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Abstract. Visual tracking, in essence, deals with non-stationary data
streams that change over time. While most existing algorithms are able
to track objects well in controlled environments, they usually fail if there
is a significant change in object appearance or surrounding illumina-
tion. The reason being that these visual tracking algorithms operate on
the premise that the models of the objects being tracked are invariant
to internal appearance change or external variation such as lighting or
viewpoint. Consequently most tracking algorithms do not update the
models once they are built or learned at the outset. In this paper, we
present an adaptive probabilistic tracking algorithm that updates the
models using an incremental update of eigenbasis. To track objects in
two views, we use an effective probabilistic method for sampling affine
motion parameters with priors and predicting its location with a maxi-
mum a posteriori estimate. Borne out by experiments, we demonstrate
the proposed method is able to track objects well under large lighting,
pose and scale variation with close to real-time performance.

1 Introduction
Visual tracking essentially deals with non-stationary data, both the object and
the background, that change over time. Most existing algorithms are able to
track objects, either previously viewed or not, in a short span of time and in
a well controlled environment. However these algorithms usually fail to observe
the object motion or have significant drifts after some period of time, either
due to the drastic change of the object appearance or large lighting variation
in the surroundings. Although such situations can be ameliorated with recourse
to view-based appearance models [1] [2], adaptive color-based trackers [3] [4],
contour-based trackers [5] [4], particle filters [5], 3D model based methods [6],
optimization methods [1] [7], and background modeling [8], most algorithms
typically operate on the premise that the target object models do not change
drastically over time. Consequently these algorithms build or learn models of
the objects first and then use them for tracking, without adapting the models
to account for changes of the appearance of the object, e.g., large variation
of pose or facial expression, or the surroundings, e.g., lighting variation. Such
an approach, in our view, is prone to performance instability and needs to be
addressed for building a robust tracker.



In this paper, we present an efficient and adaptive algorithm that incremen-
tally updates the model of the object being tracked. Instead of using a simple
contour to enclose an image region or color pixels to represent moving “stuff” [9]
for target tracking, we use an eigenbasis to represent the “thing” being tracked.
In addition to providing a compact representation of the model based on the re-
construction principle, the eigenbasis approach also renders a probabilistic inter-
pretation and facilitates efficient computation. Furthermore, it has been shown
that for a Lambertian object the set of all images taken under all lighting condi-
tions forms a convex polyhedral cone in the image space [10], and this polyhedral
cone can be approximated well by a low-dimensional linear subspace using an
eigenbasis [11] [12].

Given an observed image, we track the object based on a maximum a poste-
riori estimate of location - the image region near the predicted position that can
be best approximated by the current eigenbasis. We compute this estimate using
samples of affine parameters, describing the frame to frame motion of the target,
drawn from their prior distributions, and combining them with the likelihood of
the observed image region under our model.

The remaining part of this paper is organized as follows. We first review
the most relevant tracking work in the next section. The details of our track-
ing algorithm is presented in Section 3, followed by numerous experiments to
demonstrate its robustness under large pose and lighting variation. We conclude
this paper with remarks on possible extensions for future work.

2 Context and Previous Work

There is an abundance of visual tracking work in the literature, from a simple
two-view template matching approach [13] to a 3D model-based algorithm [6].
These algorithms differ mainly in the representation scheme – ranging from
color pixels, blobs, texture, features, image patches, templates, active contours,
snakes, wavelets, eigenspace, to 3D geometric models – and in the prediction
approach, such as correlation, sum of square distance, particle filter, Kalman
filter, EM algorithm, Bayesian inference, statistical models, mixture models, and
optimization formulations. A thorough discussion of this topic is beyond the
scope of this paper, thus in this section we review only the most relevant object
tracking work and focus on the algorithms that operate directly on gray scale
images.

