Microbenchmarks

In order to understand the behavior of the multiple knobs available in POWER7’s
prefetcher, we use several microbenchmarks and characterize their effect on perfor-
mance, memory bandwidth and power consumption.

Real applications present phases and significant dynamic variations during their
execution, complicating the task of fine-grain architectural characterization. In addi-
tion to that, OS interferences and asynchronous I/O services further complicate the
analysis. Microbenchmarks with well-defined characteristics simplify this problem by
allowing us to understand the behavior of the different architectural components in
isolation.

We developed a set of synthetic microbenchmarks that stress the prefetcher, caches
and memory subsystem in different ways. By using them, we can understand the be-
havior of the prefetcher and its interaction with the rest of the memory hierarchy. The
basic structure for all the microbenchmarks consists of an array traversal following a
given order and bringing lines from a given point in the memory hierarchy to levels
closer to the CPU. Figure 1 shows the implementation details of the microbenchmarks
as well as two access patterns (sequential and random traversal). Each element of the
array is composed of a pointer to the following element—the next element will depend
on the type of traversal—and a padding area. The length of the padding area will de-
termine how consecutive lines are accessed. For instance, if the size of the element
structure equals the size of a cache line, every step in the traversal will touch a line.
This design, when applied within a sequential traversal, will bring adjacent lines from
the memory to the low-level caches. If the padding size is bigger, however, two consec-
utive accesses will not touch adjacent lines. Although sequential prefetching does not
help with this access pattern, we will see that if stride-N is enabled, the prefetcher is
able to improve performance.

In this characterization we use three microbenchmarks based on the scheme pre-
sented in Figure 1: seq-bench, seq-bench-stride, and rnd-bench. The first one performs
sequential accesses to consecutive cache lines. The second one is similar but the stride
between two accesses is larger than a cache line. This creates an access pattern that a
sequential prefetcher cannot identify. Finally, the last one performs random accesses,
therefore it does not benefit from prefetch. All the microbenchmarks are mainly com-
posed of memory load operations, and they are heavily memory-bound workloads.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

4:6 V. Jiménez et al.

Fig. 2. Prefetch depth effect characterization. Both sequential and random microbenchmarks are used to
show the effect of prefetch depth on performance and memory bandwidth. Threads are bound to contexts in
an increasing order (the first four threads go to the first core, the next four ones go to the second core, and
so on). Values are normalized to the maximum value observed in each plot.

Performance Results. Figure 2 shows the results of running an increasing number of
threads (from 1 to 32) under different prefetch configurations, varying prefetch depth.
The left part of the figure shows per-thread IPC and memory bandwidth for seq-bench.
This workload accesses consecutive memory blocks, and hence prefetch really helps in
this case. Prefetch depth significantly affects performance too, with the deepest config-
uration (7) achieving a 2.6X speedup over the shallowest one (2) for the single-thread
case. As more threads run, memory bandwidth consumption significantly increases,
and prefetch depth does not make a significant difference after eight threads are run-
ning in the system—with the exception of depth 2. After that point, the effect of pre-
fetch depth is somehow limited, but there is still a large performance gap between
enabling and disabling prefetch. If more threads are added, at some point memory
bandwidth saturates and performance asymptotically converge to the same perfor-
mance as when the system is not using prefetching. Although this example helps us to
understand the effect of prefetch depth on both performance and memory bandwidth,
we must bear in mind that it is an extreme case, since the workload is mainly com-
posed of operations that continuously access memory.1 When more realistic workloads
(e.g., SPEC CPU2006) are used, pressure on bandwidth is not so high, and prefetch
depth keeps helping beyond the early saturation point seen in this example.

The right part of Figure 2 shows the same experiment with a benchmark that ac-
cesses memory positions in random order. In this case, prefetch cannot help, since the
workload’s access pattern is not sequential. In fact, if prefetch is enabled, bandwidth
consumption increases up to 1.5X compared to the case when prefetch is disabled.
Upon encountering a cache miss, the prefetcher sends an L3 prefetch for the next
cache line. Since those prefetches are useless, they do not contribute to increase perfor-
mance, but they actually increase memory bandwidth and create more cache conflicts.
Because of all these factors, disabling prefetch actually provides the best performance,
especially when the number of threads increases.

Figure 3 shows the effect of stride-N for several choices of prefetch depth on the
seq-bench-stride microbenchmark. We only display the results for depths 2 and 7 in
order to ease the comprehension of the figure—the remaining depth values would lie

1POWER7-based systems contain two memory controllers, however ours is a low-end system with only one
controller. This could explain why bandwidth is saturated with fewer threads.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

Adaptive Prefetching on POWER7: Improving Performance and Power Consumption 4:7

Fig. 3. Stride-N and prefetch depth effect characterization. A sequential strided microbenchmark is used to
show the effect of stride-N and prefetch depth on performance and memory bandwidth. Threads are bound
to contexts in an increasing order (the first four threads go to the first core, the next four ones go to the
second core, and so on). Values are normalized to the maximum value observed in each plot.

in between 2 and 7. As it was expected, the default prefetch configuration (D) does
not improve performance for this benchmark. Since accesses to memory are sequen-
tial, but they are not to adjacent cache lines, sequential prefetching does not help. The
performance for the default configuration (D) is exactly the same as when prefetch
is disabled. As we can see in Figure 3, however, the default configuration consumes
significantly more bandwidth than turning prefetch off (O), without obtaining any per-
formance benefit. Once stride-N is enabled (configurations S2 and S7), the prefetcher
is able to identify the strided access pattern, and a significant speedup is achieved. The
effect of prefetch depth is similar to the one observed for seq-bench (Figure 2): when
the number of threads is low, increasing prefetch depth achieves a significant speed
up. But, as the thread count increases, the impact of prefetching considerably reduces.

Power Consumption Results. Figure 4 shows both memory and total system power
consumption for the same experiments shown in Figure 2. In all the cases, power con-
sumption is significantly lower when prefetch is disabled. For seq-bench there is up to
30% memory power consumption difference between enabling and disabling prefetch.
In terms of total system power consumption, the difference is still very significant (up
to 10%). We must remember, however, that this power consumption reduction comes at
the cost of a significant decrease in performance (see Figure 2). We computed energy
efficiency using energy-delay product, and the results show that when both perfor-
mance and power consumption are taken into account, disabling prefetch is not an
efficient decision for seq-bench-like workloads.

The power consumption results for rnd-bench are similar to the ones observed for
seq-bench. In this case the maximum observed difference between enabling and dis-
abling prefetch is 18% for memory power consumption (5% for total system power). But
as Figure 2 shows, a benchmark with a random access pattern does not benefit from
prefetch, and performance is typically better when prefetch is disabled. Therefore, this
case is a win-win situation. Disabling prefetch both improves performance and reduces
power consumption, boosting system efficiency.

