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Abstract—Current information visualization techniques assume unrestricted access to data. However, privacy protection is a key
issue for a lot of real-world data analyses. Corporate data, medical records, etc. are rich in analytical value but cannot be shared
without first going through a transformation step where explicit identifiers are removed and the data is sanitized. Researchers in the
field of data mining have proposed different techniques over the years for privacy-preserving data publishing and subsequent mining
techniques on such sanitized data. A well-known drawback in these methods is that for even a small guarantee of privacy, the utility
of the datasets is greatly reduced. In this paper, we propose an adaptive technique for privacy preservation in parallel coordinates.
Based on knowledge about the sensitivity of the data, we compute a clustered representation on the fly, which allows the user to
explore the data without breaching privacy. Through the use of screen-space privacy metrics, the technique adapts to the user’s
screen parameters and interaction. We demonstrate our method in a case study and discuss potential attack scenarios.

Index Terms—Parallel coordinates, privacy, clustering.

1 INTRODUCTION

Visualization techniques currently have an underlying assumption that
there is unrestricted access to data. In reality, access to data in many
cases is restricted to protect sensitive information from being leaked.
There are legal regulations like the Health Insurance Portability and
Accountability Act (HIPAA) in the United States that regulate disclo-
sure of private data. Privacy can be personal (e.g., medical records) or
corporate (e.g., company records) [8]. The main concern with sensi-
tive data is their misuse [3]. Such data are therefore released publicly
only after removing explicit identifiers. Over the past few years, many
privacy-preserving data mining (PPDM) techniques have been devel-
oped for mining and publishing of sanitized data.

Many sensitive datasets are susceptible to privacy breaches through
linking to external information. To address this, PPDM distinguishes
between quasi-identifiers and sensitive attributes. Sensitive attributes
are those whose exact values need to be protected, so that they cannot
be linked to an individual. Examples include disease names in medical
databases and company-specific information in corporate databases.
Quasi-identifiers are those attributes that, taken together, can identify
an individual even if that person’s name or complete address is not in-
cluded. This is possible because the same information can be found in
public databases, and enough quasi-identifiers can narrow the choices
down to a single person (e.g, given a date of birth, gender, and ZIP
code, it is often possible to pinpoint a single person in the U.S.).

The problem with PPDM techniques is that even for a minimal pri-
vacy guarantee, there is a significant loss of utility [5]. Moreover,
the published output might still be susceptible to mining by malicious
users, who might use data analysis results to breach the privacy safe-
guards.

In this paper, we adapt parallel coordinates for use in privacy-
preserving visualization. Instead of publishing the data or just the
analysis results, a privacy-preserving information visualization tool
provides an interactive interface to both the data owner and outside
users. The data owner can customize the tool to choose different re-
ordered configurations of the data he wants to show to analysts without
sacrificing privacy. Outside users cannot directly access the data, but
only visualize the patterns in the data through the tool. Different con-
straints are imposed by the technique to prevent them from breaching
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privacy through interaction. The data is sanitized on the fly, based on
the user’s screen resolution and other viewing parameters.

Similar to PPDM, we assume that the data holder is aware of the
sensitivity of the data attributes and the context in which privacy can
be breached. In both cases the goal of a privacy-preserving technique
is to minimize disclosure of sensitive information even after data anal-
ysis techniques have been used. At the same time, the access of non-
sensitive information and their fidelity should be minimally affected
by the sanitization process.

We summarize the contributions of our paper as follows:

1. Privacy-preserving information visualization: we propose a
model for protecting information privacy using visualization
techniques based on screen-space metrics. We introduce and il-
lustrate the different aspects of our model in Section 3.

2. Implementation of the k-anonymity and l-diversity concepts in
parallel coordinates: we apply clustering in parallel coordinates
based on the well-established k -anonymity and l-diversity met-
rics (Section 4).

3. Investigation of interaction leading to attack scenarios: in the
context of privacy-preservation, interaction in visualization is
both an advantage and a challenge at the same time. The ad-
vantage is that, unlike conventional data mining approaches, we
keep the utility high by adapting the views to user interaction
(like reordering). The challenge lies in effectively handling the
different interaction conditions that may lead to potential privacy
breach scenarios. We discuss our application and attack scenar-
ios in Section 5 and Section 6.

