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ABSTRACT

We introduce Adaptive Procedural Task Generation (APT-Gen), an approach to
progressively generate a sequence of tasks as curricula to facilitate reinforcement
learning in hard-exploration problems. At the heart of our approach, a task gener-
ator learns to create tasks from a parameterized task space via a black-box proce-
dural generation module. To enable curriculum learning in the absence of a direct
indicator of learning progress, we propose to train the task generator by balanc-
ing the agent’s performance in the generated tasks and the similarity to the target
tasks. Through adversarial training, the task similarity is adaptively estimated by
a task discriminator defined on the agent’s experiences, allowing the generated
tasks to approximate target tasks of unknown parameterization or outside of the
predefined task space. Our experiments on grid world and robotic manipulation
task domains show that APT-Gen achieves substantially better performance than
various existing baselines by generating suitable tasks of rich variations.1

1 INTRODUCTION

The effectiveness of reinforcement learning (RL) relies on the agent’s ability to explore the task
environment and collect informative experiences. Given tasks handcrafted with human expertise,
RL algorithms have achieved significant progress on solving sequential decision making problems
in various domains such as game playing (Badia et al., 2020; Mnih et al., 2015) and robotics (OpenAI
et al., 2019; Duan et al., 2016). However, in many hard-exploration problems (Aytar et al., 2018;
Paine et al., 2020), such trial-and-error paradigms often suffer from sparse and deceptive rewards,
stringent environment constraints, and large state and action spaces.

A plurality of exploration strategies has been developed to encourage the state coverage by an RL
agent (Houthooft et al., 2016; Pathak et al., 2017; Burda et al., 2019; Conti et al., 2018). Although
successes are achieved in goal-reaching tasks and games of small state spaces, harder tasks often
require the agent to complete a series of sub-tasks without any positive feedback until the final
mission is accomplished. Naively covering intermediate states can be insufficient for the agent to
connect the dots and discover the final solution. In complicated tasks, it could also be difficult to
visit diverse states by directly exploring in the given environment (Maillard et al., 2014).

In contrast, recent advances in curriculum learning (Bengio et al., 2009; Graves et al., 2017) aim to
utilize similar but easier datasets or tasks to facilitate training. Being applied to RL, these techniques
select tasks from a predefined set (Matiisen et al., 2019) or a parameterized space of goals and
scenes (Held et al., 2018; Portelas et al., 2019; Racanière et al., 2020) to accelerate the performance
improvement on the target task or the entire task space. However, the flexibility of their curricula is
often limited to task spaces using low-dimensional parameters, where the search for a suitable task
is relatively easy and the similarity between two tasks can be well defined.

1Project page: https://kuanfang.github.io/apt-gen/
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Figure 1: APT-Gen learns to create tasks via a black-box procedural generation module. By jointly
training the task generator, the task discriminator, and the policy, suitable tasks are progressively
generated to expedite reinforcement learning in hard-exploration problems.

In this work, we combat this challenge by generating tasks of rich variations as curricula using pro-
cedural content generation (PCG). Developed for automated creation of environments in physics
simulations and video games (Summerville et al., 2018; Risi & Togelius, 2019; Cobbe et al., 2020),
PCG tools have paved the way for generating diverse tasks of configurable scene layouts, object
types, constraints, and objectives. To take advantage of PCG for automated curricula, the key chal-
lenge is to measure the learning progress in order to adaptively generate suitable tasks for efficiently
learning to solve the target task. In hard-exploration problems, this challenge is intensified since
the performance improvement cannot always be directly observed on the target task until it is close
to being solved. In addition, the progress in a complex task space is hard to estimate when there
does not exist a well-defined measure of task difficulty or similarity. We cannot always expect the
agent to thoroughly investigate the task space and learn to solve all tasks therein, especially when
the target task has unknown parameterization and the task space has rich variations.