Power consumption results for the case when stride-N is enabled are similar to the
ones presented in Figure 4. Because of that, they are not presented in the article.

Overall, we have seen that prefetch depth can significantly influence performance
as long as memory bandwidth is not under a lot of pressure. When bandwidth gets
saturated due to a high amount of demand loads generated by the benchmarks running

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

4:8 V. Jiménez et al.

Fig. 4. Memory and total system power consumption both for sequential and random microbenchmarks.
Threads are bound to contexts in an increasing order (the first four threads go to the first core, the next four
ones go to the second core, and so on). Values are normalized to the maximum value observed in each plot.

on the system, prefetch does not help as much anymore. Additionally, if a workload
generates many useless prefetches, bandwidth consumption will increase, which may
hurt system performance. We have also seen that prefetch typically increases power
consumption. When prefetch is useful, power consumption increases with respect to
prefetch aggressiveness. When prefetches are not useful, they may decrease system
performance and waste power at the same time. All these observations are useful to
understand the results with real benchmarks in the following sections.

3.3. Impact of Prefetch Settings on SPEC CPU2006

In the previous section we have studied the effect of prefetch settings on performance
and power consumption for a set of microbenchmarks. In this section we conduct a
similar study with more realistic workloads, using the SPEC CPU2006 benchmark
suite.

Prefetching affects workloads in different ways, depending on their nature. Some
experience a significant speedup when prefetch is used, while others are totally insen-
sitive. We classify the benchmarks in four different groups, according to the way pre-
fetch affects their performance when running in single-thread mode on our POWER7
system.

(i) Prefetch-Insensitive (PI). This type of benchmark is insensitive to prefetch. It does
not suffer any significant performance variation no matter whether prefetch is
enabled or not. Additionally, the various configurations (e.g., depth, stride-N and
prefetch-on-stores) do not affect its performance (e.g., sjeng and gamess).

(ii) Prefetch-Friendly (PF). Enabling prefetch positively affects the performance of the
benchmarks in this group. But, they are not affected when the prefetch setting is
varied (e.g., zeusmp and cactusADM).

(iii) Config-Sensitive (CS). For the benchmarks in this group, the performance also
increases when prefetch is enabled. Moreover, changing the prefetch configuration
affects their performance too (e.g., enabling stride-N improves the performance
with respect to the default configuration; this is the case for mcf and milc).

(iv) Prefetch-Unfriendly (PU). For this type of benchmark, enabling prefetch nega-
tively affects its performance (e.g., omnetpp and povray).

Figure 5 shows the performance for SPEC CPU2006 benchmarks—representatives
of each different class—running in single thread mode under several prefetch settings.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

Adaptive Prefetching on POWER7: Improving Performance and Power Consumption 4:9

Fig. 5. Effect of prefetch on performance for single-threaded runs. Multiple prefetch configurations are
used in order to show the effect of each prefetch knob: depth (2–7), prefetch on stores (WD), and stride-N
(SD)—refer to Table I for notation on prefetch configurations.

Table II.

Benchmark classification based on how their performance is affected
by the prefetch settings when running in single-thread mode.

Classes Benchmarks

Prefetch-insensitive

perlbench bzip2 gamess

gromacs namd gobmk

sjeng h264ref tonto

astar xalancbmk

Prefetch-friendly

gcc zeusmp cactusADM

dealII calculix hmmer

GemsFDTD lbm wrf

sphinx3

Config-sensitive
bwaves mcf milc

leslie3d soplex libquantum

Prefetch-unfriendly omnetpp povray

We use the default prefetch configuration (D) as the baseline to normalize IPC. That
figure easily visualizes prefetching impact on the different classes that we use to
classify the benchmarks (Table II contains the exact classification for all the SPEC
CPU2006 benchmarks).

In terms of power consumption, Figure 6 shows CPU and memory power consump-
tion for the same benchmarks appearing in Figure 5. The values are normalized to the
ones obtained with the default prefetch configuration. In terms of CPU power, there is
not too much variation when using the most aggressive prefetch setting (SW7). When
disabling prefetch (O), CPU power consumption decreases up to 3% (for libquantum).
The reduction of memory power consumption is much more significant—especially for
config-sensitive, prefetch-friendly and prefetch-unfriendly benchmarks. For instance,
power consumption for libquantum decreases 15% but at the expense of reducing its
IPC more than 60% (see Figure 5). Perhaps the most interesting cases are povray, and
especially omnetpp. For the latter, disabling prefetching reduces memory power con-
sumption 10% while, at the same time, performance increases close to 20%. That is
a win-win situation, caused by avoiding useless bandwidth consumption due to ineffi-
cient prefetches. Power consumption is decreased for povray too, although in this case
the reduction is more modest (5%).

Overall, as results in Figures 5–6 show, an adaptive prefetch mechanism could
tune the prefetcher for every particular benchmark in order to find the prefetch

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

4:10 V. Jiménez et al.

Fig. 6. Effect of prefetch on CPU and memory power consumption for single-threaded runs. The values are
normalized to the ones obtained with the default prefetch configuration.

configuration that leads to its optimal performance, potentially saving power consump-
tion at the same time.

4. METHODOLOGY

We use an IBM BladeCenter PS701 to conduct all the experiments, including the
ones in the previous section. This system contains one POWER7 processor running
at 3.0 GHz and 32 GB of DDR3 SDRAM running at 800 MHz. The operating system
is SUSE Linux Enterprise Server 11 SP1. We use IBM XL C/C++ 11.1 and IBM XL
Fortran 13.1 compilers to compile all the SPEC CPU2006 benchmarks. We disable
compiler-generated prefetch instructions in order to avoid interactions between these
instructions and the hardware prefetcher. We also use SPECjbb2005 [SPEC 2005] for
evaluating adaptive prefetching. The Java VM is IBM J9 VM build 2.4. For collecting
information from the performance counters we use perf, the official implementation in
the mainstream Linux kernel [de Melo 2010].

Power measurements are obtained using the IBM Automated Measurement of Sys-
tems for Temperature and Energy Reporting software [Floyd et al. 2011; Lefurgy et al.
2007]. The software connects to the EnergyScale microcontroller to download real-time
power, temperature, and performance measurements of POWER7 microprocessor and
server. The software samples sensors at 1-ms granularity. By using this software we
can access multiple sensors in the system, making it possible to sample total system
power, chip power and memory power.