2 RELATED WORK

Many techniques for publication and analysis of de-identified sensi-
tive data have been developed in the field of privacy-preserving data
mining [2]. The k-anonymity model [26, 27] focuses on making k
records indistinguishable with respect to the quasi-identifiers so that
identification through linking is prevented. The k-anonymity problem
has been shown to be NP-hard [22] and therefore many approximation
algorithms have been proposed [1]. We use the k-member clustering
algorithm proposed by Byun et al. [7]. While we adopt the overall
algorithm, we use a different criterion for seeding and a different cost
function. We also apply the algorithm individually to each axis pair,
rather than across all dimensions at once.

k-anonymity does not ensure sufficient diversity in sensitive at-
tributes: even if records are indistinguishable with respect to quasi-
identifiers, the malicious user can use background knowledge and
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Fig. 1. Possible approaches to privacy-preservation in information visualization (Section 3.2): binning and blurring, data clustering, and visual
clustering. Only the bottom two approaches guarantee a given level of privacy, in the case of data clustering, it leads to considerable loss of utility.

(a) Visualizing data that was sanitized using approaches from privacy-

preserving data mining results in poor utility.

(b) Clustering by axis pair and using a different metric in the clustering, more

of the visual structure can be retained.

Fig. 2. Comparing data clustering to our visual clustering approach. Both algorithms make it impossible to tell fewer than three records apart, but
our approach provides higher utility.

breach the privacy. To address this, Machanavajjhala et al. proposed
l-diversity [21] which ensures each group has at least l different val-
ues for the sensitive attribute. For example, in a disease dataset if a
particular quasi-identifier group for people belonging to age above 50
is associated with the same sensitive value cancer, then a user who
knows the age of a person can correctly guess the value. We use this
l-diversity property as a basis for constraining the user interaction and
show at least l different values for the sensitive attribute.

In the parallel coordinates [15] research literature, there have been
several approaches to clustering. Much of the clustering work focuses
on approaches for clutter reduction and improving the perceptual as-
pects of parallel coordinates plots. Zhou et al. propose geometrically
deforming and grouping poly-lines to overcome edge clutter [29]. Jo-
hansson et al. look at overcoming the problem of over-plotting by
using high-precision textures [16]. While their goal is to maximize
within-cluster information, we aim to protect privacy of the records
within a cluster. Clustering has also been applied using data space
properties [14, 23]. The most critical difference between the existing
work and our approach is that we guarantee a minimum cluster size
for privacy-protection purposes [10].

3 DATA PRIVACY IN VISUALIZATION

In this section we discuss where visualization fits in, the potential ap-
proaches, and the architecture on which we have based our technique.

3.1 Scenarios

Typical scenarios in privacy-preserving applications are: a) a medical
company wants to protect its proprietary data, yet they want to release
either the sanitized data or analyzed results for scientific uses and b)
two marketing companies having different attributes for a common

set of individuals can share their analyses and find optimal customer
targets to meet their business goals.

This has been addressed in privacy-preserving data mining mainly
by sanitizing the data, so that key identifiers, which would be used as
an input to the mining algorithm, are hidden. This approach is termed
protection of input privacy [6]. However, the published results can still
be used by attackers to extract sensitive information, which is referred
to as output privacy and largely overlooked in the literature. Our tech-
nique fits into the realm of output privacy, where we aim to build an
analytic tool on top of the data but aim to protect the sensitive infor-
mation that can be gained from it.

3.2 Approaches to Privacy-Preserving Visualization

Why develop a new approach to hiding information in visualization?
Naive approaches, like blurring the image or visualizing the output of
a PPDM sanitization technique, turn out to be ineffective. This section
discusses the shortcomings of these approaches (Figure 1).