To this end, we introduce Adaptive Procedural Task Generation (APT-Gen), an approach to progres-
sively generate a sequence of tasks to expedite reinforcement learning in hard-exploration problems.
As shown in Figure 1, APT-Gen uses a task generator to create tasks via a black-box procedural
generation module. Through the interplay between the task generator and the policy, tasks are con-
tinuously generated to provide similar but easier scenarios for training the agent. In order to enable
curriculum learning in the absence of a direct indicator of learning progress, we propose to train
the task generator by balancing the agent’s performance in the generated tasks and the task progress
score which measures the similarity between the generated tasks and the target task. To encourage
the generated tasks to require similar agent’s behaviors with the target task, a task discriminator is
adversarially trained to estimate the task progress by comparing the agent’s experiences collected
from both task sources. APT-Gen can thus be trained for target tasks of unknown parameterization
or even outside of the task space defined by the procedural generation module, which expands the
scope of its application. By jointly training the task generator, the task discriminator, and the pol-
icy, APT-Gen is able to adaptively generate suitable tasks from highly configurable task spaces to
facilitate the learning process for challenging target tasks.

Our experiments are conducted on various tasks in the grid world and robotic manipulation domains.
Tasks generated in these domains are parameterized by 6× to 10× independent variables compared
to those in prior work (Wang et al., 2019; 2020; Portelas et al., 2019). Each task can have different
environment layouts, object types, object positions, constraints, and reward functions. In challenging
target tasks of sparse rewards and stringent constraints, APT-Gen substantially outperforms existing
exploration and curriculum learning baselines by effectively generating new tasks during training.

2 RELATED WORK

Hard-Exploration Problems. Many RL algorithms aim to incentivize the agent to visit more
diverse and higher-reward states. Methods on intrinsic motivation augment the sparse and deceptive
environment rewards with an additional intrinsic reward that encourages curiosity (Pathak et al.,
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2017; Burda et al., 2019; Raileanu & Rocktäschel, 2020) and state novelty (Conti et al., 2018;
Eysenbach et al., 2019). Another family of exploration techniques is derived from an information-
theoretical perspective as maximizing information gain of actions (Houthooft et al., 2016; Sun et al.,
2011). When human demonstrations are available, they can be used to facilitate an RL agent to
visit similar states and transitions as illustrated in the demonstrations (Vecerik et al., 2017; Nair
et al., 2018; Zhu et al., 2018). A combination of these techniques has been applied to solve hard-
exploration problems in video game domains (Aytar et al., 2018; Ecoffet et al., 2019). However,
these methods have focused on learning in relatively simple and fixed environments, and usually
can be ineffective in tasks where explorations are thwarted by stringent environment constraints or
naively covering states does not lead to the task success.

Curriculum Learning. Curriculum learning utilizes alternative datasets and tasks to accelerate
the learning process of challenging target tasks (Bengio et al., 2009; Graves et al., 2017). To apply
curriculum learning to RL, several recent works learn to adaptively select a finite set of easy tasks
(Narvekar et al., 2017; Svetlik et al., 2017; Riedmiller et al., 2018; Peng et al., 2018; Czarnecki
et al., 2018; Matiisen et al., 2019; Narvekar & Stone, 2019; Lin et al., 2019) or auxiliary rewards
(Jaderberg et al., 2017; Shen et al., 2019) hand-designed by human to maximize a progress signal
defined on the target task. Parameterized tasks have been used to form a curriculum through the
configuration of goals (Forestier et al., 2017; Held et al., 2018; Racanière et al., 2020), environment
layouts (Wöhlke et al., 2020; Baker et al., 2020; Portelas et al., 2019), and reward functions (Gupta
et al., 2018; Jabri et al., 2019). OpenAI et al. (2019) and Mehta et al. (2020) propose to actively
adjust the hyperparameters in physical simulators to alleviate the domain shift. Most of these works
are designed for task spaces parameterized by several discrete or continuous variables, where the task
space can often be thoroughly explored and the similarity between two tasks could be well defined
in the parameter space. In contrast, our approach is able to effectively generate tasks parameterized
by a combination of high-dimensional discrete variables and several continuous variables. While
most of these works focus on parameterizing a single aspect of the task environment, our approach
learns to generate new tasks of rich variations with configurable initial state probability, transition
probability, and reward function. Sukhbaatar et al. (2018b), Florensa et al. (2017), and Sukhbaatar
et al. (2018a) propose to use an adversarial agent to set goals of growing difficulties by reversely
traversing the state space from the goal. While this is related to the adversarial training framework in
this paper in principle, we apply our framework beyond goal-reaching and reversible task domains.