5. ADAPTIVE PREFETCHING

In Section 3.3 we have seen that different applications derive maximum performance
benefit from different prefetch settings. In that approach, users need to profile appli-
cations prior to running them in order to determine the best prefetch setting for each
application. We refer to this method as the best static configuration approach or, sim-
ply, the static approach. In this approach, a priori profiling yields the optimal prefetch
configuration for a given application, and all future runs of this application would use
this optimal configuration to achieve its efficiency target. Note that in this approach,
the prefetch configuration is statically fixed for the duration of the application run. A
truly dynamic adaptation of the data prefetch algorithm presents the promise of two
potential benefits: (i) users would be able to avoid the per-application profiling step;
and, (ii) dynamic phase changes within the same application would trigger adaptation
of the prefetch parameters in order to further maximize the targeted efficiency metric.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

Adaptive Prefetching on POWER7: Improving Performance and Power Consumption 4:11

Algorithm 1 Base adaptive prefetch algorithm

1: for all t in threads do
2: for all ps in pref settings do
3: set prefetch(cpu(t), ps)
4: wait Te ms
5: ipc[ps] = read pmcs()
6: end for
7: best ps = arg maxps(ipc)
8: set prefetch(cpu(t), best ps)
9: end for
10: wait Tr

5.1. Basic Adaptive Algorithm

Algorithm 1 contains two configurable parameters, Ts and Tr. The former specifies
the interval length to be used during the exploration phase (line 4). The latter is the
amount of time that the best settings found during the exploration phase will be used
before a new exploration phase starts (line 10). In our implementation we use the
interval lengths Te = 10ms and Tr = 100ms. This granularity is a good compromise
between adaptability and overhead. It is actually a typical value for sampling-based
approaches in the OS and runtime realms [Isci et al. 2005]. For instance, the Linux
kernel allows the user to choose the granularity of the timer tick from 1 ms up to
10 ms. A finer granularity would introduce a significant overhead in the system.

This first algorithm is the base for the other two presented in this article. It, how-
ever, suffers from two potential problems: the effect of phase changes and the impact of
“inefficient” prefetch settings (for a particular workload). Next, we examine and
present solutions for these two problems.

5.2. Impact of Phase Changes

It is well known that applications present phases during their execution [Denning
1968]. They actually present phases at different levels, ranging from the microsecond
to the millisecond level (some phases may even last for some seconds). Our adaptive
mechanism periodically samples performance for different settings, attempting to find
the best setting for that particular interval. We must, however, take care of possible
phase changes that may occur between different samples in the exploration phase.
Otherwise, we could attribute a performance change to the effect of a given prefetch
setting when the real reason is an underlying phase change between measurements.

In order to alleviate this problem we use a moving average buffer (MAB) [Abraham
and Ledolter 1983] that keeps the last m IPC samples for every prefetch setting and
thread under control of the adaptive prefetch runtime. We then compare the perfor-
mance of prefetch settings by using the mean of the values in the buffer, instead of
using individual measurements. We evaluate the effect of using buffers of different
sizes on the IPC variability between consecutive samples. Figure 7 shows the normal-
ized IPC variability as we increase the buffer size from 1 (i.e., no buffer is used) up to
32. IPC variability is computed with the following equation:

variability =
1

n − 1

n−1∑

i=1

|IPCi+1 − IPCi|, (1)

where IPC is an array with all the n IPC samples for a given workload execution. Vari-
ability is then normalized to the average IPC for every workload. For clarity reasons
the figure is split into two. Figure 7(a) contains the results for SPEC INT benchmarks
and Figure 7(b) does so for SPEC FP benchmarks. As it can be seen in the figure, most

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

4:12 V. Jiménez et al.

Fig. 7. Effect of changing the buffer size on intersample IPC variability. IPC variability (see Equation (1))
is normalized to the average IPC for each benchmark.

Algorithm 2 Adaptive prefetch with MAB
1: for all t in threads do
2: for all ps in pref settings do
3: set prefetch(cpu(t), ps)
4: wait Te ms
5: push(ipc mab[t, ps], read pmcs())
6: ipc mean[ps] = mean(ipc mab[t, ps])
7: end for
8: best ps = arg maxps(ipc mean)

9: set prefetch(cpu(t), best ps)
10: end for
11: wait Tr

of the benchmarks present a small to moderate variation when MAB is not used. A few
of them (bzip2, perlbench, wrf, and GemsFDTD), however, have quite a high variation.
As an example, let us examine bzip2. The average IPC variability between consecutive
samples is 30% when MAB is not used. As the buffer size increases the variability is
reduced, reaching 2% for a buffer containing the last 32 samples. By using a moving
average buffer, we are able to significantly reduce the impact that phase changes may
have on the exploration step of the adaptive prefetch mechanism.

Algorithm 2 presents the new version of the algorithm, using the moving average
buffer. The algorithm is very similar to the one presented in the previous section. The
only differences are on lines 5, 6, and 8, where the buffer is actually used. The opera-
tion of pushing a new sample into the buffer (line 5) is implemented using a circular
buffer. Thus, when the buffer is full and a new sample is added, the oldest one is
removed from the buffer.

5.3. Impact of “Inefficient” Prefetch Settings

The base adaptive prefetch algorithm iterates along a set of prefetch settings dur-
ing the exploration phase. After the exploration phase is over, the runtime lets the
threads run for a certain amount of time with the best setting found. Depending
on the workload, there could be a significant performance variation between differ-
ent settings used in the exploration phase. For instance, for bwaves, disabling the

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

Adaptive Prefetching on POWER7: Improving Performance and Power Consumption 4:13

Fig. 8. Effect of exploration/running ratio on expected performance. Values are normalized to the maximum
values observed for each workload.

prefetch reduces its performance 78% with respect to the best setting. Such a signif-
icant slowdown may actually impact overall performance if the exploration phase is
executed too often. Therefore, for this particular workload disabling prefetch would be
an inefficient prefetch setting (it is important to mention that an inefficient setting
for one workload may be the best one for another workload; thus settings’ efficiency is
workload-dependent).

In order to quantify the effect of inefficient settings, we model the expected perfor-
mance, ÎPC, based on the ratio of exploration and running phases’ length. We use the
following equation for the model:

ÎPC =

n∑

i=1

Le

Lt
× IPCi +

Lr

Lt
× max

i
(IPCi), (2)

where Le and Lr are the lengths of the exploration and running phases, respectively,
and Lt = Le + Lr. IPC is a set containing the average IPC values for each prefetch
setting for a given workload.