Binning and Blurring: When a dataset is visualized, there is a natural
loss of precision due to the limited resolution of the screen. To add
to the information loss, the image could be blurred to hide individual
records. The drawback of this approach, however, is the limited con-
trol over information loss. Single data points might exist far enough
away from others so as not to be blurred together with them. There is
no guarantee that each visible point contains at least a given minimum
number of records.

Data-Space Sanitization: Another approach is applying the sanitiza-
tion algorithms proposed in the data-mining literature and then visu-
alizing the resulting data. While that guarantees a level of privacy,
it also comes at the price of greatly reduced utility, a problem that is
well-known in PPDM [5]. The resulting visualization is practically
useless (Figure 2(a)), as the clusters cover most of the axes as opposed



(a) Default parallel coordinates view of the German credit dataset

(b) Clustered view with k = 3

(c) Clustered View with k = 6

Fig. 3. Illustrating k-anonymity for different values of k.

to using our approach (Figure 2(b)).

Screen-Space Sanitization: Effective visual representation is one of the
key factors that lead to high utility in visualization [20]. This requires
modeling the appearance of a visualization on screen, and controlling
the attributes of the visualization to control the amount of informa-
tion that is shown to the user. Using visual metrics for the sanitization
process, it is possible to develop a clustering method that is much bet-
ter suited for the purpose of visualization. This is the approach we
describe in this paper.

3.3 Architecture

Our technique is based on a client-server architecture (Figure 4), where
the data resides on the server and the client only fetches the clustered
data and displays it on screen. This model is similar to the idea of inter-
active privacy described by Dwork [12], where an interface is provided
by data owners to interactively filter responses to user queries and add
noise where needed to preserve privacy. Similarly, in our system, the
user cannot access the raw data, but can only set the interaction param-
eters necessary (in this case order of dimensions and number of pixels)
for the server to apply the privacy-preservation algorithm (in this case,
clustering) and return the sanitized clusters. Axis order is important:
the server has knowledge of which dimensions are sensitive and which
ones are quasi-identifiers so the output is tailored towards that configu-
ration. The screen-space metrics, used as a starting point for clustering
in our technique, are dependent on pixel-based binning. The number
of pixels thus determines the appearance of the clusters.

Raw 
data

Output

 Number of pixels
 Interaction 
parameters

Sanitized pixels

Input

Privacy algorithm

  Rendering

Fig. 4. Architecture for handling privacy

4 PRIVACY-PRESERVING PARALLEL COORDINATES

Our privacy-preserving visualization model is based on controlling the
information loss that occurs while mapping data points to screen-space
of limited resolution. We intentionally hide information from the user
by imposing de-identification constraints in screen space. To achieve
this, we combine two types of information loss: the inherent infor-
mation loss in parallel coordinates and additional loss from grouping
together records to achieve a desired level of privacy.

In parallel coordinates, both intended and unintended information
loss [30] can be observed. While there is intended information loss like
binning of lines leading to over-plotting, undesirable visual artifacts
like too many line crossings and clutter is an example of unintended
information loss. We have proposed a set of screen-space metrics to
quantify these properties [9], which we use in this technique.

4.1 Implementation of k-Anonymity

We have extended our previous work [10] and implemented a privacy-
preserving variant of parallel coordinates. Based on the idea of k-
anonymity, our program combines k records into one cluster, and dis-
plays it as a trapezoid instead of as individual lines (Figure 3). We
have adapted an existing clustering mechanism in order to maximize
the utility of the resulting clusters for visualization [7]. Our implemen-
tation is based on considering parallel coordinates as a sequence of
axis pairs. This has two advantages: a) the clustering algorithm takes
local properties between adjacent axis pairs into account, independent
of the other axes, as a result of which cluster sizes are optimized and
b) as pointed out by Li et al. [19] in parallel coordinates users are
ultimately interested in finding patterns between pairs of axes. Our
approach, therefore, relates directly to what we actually perceive be-
tween the axis-pairs. Sensitive attributes are usually categorical, while
quasi-identifiers are generally a mix of both. Our model can handle
both types of variables.

We use pixel coordinates for our model: all coordinates are first
transformed into screen space and then rounded to integers. This
places them in pixel-sized bins that reflect the precision of the display.