Procedural Task Generation. Procedural generation has been widely used in computer graphics
and robotics (Fisher et al., 2012; Izadinia et al., 2017; Majerowicz et al., 2013; Izatt & Tedrake,
2020; Schwarz & Behnke, 2020). While an increasing number of task sets have been designed to
benchmark and empower reinforcement learning research (Kolve et al., 2017; Xia et al., 2018; Savva
et al., 2019; Yu et al., 2019; James et al., 2020), the design and implementation of each task often
require nontrivial human expertise and heavy engineering. A few recent works utilize the random
procedural generation of tasks (Cobbe et al., 2020; Fang et al., 2018; Raileanu & Rocktäschel, 2020;
Silver & Chitnis, 2020). However, their generation algorithms are handcrafted with limited config-
urable features. Evolution strategies (Wang et al., 2019; 2020), automated procedures (Justesen
et al., 2018), and learning-based methods (Gravina et al., 2019; Khalifa et al., 2020; Bontrager &
Togelius, 2020) have been proposed to automatically discover diverse games and task environments
for training RL agents. Instead of covering the entire task space or discovering a diverse set of
policies in an open-ended manner, our approach aims to train the policy to solve the target tasks of
interest by utilizing the generated tasks.

3 ADAPTIVE PROCEDURAL TASK GENERATION

We consider a reinforcement learning problem involving a target task that the policy learns to solve
and a parameterized task space that we utilize to generate new tasks. In practice, the parameterized
task space can be created by a simulation program or a configurable procedure to set up the envi-
ronment by a human or a robot in the real world. The target task can be an instance of an unknown
parameter or a task outside of the task space, as long as there exist shared properties and transferable
knowledge between the generated tasks and the target task. This follows the general paradigm of
teacher-student curriculum learning (Matiisen et al., 2019; Portelas et al., 2019), while we allow the
task space to be parameterized by either continuous or discrete high-dimensional variables and we
do not assume the target task has a known parameterization by these variables.
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We propose Adaptive Procedural Task Generation (APT-Gen), an approach for progressively gen-
erating tasks in highly configurable task spaces as curricula. To enable curriculum learning for
hard-exploration problems, our key insight is that the learning progress can be jointly estimated by
how well the policy can solve the current generated tasks and how similar the generated tasks are
to the target task. Starting with a set of tasks that the policy can easily learn to solve, our approach
progressively adapts the generated tasks towards the target task while maintaining their feasibility to
the policy. As shown in Figure 1, our approach creates tasks via a black-box procedural generation
module by jointly learning the task generator, the task discriminator, and the policy.

3.1 PROBLEM FORMULATION

We consider each task as a Markov Decision Process (MDP) denoted by a tuple M =
(S,A, ρ, P,R, γ) with state space S , action space A, initial state probability ρ, transition proba-
bility P , reward function R, and discount factor γ. The task space T defines a finite or infinite
number of MDPs of similar designs and properties. We use a multi-dimensional parameter space
W to represent the inter-task variation of T . Given a task parameter w ∈ W , a task M(w) can
be instantiated in the task space by a predefined mapping M(·). While a generic task space can be
composed of fully configurable MDPs, in this work we assume that all tasks share the same S , A
and γ such that all policies share the same input and output dimensions. In this case, each M(w) is

defined by a distinct set of ρ, P , R parameterized by w. The target task M is either an instance of
unknown parameter w ∈ W or a task outside of T but shares the same S and A.

Our goal is to learn a policy π to solve the target task M . During training, the curriculum is formed
as a sequence of task parameters {wi}

N
i=1 with index i for constructing the corresponding sequence

of generated tasks M(wi). The agent collects rollouts by unrolling in both M and M(wi). Each
rollout is denoted as τ , which is composed of a sequence of state st, action at and reward rt at each
time step t. In the generated tasks, the wi of the source task is recorded alongside with the τ . Given
a fixed budget of total collected steps in both task domains the objective is to maximize the policy’s
expected return E[

∑

t γ
trt] in the target task M .