Figure 8 shows the expected performance for two different types of workloads as
the ratio Lr/Le increases. The solid, green vertical line determines the running-explo-
ration ratio such that the expected performance is within 5% of the best achievable
performance (i.e., if there is no exploration phase and the best prefetch setting is used
during all the interval). The dashed, blue vertical line is equivalent to the previous
one, but it marks the point where the expected performance is within 1% of the best
achievable performance. We use two benchmarks, perlbench and milc, to construct an
illustrative example. The results for all the other SPEC CPU2006 benchmarks are
similar to either one of these two.

Figure 8(a) shows the results for perlbench. This workload is mostly insensitive to
prefetching and, thus, the expected performance follows a very flat curve. In order not
to lose more than 1% of performance, it suffices to set a running phase four times
longer than a single exploration interval. For these types of workloads, since they
do not really suffer from inefficient prefetch settings, the running-exploration ratio
is not so important. This totally changes for a different type of workload such as milc.
Figure 8(b) shows the results for this workload. In this case the curve is not flat any-
more. Indeed if we are not willing to pay a performance drop bigger than 5% we must
use a running phase at least 50 times longer than a single exploration interval. For a
tighter 1% bound, the ratio would increase up to approximately 400. Using such a large
value for all the possible workloads would imply a drastic reduction in the number of

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

4:14 V. Jiménez et al.

times that an exploration phase is triggered. Thus, the adaptability of our mechanism
would be significantly reduced.

In order to avoid this issue we decided to introduce a new feature in our adap-
tive prefetch scheme. This feature removes inefficient prefetch settings from the set
containing all the settings to be tried during the exploration phase. We call this fea-
ture prefetch setting drop. Settings are “dropped” for a certain amount of time based
on their inefficiency and then, they are considered again to be selected in a future ex-
ploration phase. The exact number of iterations, ITi, that a given setting, i, will be
dropped is given by the following equation:

ITi = DF × |MAB| ×

(
maxi(IPCi)

IPCi
− 1

)
, (3)

where DF is the drop factor, |MAB| is the size of the moving average buffer and the
last term is a measure of the slowdown experienced when using setting i. If the perfor-
mance for setting i is equal to the best performance observed, the last term becomes
zero and the setting is actually not dropped at all, so it will be used in the next explo-
ration phase. The slowdown term in the last equation penalizes inefficient settings pro-
portionally to the measured slowdown. Thus, settings that significantly deviate from
the best setting’s performance will be penalized more than the others. The equation
drops settings proportionally to the size of the moving average buffer too. After a set-
ting is dropped, its MAB is reset, because by the time the setting is considered again in
the exploration phase, the contents of the buffer may not be valid anymore. Moreover,
the adaptive mechanism does not give a prediction for a setting until its associated
buffer is full—doing so would be equivalent to not using a buffer. Therefore, |MAB|
exploration phases are necessary before the algorithm can decide whether a prefetch
setting that has just been reconsidered again for inclusion continues to be an ineffi-
cient setting and, consequently, must be dropped once more. The bigger the size of the
moving average buffer, the more potentially harmful effect that an inefficient setting
may have. Thus, Equation (3) includes a term that drops settings proportionally to the
size of the moving average buffer.

In Equation (3) the drop factor, DF, is the only parameter that the adaptive prefetch
mechanism’s designer or the end-user must select a value for. Its value will depend
on the workloads that the end-user will ultimately execute on the system. Based on
mathematical performance modeling and empirical analysis, it is possible to select a
default value for that parameter. We use a similar approach as we did to determine
the effect of the exploration-execution ratio on performance. In this case, we model the
effect of changing the drop factor on the expected performance. We use the following
equation to model the impact on performance of different drop factor values for the
case of two prefetch settings:

ÎPCi =
t1

T
× IPCbest +

t2

T
× αIPCbest, (4)

where t1 and t2 correspond to the amount of time that setting one and two are re-
spectively selected. Their values are |MAB| + ITi and |MAB|, respectively. Finally, T
is the total interval time (t1 + t2) and α is the reduction in performance of setting two
compared to the first one. Figure 9 shows normalized expected performance for several
drop factor values, for the case of two prefetch settings. One of the settings corresponds
to the best setting in a given interval (performance = 1.0). We include results for dif-
ferent performances (α) for the second setting, ranging from 1% to 50% slowdown.

As it can be observed in Figure 9, settings that are close to the best one do not reduce
performance significantly and, thus, they do not need to be dropped for a long time—if
at all. As the performance of the second setting decreases, the impact on performance

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

Adaptive Prefetching on POWER7: Improving Performance and Power Consumption 4:15

Fig. 9. Effect of drop factor on expected performance. Values are normalized to the best possible
performance.

Algorithm 3 Adaptive prefetch with MAB and inefficient setting drop.

1: for all t in threads do
2: for all ps in pref settings do
3: drop iter[t, ps] = max(0, drop iter[t, ps] −1)

4: if drop iter[t, ps] = 0 then
5: set prefetch(cpu(t), ps)
6: wait Te ms
7: push(ipc mab[t, ps], read pmcs())
8: ipc mean[ps] = mean(ipc mab[t, ps])
9: end if
10: end for
11: best ps = arg maxps(ipc mean)

12: set prefetch(cpu(t), best ps)
13: for all ps in pref settings do
14: SL = (ipc mean[best ps] /ipc mean[ps] −1)

15: drop iter[t, ps] = DF × |MAB| × SL
16: end for
17: end for

becomes much more noticeable. For instance, if the performance for the second setting
is 50% compared to the best setting, not using the drop feature would lead to an es-
timated overall performance of 75% compared to when just the best setting is used.
As the drop factor increases, the impact of inefficient settings clearly reduces and the
expected performance tends to converge to the performance obtained with the best
prefetch setting.

Algorithm 3 presents the latest version of the adaptive prefetch mechanism, both
including the moving average buffer and the drop feature. As it can be seen there is no
running phase in this algorithm. The running phase is not necessary anymore since
the drop feature removes inefficient settings, thus, allowing us to perform a continuous
exploration. Before trying a prefetch setting, the algorithm decrements the number of
drop iterations for that setting, and it only actually considers the setting if it is not
dropped (lines 3–4). In lines 13–16 the algorithm computes the number of iterations

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

4:16 V. Jiménez et al.

Fig. 10. Performance results for single-threaded workloads normalized to the ones obtained with the de-
fault prefetch configuration.

that inefficient settings will be dropped. We select DF = 100 based on the previous
analysis and on empirical evaluation, obtaining good performance for all the bench-
marks both for single-threaded and multiprogrammed workloads, as we will see in the
next section.

5.4. Results

In this section we evaluate the performance benefits of using adaptive prefetching. We
use both single-threaded workloads as well as multiprogrammed workloads composed
of random SPEC CPU2006 benchmark pairs.