4.1.1 Seeding

The quality of the clusters depends strongly on the cluster seeds we
choose. Axis-pairwise clustering enables us to look at the informa-
tion loss between adjacent dimensions and select our seeds at different
stages of the iteration based on that. In previous work[10], we used
the degree of over-plotting as the seeding criterion. However, there
are other properties of the bins, like convergence/divergence [9] that
need to be taken into account: adjacent dimensions which are both
categorical or both numerical with very few distinct values are likely
to have more converging/diverging structures. Adjacent numerical di-
mensions with a more even distribution between them are likely to
have more over-plotting. The seeding algorithm we use here takes
these properties into account and also chooses the seeding dimension



(the first one or the second one in each axis pair) and the seeding bin
(the bin from which a seed record is chosen). The steps are as follows:

1. Determine if axes are numerical or categorical.

2. In case of both categorical axes use over-plotting degree as the
criterion, for a numerical and categorical adjacency use the de-
gree of convergence/divergence as the criterion.

3. Compute degree of convergence and divergence for both axes.

4. Convergence and divergence are mirrors of each other. If con-
vergence is greater than divergence, use convergence as the basis
for selecting seed, else use divergence. In case of the former, the
right dimension is the seeding dimension and in case of the latter,
the left dimension is the seed dimension.

5. If both are numerical dimensions check which one of conver-
gence/divergence and over-plotting is greater. Choose that met-
ric to pick the highest frequency bin from which the record is
chosen.

6. When the values of either over-plotting degree or degree of con-
vergence/divergence is equal to 1 for all the bins, we build a his-
togram hierarchically by combining bins that are in the nearest
neighborhood: if b adjacent bins have a value of 1, then we put b
values in a bin. We select a record from the highest frequency bin
in the new histogram. Following this method, we get a coarser
histogram and this enables us to avoid selecting a record from a
bin which has a sparse neighborhood.

4.1.2 Clustering Algorithm

After choosing the initial seed, the clustering algorithm searches for
the best record and adds it to the current cluster until the threshold
value k is reached. Our method departs from the original algorithm
in two ways: a) choice of a distance metric and b) locality-preserving
clustering.

Choice of a distance metric: The original algorithm uses an informa-
tion loss metric based on generalization hierarchy of the attributes as
the distance function [7]. Earlier we have argued that a purely data-
based clustering approach like this does not work well for visualiza-
tion (Figure 1). Instead we use the Manhattan distance as the cost
function as the goal here is to find visually similar records. The Man-
hattan distance metric allows us to minimize the vertical distance be-
tween the lines on the axes. Manhattan distance translates directly to
what we observe as cluster size on the axes.

Locality-preserving clustering: Instead of multi-dimensional clus-
tering, we employ axis-pairwise clustering that takes just local proper-
ties into account. This helps to retain the local features between adja-
cent axes leading to smaller and more discernible clusters and thus less
occlusion. In the initial iteration of the clustering, records are grouped
into ⌊ n

k ⌋ clusters based on the seeds we chose earlier. After that, there
are still n mod k records left. Those are added to existing clusters fol-
lowing the same initial steps, this time minimizing the cost function
for a particular cluster and adding it to the cluster which incurs mini-
mum cost. The process is repeated for each axis pair.

4.1.3 How Seeding Criteria Affect Clustering

We choose cluster range as a measure for visual quality of the clus-
ters. Cluster range is measured as the sum of the number of pixels
spanned by the records in a cluster on each axis. Figure 5 shows a
clustered parallel coordinates configuration with three categorical axes
and one numerical axis. The bar graphs show that, in case of both
categorical dimensions, cluster ranges for seeding with over-plotting
degree are lower than that with degree of convergence/divergence.
In case of a numerical-categorical adjacency, the degree of conver-
gence/divergence gives lower cluster ranges. We have observed that
the choice of axis is critical in producing smaller clusters, and a wrong
choice leads to larger cluster ranges and therefore more occlusion.