In [1] Black and Jepson advocated a view-based eigenbasis representation for
object tracking and formulated the two-view matching process as an optimization
problem. Black et al. later extended the eigentracking algorithm to a mixture
model to account for changes in object appearance [14]. The major advantages of
using an eigenbasis representation are that it allows the tracker to have the notion
of the “thing” being tracked, and the tracking algorithm operates on the subspace
constancy assumption as opposed to the brightness constancy assumption of
optical flow estimation. One disadvantage of the abovementioned algorithms is
the use of viewed-based representation. In other words, one needs to learn the
eigenbasis of an object at each viewpoint before tracking, and these subspaces



do not adapt over time. Furthermore, these algorithms need to solve a complex
optimization problem [1], perhaps by using an iterative EM algorithm [14].

Brand proposed a method to track and build 3D models from video [15] [16] in
which a set of feature points are manually selected and tracked, thereby obtaining
3D models based on the structure from motion principle. An incremental update
of SVD, akin to [17], was introduced and improved to handle missing data.
However, this method performs well only when the object is close to the camera
with limited object motion.

Birchfield used a simple ellipse to enclose the region of interest, and inte-
grated color and gradient information to track human heads [3]. This algorithm
was further extended by Wu and Huang [4] in which they formulated the prob-
lem using a graphical model with a sequential Monte Carlo sampling method
for estimating the state variables and thereby the object location. Their sam-
pling method is largely based on the Condensation algorithm [5]. Although these
methods perform well in constrained environments, the representation scheme
is rather primitive, e.g., color and contour, in order to reduce the size of state
space, and the tracker simply treats the target region as moving “stuff,” paying
little attention to what lies inside the contour. In other words, such trackers do
not adapt to appearance change of the object and are likely to fail under large
illumination change. Comaniciu and Meer presented the mean-shift algorithm
for estimating how the mode of a density function changes over time [18], and
then applied it to object tracking [19] using the histogram of color pixels. Due
to the use of a simple pixel-based representation, it is not clear whether this
algorithm will perform well under large illumination change.

A few attempts have been proposed to track objects under large illumination
change [20] [6] [14]. These algorithms follow the same line of work of [21] and use
a low dimensional linear subspace to approximate the space of all possible images
of the object under different lighting conditions. Though they have demonstrated
good empirical results, one needs to construct the basis images from a set of
images acquired at fixed pose under different lighting conditions before tracking.

Most recently, some attention has been paid to the development of track-
ing methods that adapt the object models to changes in the object appearance
or surroundings [22] [23] [2]. In [22], De La Torre et al. developed a tracking
algorithm based on [1] in which they built a specific eigenbasis for the person
being tracked by performing singular value decomposition (SVD) on a subset
of training images which were most similar to the incoming test frames. Skin
color was used to segment a face from the background and the affine motion pa-
rameters were estimated using a Kalman filter. Jepson et al. proposed the WSL
model for learning adaptive appearance models in the context of object tracking
[23]. They used the response of wavelet filters for object representation, and a
mixture model to handle possible tracking scenarios. The weights in the mixture
model are estimated using the EM algorithm and the affine motion parameters
are computed using the stable features from wavelet filters. While their adaptive
model is able to handle appearance and lighting change, the authors pointed out
that it is possible for their model to learn the stable structure of the background



if the background moves consistently with the foreground object over a period of
time. Consequently, their model may drift from the target object and lose track
of it.

Our approach bears some resemblance to the classic particle filter algorithms
[5], but with a more informative representation through the use of an eigenbasis.
On the other hand, our approach is significantly different from the eigentracking
approach [1]. First, we constantly update the eigenbasis using an computation-
ally efficient algorithm. Consequently, our tracker is able to follow objects under
large lighting and pose variation without recourse a priori to the illumination
cone algorithm [24] or view-based approaches [1] . Second, we use a sampling
technique to predict the object location without solving computationally expen-
sive complex optimization problems. Our current implementation in MATLAB
runs about 8 frames per second on a standard computer, and can certainly be
improved to operate in real time. Third, our sampling technique can be extended,
akin to the Condensation algorithm [5], to predict the location based on sequen-
tial observations, incorporating multiple likely hypotheses. Finally, the adaptive
eigenbasis approach facilitates object recognition, thereby solving tracking and
recognition problem simultaneously.