3.2 ADAPTIVE GENERATION FOR HARD-EXPLORATION PROBLEMS

The interplay between the policy π(a|s; θp) and the task generator G(z; θg) is formulated in a
teacher-student paradigm (Matiisen et al., 2019), where θp, θg are learnable model parameters and
z is a noise input used in deep generative models (Goodfellow et al., 2014). In contrast to prior
work (Held et al., 2018; Matiisen et al., 2019; Portelas et al., 2019; Racanière et al., 2020) which
rely on evaluating performance improvements directly on the target task or the entire task space,
we propose to define the indicator of learning progress using the expected return E[

∑

t γ
trt] and

a task progress η to enable curriculum learning in hard-exploration problems. The expected return
measures the policy’s performance in the generated tasks sampled by G. While the task progress η is
a continuous score which represents the generated tasks’ similarity to the target task. The definition
and learning process of η will be detailed in Sec. 3.3. When both the expected return and the task
progress reach the maxima, the generated tasks are supposed to be indistinguishable from the target
task and π is trained to be the optimal policy for the target task.

The training requires a careful balance between the task progress and the expected return. A highly
configurable task space potentially contains a large amount of tasks that are infeasible or of similar
difficulties with the target task. If the task distribution of G moves too fast towards the target task, the
policy can quickly be overwhelmed by difficult tasks and lose track of what tasks can be effectively
learned. On the contrary, sticking to the tasks that can be solved by the current policy will retard
the learning progress and overfit the policy to the easy scenarios. Our approach maximizes the
task progress subject to a target minimum expected return δ as a chosen hyperparameter. Then the
training of the task generator amounts to the optimization problem:

max
θg

Ew∼G[η], subject to Eτ∼G,π[
∑

t

γtrt] ≥ δ, (1)

where w ∼ G represents the generation process jointly determined by p(z) and G and Eτ∼G,π[·]
is a shorthand notation for Ew∼G[Eτ∼M(w),π[·]] to represent the expectation over distribution of
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Algorithm 1 Adaptive Procedural Task Generation (APT-Gen)

Require: target task M , parameterized task space M(·), prior probability p(z), learning rate α
1: Initialize parameters θp, θg , θd, θ1, θ2, β
2: Initialize replay buffers Dg and Dtarget

3: while not converged do
4: Sample z ∼ p(z) and create the generated task M(w) with w = G(z; θg)
5: Collect a rollout τg in M(w) using π(a|s; θp) and store w and τg in Dg

6: Collect a rollout τtarget in M using π(a|s; θp) and store τtarget in Dtarget

7: Update θd ← θd − α∇θdLd(θd,Dtarget,Dg)
8: Update θ1 ← θ1 − α∇θ1Ew,τg∼Dg

[(V1(w; θ1)−D(τg; θd))
2]

9: Update θ2 ← θ2 − α∇θ2Ew,τg∼Dg
[(V2(w; θ2)−

∑

t γ
trt)

2]
10: Update θg ← θg − α∇θgLg(θg, θ1, θ2, β)
11: Update β as described in Sec. 3.2
12: Update θp using the RL algorithm with sampled batches from Dg and Dtarget

13: end while

rollouts. By re-writing this optimization problem as a Lagrangian, we obtain:

max
θg

(

Ew∼G[η] + β(Eτ∼G,π[
∑

t

γtrt]− δ)
)

, (2)

where β is the Lagrangian multiplier that balances the task feasibility and the task progress. β
can have a delayed effect on the optimization problem since π and η are learned at the same
time. We adopt an automated procedure (Schulman et al., 2017) to adjust β adaptively when
Eτ∼G,π[

∑

t γ
trt]− δ exceeds a threshold.