(a) Clustered view first two pairs being alternate

numerical and categorical adjacent and the last

one both are categorical

(b) Cluster ranges for seeding with k = 3

(c) Cluster ranges for seeding with k = 6

Fig. 5. Different seed-selection criteria like over-plotting (blue bars) and
convergence/divergence (red bars) have a significant effect on the clus-
ter ranges. Lower cluster ranges obscure less of the data and thus help
perceive the different trends and patterns that exist between axes.

An issue arising in the rendering of the clusters is that they create a
large number of visual artifacts. In addition to the clutter from many
overlapping clusters, it is difficult to tell exactly how many clusters are
overlapping at each point. Sharp edges of the clusters create a large
amount of visual noise that also makes the display harder to read.

We originally used a depth-from-color effect [25], where we or-
dered the clusters by size and drew the largest ones first. That helps
somewhat, and especially makes smaller clusters stand out (which are
more relevant, because they provide more specific information). We
draw the larger ones at the back and smaller ones in front. Appropri-
ate color emphasizes the differentiation: we make a gradual transition
from blue in the background to more orange in the foreground. This
helps in distinctly separating the clusters according to their size, but
the clutter and noise issues remain.

Based on previous ideas of how to draw clusters in parallel coor-
dinates, in particular Fua et al.’s hierarchical parallel coordinates ap-
proach [14], we developed a different way of rendering the clusters
that does not use sharp edges. Unlike Fua et al., we do not indicate
the cluster centroid with a line. Rather, the color’s alpha channel
varies perpendicular to the cluster’s main direction (the direction of
the centroid), creating a fuzzy boundary. Scaling the same range of al-
pha values over larger clusters produces more fuzziness, while smaller
clusters appear sharper (Figure 6(b)). The overall effect of many over-
lapping clusters is similar to splatting [28].



(a) Rendering without using gradient

(b) Rendering using gradient

Fig. 6. Demonstrating two different types of rendering for k=5: On the
top is the rendering without gradient which produces rigid edges and
below is the rendering with gradient which provides better discernibility.

4.2 Cluster Diversity

k-anonymity ensures record-level privacy which is a necessary but not
sufficient condition for privacy protection. The k-anonymity method
is susceptible to the homogeneity problem, where a cluster based on
quasi-identifiers can have the same values for the sensitive attribute
and thus the value of the sensitive attributes can be guessed (see also
Section 6). Therefore, we apply the concept of l-diversity [21] as
a constraint for filtering the clusters that are highlighted on interac-
tion. A privacy-preserving visualization technique differs from its
data-mining counterpart because of the added challenge of efficiently
handling different interaction conditions. We address this in parallel
coordinates by adapting the l-diversity condition to the dynamic user
interaction.

4.2.1 Cluster Splits

An artifact of independent clustering between adjacent axes is that
clusters are discontinuous and they appear to get split when high-
lighted as shown in Figure 7(a). On the left we see that the records
r1 and r2 in cluster c are contained in cluster c1 on the adjacent axis
while the record r3 is contained in the cluster c2. When c is selected
by the user, both c1 and c2 get highlighted. These splits add to the
uncertainty in guessing the exact value of a record.
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(a) Showing splits due to independent clustering on the

left and additional split by exploiting cluster overlap to

have cluster-level diversity on the right.

(b) Cluster splits for different configurations of data. On
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data point can belong to multiple clusters which overlap
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Fig. 7. Demonstrating cluster splits and overlap.

4.2.2 Added Perturbation

A cluster can also be continuous as shown on the right in Figure 7(a),
where all r1, r2 and r3 are contained in the same cluster c1. In that
case, there is no split. But to apply the l-diversity constraint between
a quasi-identifier and sensitive dimension, we need a cluster to split
into at least l different clusters on the sensitive dimension. For this we
use the overlapped pixels on a particular axes (Figure 7(a)) by clusters
from adjacent dimension and highlight l different clusters. In this case,
l = 2, and the cluster c2, that is also highlighted on selection of c, is
actually a continuity of cluster d. If there are no overlaps, we do not
show the clusters on the sensitive dimension. Effectively, we add some
random noise to the clusters and alter the actual data values that are
perceived. Although this perturbation lowers utility, this is a necessary
step to protect the sensitivity of the data values.