5.4.1. Single-ThreadedWorkloads. Figure 10 shows the results for single-threaded work-
loads. We present results for all the SPEC CPU2006 benchmarks. Performance values
are normalized to the ones obtained with the default prefetch configuration. As it can
be seen in the figure, many of the benchmarks do not experience any performance
variation. That is especially true for prefetch-insensitive workloads. In that case,
neither the best static nor the adaptive approaches improve performance. It is impor-
tant to notice that while the first and the second algorithm may experience a perfor-
mance decrease compared to the default configuration—due to, for instance, inefficient
settings—that is not the case for the third algorithm. Algorithm 3 does not perform
worse than the default configuration for any of the benchmarks. That is an important
observation, since otherwise it may not be “safe” to unconditionally enable adaptive
prefetching.

We can observe the effect of the moving average buffer especially in the case of
GemsFDTD. This benchmark is the one that suffered the most from intersample vari-
ability (see Figure 7). By using a MAB we can reduce the impact of IPC variability
between samples and improve performance.

If we look at config-sensitive workloads we observe that adaptive prefetching per-
forms nearly as well as the best static approach. SPEC CPU2006 benchmarks present
little variability in terms of which prefetch setting they most benefit from along their
execution. Because of this, it is typically not possible for dynamic prefetching to beat
the static approach—we look at this in more detail in Section 5.4.2. The speedups ob-
tained with the adaptive scheme are, however, very significant (in the order of 15%
for mcf, soplex, and libquantum). In the case of milc we observe a large speedup of
2.7X. While all those workloads benefit from prefetch and they see their performance

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

Adaptive Prefetching on POWER7: Improving Performance and Power Consumption 4:17

Fig. 11. CPU and memory power consumption results for single-threaded workloads using Algorithm 3.
The values are normalized to the ones obtained with the default prefetch configuration.

increased when the right setting is selected for them, omnetpp behaves in a com-
pletely different way, and it actually benefits from disabling prefetch. By profiling this
benchmark we have seen that it spends a significant percentage of its execution time
traversing a heap. A heap is a tree-like data structure, and when traversing it, accesses
between nodes are separated by a variable stride. This access pattern is very difficult
for a sequential prefetcher, even if stride-N is enabled. In fact, prior research already
showed that omnetpp does not benefit from prefetch [Ebrahimi et al. 2009; Lee et al.
2008]. When prefetch is disabled during all the execution (static approach), perfor-
mance for omnetpp increases 17%. Adaptive prefetching detects that, and turns off
prefetch most of the time, significantly improving performance too.

Figure 11 shows CPU and memory power consumption results for all the bench-
marks when running under Algorithm 3. CPU power consumption is slightly lower
for all benchmarks except for milc. That benchmark experiences a 2.8X speedup when
running under adaptive prefetching. Selecting the right prefetch setting reduces the
impact of cache misses, increasing both CPU and memory activity in a very significant
manner. In terms of memory power consumption, prefetch-insensitive and prefetch-
friendly benchmarks do not experience any variation, consuming the same amount
for both the default configuration and adaptive prefetching. Performance for config-
sensitive benchmarks increases when the right prefetch setting is used. That extra per-
formance implies accessing memory more intensively. Because of that, memory power
consumption increases. It significantly does for milc (up to 15%) and more modestly
for libquantum and soplex (up to 3%). In all the cases, the performance increase sur-
passes the increment in power consumption. For omnetpp, power consumption actually
decreases under adaptive prefetching. Our mechanism effectively detects that dis-
abling prefetching is the best setting for that benchmark. By doing so, useless band-
width consumption is eradicated, reducing memory power consumption in turn. We
also observe a memory power reduction for povray. Being a prefetch-unfriendly work-
load, disabling prefetch helps as well, reducing power consumption 3%. Another inter-
esting case is xalancbmk. That benchmark presents two different phases. During the
first one, prefetching—especially when stride-N is enabled—helps significantly. In the
second one, disabling prefetch is slightly better in terms of performance. Doing so also
reduces bandwidth consumption to some degree. That reduction translates into a 2%
memory power decrease for adaptive prefetching compared to the default setting.

Overall, the significant speedups for single-threaded workloads, together with the
fact that performance does not decrease when compared to the default configuration,

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

4:18 V. Jiménez et al.

Fig. 12. Intraworkload prefetch setting sensitivity for all the SPEC CPU2006 benchmarks.

converts adaptive prefetching into a very useful mechanism to improve performance
for memory intensive workloads. Additionally, memory power consumption is reduced
for prefetch-unfriendly workloads such as omnetpp and povray, adding further value to
our adaptive solution.

5.4.2. Composite Workloads. As shown in the previous sections, our adaptive scheme is
able to find, without user intervention, the best prefetch setting for all SPEC CPU2006
benchmarks, with similar performance speedups to the best static approach. For an
application that benefits from multiple “best” prefetch settings over its full execution
period, however, the dynamic approach generally performs better. We use the term
intraworkload prefetch setting sensitivity to refer to the degree of potential improve-
ment that applications may have due to benefiting from multiple prefetch settings
within their execution. In the previous sections we have pointed out that a single SPEC
CPU2006 benchmark does not benefit from multiple prefetch settings, thus they have
a low intraworkload prefetch setting sensitivity.

Figure 12 shows the sensitivity for all benchmarks. We compute the sensitivity as
the ratio of time where a prefetch setting different from best static setting obtains
a better performance compared to the best static one. Most benchmarks present a
very low sensitivity (under 5%). And the only three benchmarks with relatively higher
sensitivity only experience a slight increase in their performance during less than
15% of their execution. Therefore, we conclude that SPEC CPU2006 benchmarks do
not present a high intraworkload prefetch setting sensitivity.

It is, however, conceptually easy to imagine the existence of applications that would
benefit from different prefetch settings during their execution. For instance, a scientific
application that retrieved a large amount of data from the Internet, uncompressed the
data and finally processed it, would have three very different macro-phases. Moreover,
each one of these phases may benefit from a different prefetch setting. In such a sce-
nario, the best static approach could easily perform worse than a dynamic mechanism.

In order to demonstrate the potential benefits of an adaptive scheme compared to a
static one, we construct some composite workloads by stitching together two SPEC
CPU2006 benchmarks, one running after the other. Table III shows the speedup
obtained by adaptive prefetching compared to the best static approach. As we can
observe, there are significant performance improvements for workloads with a higher
intraworkload prefetch setting sensitivity. As these results show, the adaptive prefetch

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

Adaptive Prefetching on POWER7: Improving Performance and Power Consumption 4:19

Table III.

Performance increase for adaptive pre-
fetching compared to the static approach
for composite workloads.