3 Adaptive Probabilistic Tracking

We detail the proposed algorithm and contrast the differences between this work
and prior art in this section. Possible extensions of our algorithm are also dis-
cussed in due context.

3.1 Probabilistic Model

The tracking algorithm we propose is cast as an inference problem in a proba-
bilistic Markov model, similar to the Hidden Markov Model and Kalman Filter
[25]. At each time step t we observe an image region Ft of the sequence, and the
location of the target object, Lt, is treated as an unobserved state variable. The
motion of the object from one frame to the next is modeled by a distribution
p(Lt|Lt−1), indicating the probability of the object appearing at Lt, given that
it was just at Lt−1. This distribution encodes our beliefs about where the ob-
ject might be at time t, prior to observing the current image region. Given Ft,
we model the likelihood that the object is located at Lt with the distribution
p(Ft|Lt). Using Bayes’ rule to incorporate our observation with our prior belief,
we conclude that the most probable a posteriori object location is at the max-
imum l∗t of p(Lt|Ft, Lt−1) ∝ p(Ft|Lt)p(Lt|Lt−1). A graphical depiction of this
model is illustrated in Figure 1.

We represent Lt, the location of the object at time t, using the four param-
eters of a similarity transformation (xt and yt for translation in x and y, rt for
rotation, and st for scaling). This transformation warps the image, placing the
target window - the object being tracking - in a rectangle centered at coordi-
nates (0,0), with the appropriate width and height. This warping operates as a
function of an image region F and the object location L, i.e., w(F, L).
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Fig. 1. Graphical model of the proposed tracking algorithm.

Our initial prior over locations assumes that each parameter is independently
distributed, according to a normal distribution, around a predetermined location
L0. Specifically

p(L1|L0) = N(x1; x0, σ
2
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where N(z; µ, σ2) denotes evaluation of the normal distribution function for data
point z, using the mean µ and variance σ2.

Since our aim is to use an eigenbasis to model object appearance, we employ
a probabilistic principal components distribution [26] (also known sensible PCA
[27]) to model our image observation process. Given a location Lt, we assume the
observed image region was generated by sampling an appearance of the object
from the eigenbasis, and inserting it at Lt. Following Roweis [27], the probability
of observing a datum z given the eigenbasis B and mean µ is N(z; µ, BBT +εI),
where the εI term corresponds to the covariance of additive Gaussian noise
present in the observation process. In the limit as ε → 0, N(z; µ, BBT + εI) is
proportional to the negative exponential of the squared distance between z and
the linear subspace B, ‖(z − µ) − BBT (z − µ)‖2.

3.2 Predicting Object Location

According to our probabilistic model, since Lt is never directly observed, full
Bayesian inference would require us to compute the distribution P (Lt| Ft, Ft−1,
. . ., Ft, L0) at each time step. Unfortunately this distribution is infeasible to
compute in closed form. Instead, we will approximate it using a normal distri-
bution of the same form as our prior in Equation 1 around the maximum l∗t of
p(Lt|Ft, l

∗
t−1).

We can efficiently and effectively compute an approximation to l∗t using a
simple sampling method. Specifically, we begin by drawing a number of sample
locations from our prior p(Lt|l∗t−1). For each sample ls we compute its posterior
probability ps = p(ls|Ft, l

∗
t−1). The posterior ps is simply the likelihood of ls

under our probabilistic PCA distribution, times the probability with which ls
was sampled, disregarding the normalization factor which is constant across
all samples. Finally we select the sample with the largest posterior to be our
approximate l∗t , i.e.,

l∗t = arg max
ls

p(ls|Ft, l
∗
t−1) (2)

This method has the nice property that a single parameter, namely the number
of samples, can be used to control the trade-off between speed and tracking
accuracy.