4.2.3 Adaptive l-diversity

A dimension, on the whole, might not be sensitive, but some of the
values can be. In the German Credit dataset [13], we have four dif-
ferent values for the sensitive dimension, of which only the value 4
(bad credit) is deemed sensitive by the data owner. The l-diversity
constraint is only applied in case of a cluster that has a record with
that data value (Figure 8). Another example of this scenario would be
disease datasets, where cold and flu might not be considered sensitive
by a data owner or an individual, but diseases like cancer are sensitive
and need privacy-preservation.

A couple of special cases arise when i) a sensitive dimension has
only two values, for example a class variable with a binary yes or
no; so in that case a cluster can only be 2-diverse and ii) there are n
different values on the sensitive dimension and a cluster has to be n−
diverse. In these cases we do not show any of the highlighted clusters
between the quasi-identifier and sensitive dimension. This reduces the
utility of the resulting visualization, but imposing that restriction is
critical from a privacy-preserving perspective.



(a) l-diversity is not enforced because the credithistory value of 3 is not

sensitive

(b) l-diversity is enforced because the credithistory value is 4 which is

sensitive

Fig. 8. l-diversity demonstrated in the rightmost axis pair. Top: l-diversity
is not applied between age and credithistory because the value 0 is not
sensitive as determined by the data owner. Bottom: l-diversity is applied
because we want to protect clusters which have records with a sensitive
4 value. In this case, l is set to be 3, so we cannot tell apart among 3

different values of credithistory for the selected cluster.

(a) Patterns of subset of values on duration, creditamount and age

(b) Patterns between credithistory, creditamount and personal

Fig. 9. Illustrating utility of clustered view with respect to different re-
ordering configurations of the raw data.

Fig. 10. Multi-dimensional clustering (red bars), as opposed to axis-
pairwise clustering (blue bars), leads to high cluster ranges that cause
occlusion as shown in Figure 2.

5 CASE STUDY

The German Credit dataset has 1000 instances which classify bank
account holders into credit classes Good or Bad. Each data object is
described by 20 attributes that include 13 categorical and 7 numer-
ical attributes. In our experiments we consider the credithistory as
the sensitive attribute, however we assume that good credit history
is not a sensitive value, but bad credit is, so we want to protect the
value 4 for credithistory. For the other attributes we use a subset of
the original attributes. We choose a mix of numerical and categori-
cal attributes among the ones which show maximum information gain
and are deemed selectable [24]. Those are: existing checking account
status, duration of loan, credithistory, savings accounts status, credit
amount, personal status (depends upon gender and marital status).

5.1 Utility of Clustered View

Compared to the conventional data-based approach of multi-
dimensional clustering, axis-pairwise clustering produces much more
discernible clusters as we had shown in Figure 2. This fact is demon-
strated by the graph in Figure 10 where cluster ranges are much
smaller in axis-pairwise clustering used in our technique than the
multi-dimensional clustering, thereby helping in clutter reduction.

By applying the k-members clustering algorithm, we protect the
privacy of records, so that the user can only visualize cluster-level in-
formation. We cannot show individual record values in the form of
lines, but the overall multivariate distribution among the different di-
mensions can still be visualized. In Figure 3 we see that for different
values of k most relationships in the raw data are discernible in the
clustered view.

We also demonstrate by showing different configurations of axis
reordering that a user can still see the different trends and patterns.
Figure 9(a) and Figure 9(b) show two different configurations of raw
data on the left and the corresponding clustered configurations on the
right. Patterns can also be seen between: a) duration, creditamount
and age: low duration values corresponding to low credit amount and
higher values of age are visible on mouse-over interaction in the clus-
tered view; and b) credithistory, creditamount and personal exhibit a
band of clusters that are seen in both views.