Workload IPC speedup (%)

bwaves-omnetpp 9.1

mcf-omnetpp 8.9

milc-omnetpp 10.5

libquantum-omnetpp 7.7

Fig. 13. Performance results for both the static and adaptive approaches for mixed-workloads. Each work-
load is composed of two different benchmarks from different classes (PI=prefetch-insensitive, PF=prefetch-
friendly, PU=prefetch-unfriendly, CS=config-sensitive). Four copies of each benchmark are run at the same
time. Results are normalized to the ones obtained with default prefetching.

mechanism is able to find the best prefetch setting for each of the macro-phases, thus
increasing performance compared to a static approach.

5.4.3. Multiprogrammed Workloads. In this section we compare adaptive prefetching
against the default configuration and the static approach for multiprogrammed
workloads. Since, as we have seen in Section 5.4.1, the performance for Algorithm 3 is
much better than the other two, in this section we only show results for the third algo-
rithm. The results in Figure 13 are normalized to the case where all the benchmarks
run with the default prefetch setting. We construct random pairs in such a way that all
the benchmark types listed in Table II are represented. Each workload is composed of
eight threads, four from a benchmark class and four from the other class. Each thread
runs on a different core. We show results for five random workloads for each class
combination except for PF-CS and CS-CS where we use ten random workloads since
the result space and the performance variability are larger for these combinations. For
PU-PU there is only one result, since there are only two benchmarks in PU class.

Looking at the results we observe that, as it was the case with single-threaded work-
loads, there is not too much difference in performance for workloads composed of pre-
fetch-insensitive or prefetch-friendly benchmarks (PI-PI, PI-PF or PF-PF classes). For
config-sensitive workloads, however, we observe very significant speedups (over 10%)
for some pairs. Throughput goes up to 30% for the pair omnetpp-milc. In this case the
adaptive mechanism disables prefetch for omnetpp and enables stride-N for milc, boost-
ing the performance of both workloads. It is also important to notice that virtually in

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

4:20 V. Jiménez et al.

Fig. 14. CPU and memory power consumption results for the adaptive approach for mixed-workloads (same
pairs as in Figure 13). Values are normalized to the ones obtained with the default prefetch configuration.

no case the performance achieved by the adaptive prefetch mechanism is lower than
the baseline (using default prefetch for all the threads). The only two cases where
this happens are for the pairs GemsFDTD-milc (in PF-CS class) and libquantum-milc
(in CS-CS class). The reason for these results is the small absolute IPC for milc. When
it runs together with other higher-IPC benchmarks, the total throughput may not in-
crease that much—it may actually decrease—when using the adaptive approach. If we
look at the individual IPC values, however, the results show that the adaptive mecha-
nism actually improves performance. Let us examine the GemsFDTD-milc case in more
detail. For that pair, adaptive prefetching worsens total throughput 4% compared to
the baseline. When using the baseline, IPC values are 0.61 and 0.18 for GemsFDTD
and milc, respectively. Adaptive prefetching selects different prefetch settings, and the
IPC values change to 0.37 and 0.34 for the same benchmarks. These results show that
GemsFDTD suffers a 35% slowdown, but the speedup for milc is almost 2X, easily com-
pensating the slowdown for GemsFDTD. In addition to throughput, we have used other
metrics such as the harmonic speedup in order to obtain performance measurements
that combine both throughput and fairness between threads in each pair. Our results
show that the adaptive mechanism always obtain a better performance compared to
the baseline when using the harmonic speedup metric.

We observe that the static approach always obtains a performance equal or slightly
higher than the adaptive one. As we pointed out in the previous section, virtually no
SPEC CPU2006 benchmark benefits the most from more than a single prefetch setting.
In such a case, the static approach always obtains the best possible performance. With
our adaptive scheme, however, the user gets the benefit of autonomic performance
boost across all workloads (compared to the default configuration), without the need to
invest into a priori characterization of each and every workload.

Figure 14 shows CPU and memory power consumption for the same set of pairs
that we used in Figure 13. As it was the case with single-threaded experiments,
power consumption does not significantly vary for pairs where both benchmarks are
either prefetch-insensitive or prefetch-friendly. Config-sensitive benchmarks, such as
libquantum and soplex, experience significant speedups when the right prefetch setting
is selected by our adaptive mechanism. That extra performance is delivered through
an increase in memory bandwidth usage, and therefore, memory power consumption

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

Adaptive Prefetching on POWER7: Improving Performance and Power Consumption 4:21

Fig. 15. Performance and power characterization for SPECjbb2005 along its execution for eight warehouses
(i.e., threads). Individual thread values are first aggregated, and then they are normalized, dividing them
by the mean of all the samples. In this way we keep the same ratio between both prefetch configurations as
in the original values.

increases too. As Figure 14 shows, memory power consumption can increase up to
10% for these kinds of benchmarks. An interesting example is milc; this benchmark
considerably benefits from enabling stride-N, resulting in a significant performance
increment. As we can see in Figure 14, the pairs containing milc experience a power
consumption reduction when they run under our adaptive mechanism. Adaptive pre-
fetching enables stride-N most of the time for milc, effectively capturing that bench-
mark’s access pattern, and increasing prefetching efficiency. When we use the default
prefetch configuration, the prefetcher fails to capture the strided pattern, and the
bandwidth consumption due to demand loads increases. Yet, (useless) prefetches are
still generated, thus consuming memory bandwidth—and increasing power consump-
tion in turn. Actually, we already observed this effect for seq-bench-stride microbench-
mark (see Figure 3). Finally, we also observe how adaptive prefetching is able to reduce
power consumption for prefetch-unfriendly benchmarks. Pairs where omnetpp ap-
pears, experience memory power consumption reductions close to 10%. These results
demonstrate the potential of our adaptive prefetch scheme, not only at improving per-
formance, but at reducing memory power consumption as well.

5.4.4. Java Business Workloads. So far we have evaluated our adaptive prefetch mech-
anism using SPEC CPU2006, a benchmark suite mainly composed of HPC simulation
kernels and some integer workloads. Those are, however, just a fraction of the
representative workloads running on real systems. Therefore, in addition to SPEC
CPU2006, we have also evaluated our mechanism using SPECjbb2005 [SPEC 2005],
a server-side, Java business application that models a three-tier client/server system.
This type of application is commonly used nowadays in areas such as banking, whole-
sale suppliers or data warehousing.