To allow for incremental updates to our object model, we specifically do not
assume that the probability distribution of observations remains fixed over time.
Rather, we use recent observations to update this distribution, albeit in a non-
Bayesian fashion. Given an initial eigenbasis Bt−1, and a new appearance wt−1 =
w(Ft−1, l

∗
t−1) we compute a new basis Bt using the sequential Karhunen-Loeve

(K-L)algorithm [17] (see next section). The new basis is used when calculating
p(Ft|Lt). It is also possible to perform an on-line update of the mean of the
probabilistic PCA model.

The proposed sampling method is flexible and can be applied to localize
targets in the first frame, though manual initialization or sophisticated object
detection algorithms are applicable. By specifying a broad prior (perhaps uni-
form) over the entire image, and drawing enough samples, our tracker could
locate the target by the maximum response using the current distribution and
the initial eigenbasis.

Finally the parametric sampling method in the current implementation can
be extended, akin to particle filters such as the Condensation algorithm [5], to
integrate temporal information by a recursive Bayesian formulation, and allow
multiple hypotheses by using a non-parametric distribution.

3.3 Incremental Update of Eigenbasis

Since visual tracking deals with time-varying data, and we use an eigenbasis
for object representation, it is imperative to continually update the eigenbasis
from the time-varying covariance matrix. This problem has been studied in the
signal processing community, where several computationally efficient techniques
have been proposed in the form of recursive algorithms [28]. In this paper, we
use a variant of the efficient sequential Karhunen-Loeve algorithm to update the
eigenbasis [17], which in turns is based on the classic R-SVD method [29].

Let X = UΣV T be the SVD of a data M × P matrix X where each column
vector is an observation (e.g., image). The R-SVD algorithm provides an efficient
way to carry out the SVD of a larger matrix X∗ = (X |E), where E is a M ×K
matrix consisting of K additional observations (e.g., incoming images) as follows.

– Use an orthonormaliztion process (e.g., Gram-Schmidt algorithm) on (U |E)
to obtain an orthonormal matrix U

′
= (U |Ẽ).

– Form the matrix V ′ =
(

V 0
0 IK

)
, where IK is a K dimensional identity matrix.

– Let Σ
′
= U

′T X∗V
′
=

(
UT

ẼT

)
(X |E)

(
V 0
0 IK

)
=

(
UT XV UT E
ẼT XV ẼT E

)
=

(
Σ UT E
0 ẼT E

)

since Σ = UT XV and ẼT XV = 0. Notice that the K rightmost columns
of Σ

′
are the new vectors (images), represented in the updated orthonormal

basis spanned by the columns of U
′
.

– Compute the SVD of Σ
′
= Ũ Σ̃Ṽ T and the SVD of X∗ is

X∗ = U
′
(Ũ Σ̃Ṽ T )V

′T = (U
′
Ũ)Σ̃(Ṽ T V

′T ) (3)

By exploiting the orthonormal properties and block structure, the SVD com-
putation of X∗ can be efficiently carried by using the smaller matrices, U

′
, V

′
,



Σ
′

and the SVD of smaller matrix Σ
′
. The computational complexity analysis

and details of the R-SVD algorithm are described in [29].
Based on the R-SVD method, the sequential Karhunen-Loeve algorithm fur-

ther exploits the low dimensional subspace approximation and only retains a
small number of eigenvectors as new data arrive. See [17] for details of an up-
date strategy and the computational complexity analysis.

3.4 Proposed Tracking Algorithm

Our tracking algorithm is flexible in the sense that it can be carried out with or
without an initial eigenbasis of the object. For the case where training images
of the object are available and well cropped, an eigenbasis can be constructed
which the proposed tracker can use at the onset of tracking. However situations
arise where we do not have training images at our disposal. In such cases, the
tracker can gradually construct and update an eigenbasis from incoming images
if the object is localized in the first frame. An application of this technique is
demonstrated experimentally in the following section.

Putting the inference, sampling and subspace update modules together, we
obtain an adaptive probabilistic tracking algorithm as follows:

1. (Optional) Construct an initial eigenbasis: From a set of training im-
ages of the object, or similar objects, learn an initial eigenbasis. This in-
cludes the following steps: a) histogram-equalize all of the training images
b) subtract the mean from the data c) compute the desired number principle
components.