5.2 Privacy protection

Cluster splits and overlaps are an artifact of axis-pairwise clustering.
As mentioned in Section 4.2, the splits lead to uncertainty. Splits are
especially pronounced in the case of numerical axes and higher val-
ues of k. Even if we know the exact values of the quasi-identifiers,
there are splits among the different axes which introduce uncertainty
for guessing the exact value for a particular record (Figure 8). For the



Fig. 11. High mutual information may give away too much information
and it becomes easier to narrow down the guesses.

adjacency condition of a quasi-identifier and a sensitive attribute, we
selectively enforce l-diversity. In Figure 8(a) we retain the highlight-
ing of clusters based on just k-anonymity because the data owner has
determined that only persons with a poor credit (in this case with a
credithistory value of 4) should be protected. In Figure 8(b) we show
that l-diversity is applied and we cannot tell three different values of
credithistory apart.

In case of reordering, if the sensitive dimension is not the last axis,
then we have cluster splits on both sides of that dimension. But this
reduces the utility to a great extent because we have the diversity on
either side of the sensitive dimension leading to a lot of cluster splits.
This reduces the meaningfulness of such a view. In the German credit
dataset there is a single sensitive attribute, but our model can easily
handle the case of multiple sensitive attributes by ensuring sufficient
diversity in the corresponding axis pairs.

6 PRIVACY ATTACKS

The clustering mechanism in our system is similar compared to the
k-members clustering commonly used in data mining. From a privacy
point-of-view it is beneficial that an unauthorized user can only read
the data in terms of pixel coordinates and not in a tabular form; the
loss of precision makes it difficult to guess the data values and gain
knowledge from the visualization. The cluster splits further make it
difficult to breach privacy. On the interaction side, we add sufficient
noise so that finding the sensitive values is very difficult. In the fol-
lowing sections we describe some of the attack scenarios, how they
are handled and potential pitfalls of our approach.

6.1 Attack Conditions

The different attack conditions and disclosure risk scenarios are de-
scribed as follows:

Re-identification risks: Two types of re-identification types have
been identified in the literature [11, 18]: a) identity disclosure: this oc-
curs if the intruder is able to assign a particular identity to any record
in the data and b) attribute disclosure: this occurs when an intruder
learns something new about the sensitive attribute values that can be
linked to an individual, without knowing which specific record belongs
to that individual. For example, if all 30-year-old male patients in the
disclosed database who live in a particular area had a prescription for
diabetes, then if the intruder knows that John is 30 years old and lives
in that particular area, he or she will learn that John is a diabetic, even
if the particular record belonging to John is unknown. Identity dis-
closure typically needs external information like quasi-identifiers, so
medical databases try to guard against this type of disclosure. At-
tribute disclosures are likely to occur in corporate data, which are not
generally associated with external information.

Fig. 12. A configuration like this is avoided because categorical dimen-
sions tend to produce clusters with splits at the edges, which when
placed adjacent to a sensitive dimension, may lead to disclosure.

Potential attack scenarios: Two ways to break the privacy of a sani-
tized dataset suggested in the literature [17] also apply in case of visu-
alization. The first one is called prosecutor re-identification scenario,
where an intruder (e.g., a prosecutor) knows that a particular individ-
ual (e.g., a defendant) exists in an anonymized database and wishes to
find out which record belongs to that individual. In the second one,
known as the journalist re-identification scenario, an attacker tries to
re-identify an arbitrary individual. The intruder does not care which
individual is being re-identified, but is only interested in being able to
claim that privacy breach is possible.

We describe the following possible cases of attack with respect to
these disclosure risks and attack scenarios:

6.2 Split Clusters

Clusters splitting at the edges are vulnerable to disclosure, especially
for smaller values of k. As shown in Figure 7(b), on the left the clusters
split at the edges and clearly there is a single record with those two bor-
der values in the record. This relates to the journalist attack scenario,
where it is not necessary for an attacker to know if an individual ex-
ists in the database. They can still exploit this kind of configuration
leading to attribute disclosure. When clusters get larger, guessing the
precise values at splitting points becomes harder, because the value at
the edge might come from a different cluster. Larger k leads to more
splits and thereby more uncertainty, but reduces the utility: a trade-off
that is difficult to model.