In all the experiments, we run SPECjbb using eight warehouses; each warehouse is
executed by a different thread. Thus, we have eight threads in total, mapping each one
of them onto a different core. We have tried other numbers of warehouses, obtaining
similar results. Typical SPECjbb executions consist of multiple steps where the num-
ber of warehouse is increased from 1 to the number of CPUs in the system. The reason
to do that is to study how the system scales as more warehouses are executed. In our
case, however, we are not studying the scaling capabilities, but just how different pre-
fetch settings affect performance and power consumption for SPECjbb. Thus, we just
execute the last step when all the cores are used.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

4:22 V. Jiménez et al.

Table IV.

Throughput and memory power consumption evaluation
for SPECjbb2005. Results are normalized to the ones
obtained with the default prefetch setting.

Throughput Power Consumption

Static 22.4% −23.1%

Adaptive 21.1% −21.9%

Figure 15 shows the results of executing SPECjbb with different prefetch configu-
rations: default (D) and off (O). As we can observe in the figure, throughput increases
19% when prefetching is disabled compared to using the default prefetch configuration.
SPECjbb is a prefetch-unfriendly benchmark, thus benefiting from disabling data pre-
fetching in the same way omnetpp (from SPEC CPU2006) does. In the same figure we
also notice that bandwidth consumption increases 56% when prefetching is enabled.
Since SPECjbb is a prefetch-unfriendly benchmark, that extra bandwidth consump-
tion is basically wasted due to inefficient prefetches. Even if the increased bandwidth
consumption does not translate into extra performance—the opposite is actually true
in this case—more frequent accesses to the memory subsystem incur into a significant
memory power consumption overhead (22% increase).

In such a scenario, adaptive prefetching has the potential to both improve perfor-
mance and reduce power consumption at the same time. That is a very much desired
win-win situation. We have evaluated the impact of using our adaptive prefetch mecha-
nism while running SPECjbb. Table IV contains the results, showing total throughput
and memory power consumption. All the values are normalized with respect to the
ones obtained when using the default prefetch configuration. The static approach, as
expected, significantly increases performance by 22.4% and reduces power consump-
tion by 23.1%. Our adaptive prefetch mechanism effectively detects that disabling pre-
fetching is the optimal choice for this benchmark, and it obtains similar results: 21.1%
performance speedup and 21.9% power reduction.

6. OS-BASED IMPLEMENTATION

The presented implementation of the adaptive prefetch is based on a user-level run-
time. Compared to an OS implementation, a user-level runtime provides the maximum
flexibility and portability. An OS-based implementation would provide several advan-
tages, though. For instance, the overhead for reading performance counters as well as
for changing the DSCR register would be reduced, since it would not be necessary to
change the privilege mode to do so.

Therefore, besides evaluating the runtime-based mechanism, we studied the imple-
mentation of adaptive prefetch within the Linux OS. For that purpose, we have imple-
mented OS-based adaptive prefetch algorithms similar to the runtime-based ones.

We rely on the timer interrupt in order to divide the execution of threads into inter-
vals containing exploration and running phases. At each timer interrupt a reference
to the thread running on the current context is first obtained (see Algorithm 4). Then
the behavior of the algorithm depends on the current phase: i) If the exploration phase
is active, the performance for the current prefetch setting (curr ps) is recorded and
the next setting is selected (lines 5–6). In case no more settings are available, the al-
gorithm starts the running phase, after selecting the best setting found during the
exploration phase (lines 8–11). ii) If the running phase is active, the running quantum
is first reduced (line 14). That quantum determines how long a running phase will be.
A larger value will reduce the effect of inefficient prefetch settings at the expense of a
coarser adaptability.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

Adaptive Prefetching on POWER7: Improving Performance and Power Consumption 4:23

Algorithm 4 OS-based implementation of Algorithm 1

1: ct = get current running thread()
2: if mode = EXPLORATION then
3: perf [ct, curr ps[ct]] = read ipc()
4: if curr ps[ct] �= last ps() then
5: curr ps[ct] = next ps(curr ps[ct])
6: set dscr(ct, curr ps[ct])
7: else
8: best ps = arg maxps(perf [ct])

9: set dscr(ct, best ps)
10: run quantum[ct] = RUN QUANTUM
11: mode = RUNNING
12: end if
13: else if mode = RUNNING then
14: run quantum[ct] = run quantum[ct] −1
15: if run quantum[ct] = 0 then
16: curr ps[ct] = first ps()
17: set dscr(ct, curr ps[ct])
18: mode = EXPLORATION
19: end if
20: end if

Using OS-based algorithms we have observed similar results to the ones obtained
at user-level. These promising results encourage us to further pursue this path. We
leave, however, the exploration of other OS-based adaptive schemes for future work.

7. CONCLUSIONS

Prefetch engines in current server-class microprocessor are getting more and more
sophisticated. The IBM POWER7 processor contains a programmable hardware data
prefetcher, allowing users to control different knobs in order to adapt the prefetcher
to workload requirements. In this article we present an adaptive prefetch mechanism
capable of boosting performance by leveraging these knobs. We evaluate its impact on
performance for single-threaded and multiprogrammed workloads, showing that sig-
nificant speedups can be obtained with respect to the default prefetch setting. We also
show how our adaptive mechanism reduces power consumption for prefetch-unfriendly
benchmarks. We compare the adaptive scheme to an approach where applications are
first profiled and the best prefetch setting found is used for future executions. Our
dynamic approach, however, frees users from profiling every application in order to
find the best static prefetch setting.

Although we use POWER7-specific measurements and analysis in this article, the
basic insights gleaned generally also apply to other (non-POWER) systems that use
programmable hardware data prefetch engines.

REFERENCES

J. Abeles, L. Brochard, L. Capps, et al. 2010. Performance guide for HPC applications on IBM POWER 755
system. https://www.power.org/events/Power7/Performance Guide for HPC Applications on Power 755-
Rel 1.0.1.pdf.

B. Abraham and J. Ledolter. 1983. Statistical Methods for Forecasting. Wiley.

J. L. Baer and T. F. Chen. 1991. An effective on-chip preloading scheme to reduce data access penalty. In
Proceedings of the ACM/IEEE Conference on Supercomputing. ACM, 176–186.

C. Boneti, F. J. Cazorla, R. Gioiosa, A. Buyuktosunoglu, C. Y. Cher, and M. Valero. 2008. Software-controlled
priority characterization of POWER5 processor. In Proceedings of the 35th Annual International Sym-
posium on Computer Architecture. IEEE, 415–426.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

https://www.power.org/events/Power7/Performance_Guide_for_HPC_Applications_on_Power_755-Rel_1.0.1.pdf
https://www.power.org/events/Power7/Performance_Guide_for_HPC_Applications_on_Power_755-Rel_1.0.1.pdf

4:24 V. Jiménez et al.