2. Choose the initial location: Given the tracking sequence, locate the ob-
ject in the first frame. This can be done manually, or by using an automatic
object detector. Alternatively, we can draw more samples to detect objects
in the first frame if an eigenbasis of the object is available.

3. Search possible locations: Draw a number of samples from the prior
distribution over locations. For each location, obtain the image region, his-
togram equalize it, subtract the mean learned during the training phase, and
compute it’s probability under the current eigenbasis.

4. Predict the most likely location: Select the location with the maximum
a posteriori probability. Update the prior to be centered at this location.

5. Update the eigenbasis: Using the image window selected in 3, update the
eigenbasis using the sequential Karhunen-Loeve algorithm. Note that this
need not be performed for every frame. Instead, it is possible and possibly
preferable to store the tracked image regions for a number of previous frames
and perform a batch update.

6. Go to Step 3.

For most vision applications, it suffices to use a small number of eigenvectors
(those with the largest eigenvalues). To achieve this, one may simply discard the
unwanted eigenvectors from the initial basis (Step 1c), and from the updated
basis after each invocation of sequential K-L (Step 5).



As a result of keeping only the top eigenvectors at each stage of the sequential
SVD (equation 3), the samples seen at an earlier time are gradually forgotten.
None of the tracking experiments shown in the next section are improved by
using an explicit forgetting factor, but it is likely that an explicit forgetting
factor helps in certain situations.

In this work, the mean of the subspace is not updated. Any changes in the
mean can be compensated for, without loss of modeling accuracy, by simply
including additional eigenvector in the basis [30]. In fact, some studies have
shown that uncentered PCA (in which the mean is not subtracted) performs as
well as centered PCA [30]. Empirical results (see next section) show that our
method with incremental update performs well under large variation in lighting,
pose and deformations. Our future work will focus on developing a method to
update the subspace with running means.

4 Experiments

We conducted numerous experiments to test whether the proposed tracking al-
gorithm performs well in terms of following the object position and updating the
appearance model. All the image sequences consist of 320 × 240 pixel grayscale
videos, recorded at 30 frames/second and 256 gray-levels per pixel. As a baseline,
we compared our algorithm with three other trackers. The first is an eigentracker
using a fixed basis, which was was implemented by removing the sequential K-L
updates from our tracker. The second is a simple template tracker that, at each
time step, searches for the window most like the appearance of the object in the
first frame of the sequence. The third one is a two-view tracker, which searches at
each time step for the window most resembling the appearance in the preceding
frame based on sum of square errors.

For all the experiments, the parameters of the prior distribution of affine
parameters were, σx = σy = 5, σr = σs = 0.1. Typically we used between 100
and 500 samples, but good results can be obtained using as few as 64. For the
experiments with face objects, we built an initial eigenbasis using a set of 2901
well-cropped 19 × 19 face images from the MIT CBCL data set4. We restricted
this eigenbasis to the top 50 eigenvectors. For efficiency, an eigenbasis is updated
every 5 frames using the sequential Karhunen-Loeve algorithm.

Figure 2 shows the empirical results where the tracked object is enclosed by
a rectangle by our algorithm and the top 10 eigenvectors at each time instance
are shown. The object location in the first frame is manually initialized and
and the eigenbasis is built from the MIT face data set. Notice that in the first
few frames, the eigenvectors resemble the generic object patterns (upper left
panel). Since the eigenbasis is constantly updated with the incoming frames of
the same object, the eigenbasis gradually shifts to capture the details of that
target as shown by the eigenvectors in the following two panels (e.g., the eye
glasses are visible in the first eigenvectors of the upper middle and upper right

4 CBCL Face Database #1, MIT Center For Biological and Computation Learning,
available at http://www.ai.mit.edu/projects/cbcl
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Fig. 2. Tracking an object undergoing a large pose variation (See video at http://

www.cs.toronto.edu/~dross/ivt/).