6.3 Different Reordering Configurations

The common ways to interact with parallel coordinates are to: a) hover
over different lines to trace their path across the different dimensions,
b) reorder the axes to see the patterns for different configurations of
adjacent axes, and c) brush over different records on one axis to see
the patterns of the subset of the data on other axes. Since the clusters
already represent aggregated values, we ignore brushing for this paper
and focus on the first two aspects.

High mutual information between two data dimensions A and B
imply that the uncertainty about A is highly reduced in presence of
B. Mutual information has been shown as an effective screen-space
metric for parallel coordinates [9]. In the privacy context, we use lack
of mutual information as a measure of high uncertainty [4]. If there
is high mutual information between two axes like creditamount and
credithistory (Figure 11), there might be a skewed distribution which
makes it easier for an intruder to breach the privacy if he has some
background knowledge about the person. This relates to attribute dis-
closure and is susceptible to both attack scenarios. When reordering
the axes, we enforce the constraint that the quasi-identifier attribute
with the least mutual information should be adjacent to the sensitive
attribute. This ensures that even with interaction, the attacker cannot
exploit the strong correlative effect between the two dimensions.



In case of a mix of categorical and numerical attributes, our tech-
nique puts numerical and categorical axes alternately, adjacent to each
other. We avoid a configuration like the one shown in Figure 12 for two
reasons. Firstly, cluster ranges can be very high between two categor-
ical dimensions reducing the utility. Secondly, placing a categorical
attribute adjacent to a sensitive dimension can reduce the intended pri-
vacy because the cluster edges represent actual data values and most
values for a categorical cluster may lie on its edge and give away infor-
mation. This relates to the prosecutor identification scenario, where an
attacker knows an individual exists in the database and can select the
appropriate cluster to gain knowledge about the attributes that describe
the individual.

6.4 Cluster Attacks

Given the client-server nature of the system, an attacker could pretend
to be a visualization client and repeatedly retrieve clusters with dif-
ferent settings. The potential information gain from such an attack is
small, however, and there are simple precautions we can take to make
them even less productive.
Forced Reclustering. By requesting clusters for different resolutions,
an attacker can collect and analyze differences in the clusters in order
to gain more information. Due to the seeding strategy employed and
the pixel-based binning, some clusters will be different given different
numbers of vertical pixels. These differences are comparatively small
however, and only lead to a limited number of additional values being
accessible as cluster boundaries. The values are also rounded to the
nearest pixel coordinate, so exact values cannot be recovered.
Resolution Limits. Rounding to pixel values is only effective as long
as the number of pixels is relatively small. If the client can specify an
arbitrarily large number as the number of pixels, the rounding is effec-
tively circumvented (though the clusters do not significantly change).
A simple precaution therefore is to limit acceptable vertical resolutions
to a reasonably small number, such as 500. Requests for more vertical
pixels will simply be handled as if the maximum had been requested.
Step Size Limits. To limit the potential information gain from forced
rounding errors, the data owner can choose to only allow a minimal
step size in the number of pixels. Rather than being able to request
501, 502, 503, etc. pixels, only multiples of 50 or 100 would be possi-
ble this way. This limits the usefulness somewhat because only certain
client window sizes will be supported well, but it also reduces the po-
tential knowledge gain for an attacker.

7 CONCLUSIONS AND FUTURE WORK

In the work reported here, we have presented a privacy-preserving
visualization technique based on the k-anonymity and l-diversity ap-
proaches. Conventional PPDM techniques do not work well in the vi-
sualization context, leading to visualizations that are of very little use.
Screen-space sanitization takes the properties of the visual representa-
tion into account, and thus retains much more of the visual structure
in the data. Our technique is adaptable to user interactions and takes
potential attack scenarios into account.

As a next step we will conduct a comprehensive user study to test
our system and accommodate any unforeseen attack scenarios which
we are currently not addressing in our technique. Moreover, we are
currently working on developing information-theoretic measures to
quantify privacy and utility in the visualization space that would help
us address the optimization problem involving these two factors. Fi-
nally, our goal is to extend our privacy-preserving approach based on
screen-space metrics and apply it to other visualization techniques.
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