H. W. Cain and P. Nagpurkar. 2010. Runahead execution vs. conventional data prefetching in the IBM
POWER6 microprocessor. In Proceedings of the IEEE International Symposium on Performance Analysis
of Systems and Software. 203–212.

F. J. Cazorla, P. M. W. Knijnenburg, R. Sakellariou, E. Fernandez, A. Ramirez, and M. Valero, 2006. Pre-
dictable performance in SMT processors: Synergy between the OS and SMTs. IEEE Trans. Comput. 55,
7, 785–799.

S. Choi and D. Yeung. 2006. Learning-based SMT processor resource distribution via hill-climbing. In
Proceedings of the 33rd Annual International Symposium on Computer Architecture. IEEE, 239–251.

A. C. de Melo. 2010. Performance counters for Linux.
http://www.linux-kongress.org/2010/slides/lk2010-perf-acme.pdf.

P. J. Denning. 1968. The working set model for program behavior. Commun. ACM 11, 5, 323–333.

E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. 2011. Prefetch-aware shared resource management for
multi-core systems. In Proceedings of the 38th Annual International Symposium on Computer Architec-
ture. ACM, 141–152.

E. Ebrahimi, O. Mutlu, and Y. N. Patt. 2009. Techniques for bandwidth-efficient prefetching of linked data
structures in hybrid prefetching systems. In Proceedings of the 15th International Symposium on High-
Performance Computer Architecture. 7–17.

P. G. Emma, A. Hartstein, T. R. Puzak, and V. Srinivasan. 2005. Exploring the limits of prefetching. IBM J.
Res. Dev. 49, 1, 127–144.

M. Floyd, M. Allen-Ware, and K. Rajamani. 2011. Introducing the adaptive energy management features of
the POWER7 chip. IEEE Micro 31, 2, 60–75.

J. L. Henning. 2006. SPEC CPU2006 benchmark descriptions. SIGARCH Comp. Arch. News 34, 4, 1–17.

I. Hur and C. Lin. 2006. Memory prefetching using adaptive stream detection. In Proceedings of the 39th
Annual ACM/IEEE International Symposium on Microarchitecture. IEEE, 397–408.

IBM. 2010. Power ISATM Version 2.06 Revision B.
https://www.power.org/wp-content/uploads/2012/07/PowerISA V2.06B V2 PUBLIC.pdf.

C. Isci, A. Buyuktosunoglu, and M. Martonosi. 2005. Long-term workload phases: Duration predictions and
applications to DVFS. IEEE Micro 25, 5, 39–51.

V. Jiménez, R. Gioiosa, F. J. Cazorla, A. Buyuktosunoglu, P. Bose, and F. P. O’Connell. 2012. Making data
prefetch smarter: Adaptive prefetching on POWER7. In Proceedings of the 21st International Conference
on Parallel Architectures and Compilation Techniques. ACM, 137–146.

D. Joseph and D. Grunwald. 1997. Prefetching using Markov predictors. In Proceedings of the 24th Annual
International Symposium on Computer Architecture. ACM, 252–263.

N. P. Jouppi. 1990. Improving direct-mapped cache performance by the addition of a small fully associative
cache and prefetch buffers. In Proceedings of the 17th Annual International Symposium on Computer
Architecture. ACM, 364–373.

C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt. 2008. Prefetch-aware DRAM controllers. In Proceedings
of the 41st Annual ACM/IEEE International Symposium on Microarchitecture. IEEE, 200–209.

C. Lefurgy, X. Wang, and M. Ware. 2007. Server-level power control. In Proceedings of the 4th International
Conference on Autonomic Computing. IEEE, 4–14.

S. W. Liao, T.-H. Hung, D. Nguyen, C. Chou, C. Tu, and H. Zhou 2009. Machine learning-based prefetch opti-
mization for data center applications. In Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis. ACM, 1–10.

F. Liu and Y. Solihin. 2011. Studying the impact of hardware prefetching and bandwidth partitioning in
chip-multiprocessors. In Proceedings of the ACM SIGMETRICS Joint International Conference on Mea-
surement and Modeling of Computer Systems. ACM, 37–48.

P. Mochel. 2005. The sysfs filesystem. In Proceedings of the Annual Linux Symposium.

M. Moreto, F. J. Cazorla, A. Ramirez, R. Sakellariou, and M. Valero. 2009. FlexDCP: A QoS framework for
CMP architectures. SIGOPS Oper. Syst. Rev. 43, 2, 86–96.

S. Palacharla and R. E. Kessler. 1994. Evaluating stream buffers as a secondary cache replacement. In
Proceedings of the 21st Annual International Symposium on Computer Architecture. IEEE, 24–33.

M. K. Qureshi and Y. N. Patt. 2006. Utility-based cache partitioning: A low-overhead, high-performance,
runtime mechanism to partition shared caches. In Proceedings of the 39th Annual ACM/IEEE Interna-
tional Symposium on Microarchitecture. IEEE, 423–432.

A. Roth, A. Moshovos, and G. S. Sohi. 1998. Dependence based prefetching for linked data structures. In
Proceedings of the 8th International Conference on Architectural Support for Programming Languages
and Operating Systems. ACM, 115–126.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

https://www.power.org/wp-content/uploads/2012/07/PowerISA_V2.06B_V2_PUBLIC.pdf

Adaptive Prefetching on POWER7: Improving Performance and Power Consumption 4:25

B. Sinharoy, R. Kalla, W. J. Starke, et al. 2011. IBM POWER7 multicore server processor. IBM J. Res. Dev.
55, 3, 1–29.

Y. Solihin, J. Lee, and J. Torrellas. 2002. Using a user-level memory thread for correlation prefetching. In
Proceedings of the 29th Annual International Symposium on Computer Architecture. ACM, 171–182.

SPEC. 2005. SPECjbb2005. http://www.spec.org/jbb2005/.

V. Srinivasan, E. S. Davidson, and G. S. Tyson. 2004. A prefetch taxonomy. IEEE Trans. Comput. 53, 2,
126–140.

C. J. Wu and M. Martonosi. 2011. Characterization and dynamic mitigation of intra-application cache inter-
ference. In Proceedings of the IEEE International Symposium on Performance Analysis of Systems and
Software. IEEE, 2–11.

W. A. Wulf and S. A. McKee. 1995. Hitting the memory wall: Implications of the obvious. SIGARCH Comp.
Arch. News 23, 20–24. 1.

C. L. Yang and A. R. Lebeck. 2000. Push vs. pull: Data movement for linked data structures. In Proceedings
of the 14th International Conference on Supercomputing. ACM, 176–186.

Received February 2013; revised October 2013; accepted October 2013

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 4, Publication date: May 2014.