Since the gradients cannot be directly backpropagated to the task generator, we follow the practice
of Konda & Tsitsiklis (2000); Matiisen et al. (2019) and use two value functions to estimate the two
expectation terms respectively. By taking the input task parameter w, the progress value function
V1(w; θ1) estimates the task progress η and the return value function V2(w; θ2) estimates the ex-
pected return Eτ∼M(w),π[

∑

t γ
trt], where θ1 and θ2 are learnable model parameters. The two value

functions are trained to fit the two expectation terms over the distribution of τ with respect to θ1
and θ2, using rollouts collected in the generated tasks with the policy π. The training of the task
generator becomes learning θg to maximize the task generator loss:

Lg(θg, θ1, θ2, β) = Ez∼p(z)[V1(G(z; θg); θ1) + β(V2(G(z; θg); θ2)− δ)]. (3)

3.3 ADVERSARIAL TRAINING OF TASK PROGRESS

The goal of the task progress η is to guide the task generator G to generate tasks similar to the target
task. Since the difficulty level and the task similarity cannot be defined by an objective metric in
many complex task domains, we argue that η needs to jointly adapt with G and π when the task
distribution and the policy constantly evolve over the course of training. Ideally, η should satisfy
two requirements: First, when the maximum η is achieved at convergence, a generated task M(w)
and the target task M should be indistinguishable from the perspective of the policy π. Second,
since a small change in an ill-posed task parameter space can completely alter the required agent’s
behaviors to solve the task, η needs to provide a smooth signal to adapt G in the task space.

To this end, we estimate η using a task discriminator D(τ ; θd) defined on the agent’s experiences in
the task environment, where θd is the learnable model parameter. It takes τ as input and learns to
estimate the probability of the task M being the target task M conditioned on the rollout τ induced
by the policy π. The task progress η of the task parameter w can be defined as Eτ∼M(w),π[D(τ ; θd)].
In this way, D forms an adversarial training framework (Goodfellow et al., 2014) against G and π,
which jointly determine the likelihood of τ .

The task discriminator is required to comprehensively compare the given task with the target task in
APT-Gen. Unlike prior work which aims to discriminate policies (Ho & Ermon, 2016) and physics
parameters (Mehta et al., 2020), D computes the prediction score by taking the overall MDP defini-
tion into account. Therefore, D is designed to separately encode the initial state s1 and each transi-
tion (st, at, rt, st+1) of step t to discriminate the initial state probability ρ, the transition probability
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P and the reward function R respectively. The prediction is computed using a pooling function
across all encoded features. The implementation details of D are described in Appendix B.

To train the task generator, we collect rollouts from generated tasks as τg and the target task as
τtarget, stored in two replay buffers Dg and Dtarget respectively. The training of D(τ ; θd) is con-
ducted by minimizing a discriminator loss (Goodfellow et al., 2014) to classify the task sources of
the collected rollouts:

Ld(θd,Dtarget,Dg) = −Eτtarget∼Dtarget
[log(D(τtarget; θd))]−Eτg∼Dg

[1− log(D(τg; θd))]. (4)

In principle, to learn a G that produces the exact MDP definition of M , we would require M to be
an instance of the task space T and the training data to be collected by arbitrary π to fully investigate
differences in the two task environments. However, this could be neither computationally practical
nor necessary. Given that our goal is to find an optimal policy π∗ to solve the target task, we
only need M and M(w) to be indistinguishable from the perspective of the policy. In practice,
the rollouts are collected using the updated π(a|s, w; θp) with epsilon-greedy exploration (Sutton &
Barto, 2011). One could also encourage explorations (Pathak et al., 2017) in the policy learning to
efficiently distinguish the two tasks, which we leave out of the scope of this work.

The pseudocode of the algorithm is outlined in Algorithm 1. The training alternates among updates
of the policy, the task discriminator, and the task generator in the same loop. New rollouts are
continuously collected from both the target task and the generated tasks using the updated π. In
this work, we equally collect experiences from the two sources to train the policy, while a smarter
strategy of choosing between task sources can be further investigated in future work.

4 EXPERIMENTS

The goal of our experimental evaluation is to answer the following questions: 1) Can APT-Gen
facilitate reinforcement learning in hard-exploration problems? 2) What tasks can be generated by
APT-Gen for a target task during training? 3) Can APT-Gen be applied to target tasks outside of the
task space predefined by the procedural generation module?

4.1 TASKS

Manipulation-A Manipulation-B Manipulation-C

Grid-World-A Grid-World-B Grid-World-C

Figure 2: Target tasks in the two domains.