panels) though a few eigenvectors still contain high frequency noise. As this
target changes its pose, the updated subspace also accounts for the variation in
appearance (see the first three eigenvectors in upper middle panel). Finally with
enough samples, the subspace has been updated that capture more facial details
of this individual (lower three panels). Notice that the proposed algorithm tracks
the target undergoing large pose variation. On the other hand, the eigentracker
with a fixed eigenbasis fails as this person changes pose. Though the eigentracker
can be further improved with view-based subspaces, it is difficult to collect the
training images for all possible pose variations. We note that all the other three
trackers mentioned above fail to track the target object after a short period of
time, especially when there is a large pose variation. The fixed template tracker
fails during the first out-of-plane rotation of the subject’s face. In this video, the
two-view tracker quickly drifts away from the subject’s face, instead tracking the
side of his head.

Our algorithm is able to track and learn the eigenbasis of the target object
under large appearance and lighting variation, as demonstrated in Figure 3.
The target object is first manually located, and the initial eigenbasis is again
learned from the MIT data set. Notice that the eigenbasis adapts from a generic
eigenbasis to one that captures the details of this individual as shown evidently
in the first few eigenvectors of all the panels. The third eigenvector of the upper
middle panel captures the facial expression variation. Notice also that there is
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Fig. 3. Tracking an object undergoing a large appearance, pose, and lighting variation
(See video at http://www.cs.toronto.edu/~dross/ivt/).

drastic lighting change that changes the facial appearance in the second, third,
and fourth panels. Our tracker is still able to follow the target object in these
situations. On the other hand, both the eigentracker and template tracker fail to
track the object when there is large lighting variation (starting from the middle
panel). The two-view tracker suffers during the scale change in this sequence,
drifting to track a small subregion of the face as the subject approaches the
camera. Finally, the proposed algorithm is able to track the target object under
a combination of lighting, expression and pose variation (lower right panel).

Figure 4 shows an example where we do not have an eigenbasis of the target
object to begin with. In such situations, our algorithm is still able to gradually
learn an eigenbasis and use that for tracking. The upper left panel shows the
first few eigenvectors at the 6th frame of the sequence, immediately following the
first eigenbasis update. Note that the first eigenvector captures some details of
the target object with only a few frames, while the remaining few eigenvectors
encode high frequency noise. As more frames become available, our method
clearly learns an eigenbasis of the object, as shown in the first few eigenvectors
of the top middle panel. As the object moves, our algorithm uses the learned
eigenbasis for tracking and continues to update the appearance model. Notice
that the tracker is able to follow the object well when it undergoes large pose
and scale variation (See video at http://www.cs.toronto.edu/~dross/ivt/).
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Fig. 4. Learning an eigenbasis while tracking the target object.

5 Concluding Remarks and Future Work

We have presented an adaptive probabilistic visual tracking algorithm that con-
stantly updates its appearance model to account for the intrinsic (e.g. facial
expression and pose) and extrinsic variation (e.g. lighting). To track an object
in two views, we use an effective probabilistic method for sampling affine motion
parameters with priors and predict its location with maximum a posteriori esti-
mate. Through experiments, we demonstrated that the proposed method is able
to track objects well in real-time under large lighting, pose and scale variation.

Though the proposed algorithm works well under large appearance, pose,
lighting, and scale variation, our tracker sometimes drifts off by a few pixels be-
fore recovering in later frames. In addition, the current tracker does not handle
occlusion well. This problem can be ameliorated by computing a mask before
carrying out the eigen-decomposition [1] or using a method to deal with missing
data [15], and will be addressed in our future work. A more selective adaption
mechanism, e.g. [31], is also required to ensure the integrity of the newly arrived
samples before updating the eigenbasis. Meanwhile, we plan to investigate better
sampling strategy and extend our work to integrate temporal information. Fur-
thermore, we plan to extend the current work to use eigenbases for constructing
illumination cone for fixed pose, and for object recognition.
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