The experiments are conducted in two con-
figurable task spaces: Grid-World and
Manipulation. The two task spaces are con-
figured by 74 and 31 parameters consist of a
combination of discrete and continuous variables.
Each task space contains various tasks that share
the same state and action spaces but different en-
vironment layouts, object types, object positions,
constraints, and reward functions. The tasks from
these task spaces can have stringent penalties and
constraints such as lava regions and pitfalls which
make it hard for the agent to succeed or survive.
In contrast to many handcrafted hard-exploration
tasks in prior work (Salimans & Chen, 2018)
which provide sub-task rewards (e.g. finding a
key and opening a door), our tasks only provide a
sparse positive reward when the final task is accomplished, which introduces extra challenges for the
agent. As shown in Figure 2, we design three target tasks of different complexities in each task space
for evaluation. Details of the task design and the task parameterization can be found in Appendix A.

4.2 QUANTITATIVE RESULTS

We evaluate the performance of the agent in target tasks using different methods. All methods
are trained with a fixed budget of total steps collected by the agent. In Appendix B, we provide
implementation details, hyperparameters, training and evaluation protocols.
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Figure 3: Quantitative results of the performance of the agent in the target tasks.

Baselines. We compare APT-Gen with various baselines, including 3 exploration strategies, 3 cur-
riculum methods, and a model-free RL baseline. ICM (Pathak et al., 2017), RND (Burda et al.,
2019), and RIDE (Raileanu & Rocktäschel, 2020) adversarially learn intrinsic motivations to en-
courage exploration in the state space. Random uniformly samples from the task parameter space
to create tasks. ALP-GMM (Portelas et al., 2019) and GoalGAN (Held et al., 2018) use Gaussian
Mixture Models and GAN to sample tasks as curricula without mechanisms to estimate the task
distance and handle complex task spaces. DQN (Mnih et al., 2013; Hessel et al., 2018) directly
applies Q-learning in the target task. To have a fair comparison, we use the same architecture for the
corresponding components and search for the optimal hyperparameters for each method.

Comparative Analysis. In Figure 3, we present the agent’s performance in the target tasks by using
different methods. The average return across 5 independent runs is reported and the shaded area
indicates the standard deviation. To have fair comparisons, the x-axes of APT-Gen and curricu-
lum learning baselines (Random, GoalGAN, ALP-GMM) indicate the total steps collected from the
target and generated tasks, while x-axes of other baselines (DQN, ICM, RND, RIDE) indicate the
steps collected from only the target task. In all scenarios, our approach achieves superior perfor-
mance comparing with baseline methods. In Grid-World tasks, APT-Gen successfully trains the
agent to find keys in separate locations and access different rooms in the right sequential order. In
the Manipulation tasks, APT-Gen enables the agent to solve the puzzle by moving around the
obstacles in the correct order without causing collisions. Especially, in Manipulation-C, our
agent develops an effective strategy that first moves away from the target object away to yield the
path for the obstacle to leave and then pushing it back towards the goal to complete the task.

Most baseline methods fail in hard tasks that require sequential problem solving over a longer hori-
zon, although some can achieve comparable results in easier scenarios (i.e. when there is only one
room and the environment is mostly empty). ICM, RND, and RIDE demonstrate effective explo-
rations when the environment is relatively simple, but the agent is often thwarted by the penalties
caused by constraints in the environment. Without any reward shaping for sub-tasks, naively reach-
ing to the intermediate states (e.g. finding the keys) does not yield any immediate reward unless the
goal is reached at the end of the same episode. Without mechanisms to estimate the task similarity
and to handle complex task spaces, curriculum learning baselines like ALP-GMM and GoalGAN
fail to produce useful tasks that share similar challenges with the target tasks.

Out-of-Space Task. To demonstrate APT-Gen’s performance in target tasks that are outside of the
predefined task space, we train the model to solve a different robotic manipulation task while still
generating tasks from the task space defined in Sec. 4.1. The target task shares the same state and
action spaces with the predefined task space, but the table has a different shape and a variety of
static objects are placed on the table as environment constraints. As shown in Figure 4, APT-Gen
efficiently learns to solve the out-of-space task while baseline methods take much more steps or
completely fail to learn. Qualitative results of out-of-space tasks will be discussed in Sec. 4.4.
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Figure 4: Results on task that is
out of the predefined task space.

Figure 5: Results of ablation
study in Manipulation-C.

20k 40k 60k Manipulation-C

Grid-World-A15k 30k 45k

20k 40k 60k Manipulation-Out-of-Space

Figure 6: Progression of the generated tasks for various target
tasks in the two task domains and the out-of-space task.

4.3 ABLATION STUDY

We conduct ablation studies on the target task of Manipulation-C and analyze the effect of the
indicator of learning progress. As shown in Figure 5, the performance degrades when using only
either the expected return or the task progress as the learning progress. The generation often adapts
too fast towards the target task when only counting on the task progress, although easier tasks can
still emerge during the adaptation. When generating tasks only in response to the expected return,
the policy is overwhelmed by easy tasks, which retards the learning progress of the target task.
In these ablations, although the knowledge gained from such tasks sometimes could still benefit the
training, they do not form the ideal curricula for solving the target task. As a result, the performances
achieved by these ablations are inferior to the performance of the full model of APT-Gen.

4.4 PROGRESSION OF GENERATED TASKS

We present qualitative results of the generated tasks in Figure 6. Each row shows three gener-
ated tasks and the target task (marked by green borderlines) with the number of collected en-
vironment steps and the task name shown on the upper right of the images. When learning for
Grid-World-A, the task generator first creates easy tasks in which the goal (green tile) is close
to the starting position of the agent (red triangle) with few obstacles in between. Between 15k and
30k steps, the task generator gradually shifts the goal to the bottom right corner as in the target task.
At the same time, walls (grey tiles) are created to form rooms enclosing the goal. At around 45k
steps, the door is placed on the wall to lock the room and the key is placed in a further location in the
labyrinth. The agent learns to grab the key and open the door in the target task after learning to solve
the generated task since the solutions now share a similar routine. In Manipulation-C, gener-
ated tasks start with a clear table surface and a small distance between the target object (blue can)
and the goal (cyan circle). As the agent learns to tackle such easy scenarios, a green can is placed
in between as an obstacle while the goal grows larger to make sure the agent can still complete the
task. At 60K steps, the environment further morphs towards the target task as more obstacles being
added to the scene and the goal shrinking to the correct size.

In the out-of-space task, although the more complicated table and objects cannot be generated by the
procedural generation module of limited capabilities, APT-Gen gradually learns to outline the scene
of the target task by utilizing the available elements such as cuboids and empty holes. By interacting
with the environment and comparing experiences in both task sources, APT-Gen trains the policy to
solve the out-of-space task by approximating the challenges in the target task.
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5 CONCLUSION

To expedite reinforcement learning in hard-exploration problems, we present Adaptive Procedural
Task Generation (APT-Gen) to generate suitable tasks via black-box procedural generation modules
as curricula. By jointly training the task generator, the task discriminator, and the policy, APT-Gen
achieves superior performances to existing exploration and curriculum learning baselines in vari-
ous target tasks in the grid world and robotic manipulation domains. By adversarially training the
task discriminator to estimate the similarity between the target task and generated tasks, APT-Gen
demonstrates to be effective for target tasks of unknown parameterization and out of the predefined
task spaces, which expands its potential use case. We hope this work could encourage more endeav-
ors in utilizing procedural content generation for reinforcement learning.

Acknowledgement: We acknowledge the support of Toyota (1186781-31-UDARO) and HAI-AWS
cloud credits. We would like to thank Roberto Martı́n-Martı́n, Austin Narcomey, Sriram Somasun-
daram, Fei Xia, and Danfei Xu for feedback on an early draft of the paper.

REFERENCES

Yusuf Aytar, Tobias Pfaff, David Budden, Thomas Paine, Ziyu Wang, and Nando de Freitas. Playing
hard exploration games by watching youtube. In Advances in Neural Information Processing
Systems, 2018.
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Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher algorithms for
curriculum learning of deep rl in continuously parameterized environments. In Conference on
Robot Learning, 2019.
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A ENVIRONMENT DETAILS

We describe the details of the parameterization, the state space, the action space, and the rewards
of tasks from each task space. Examples of randomly generated tasks are shown in Figure 7. Most
random tasks are completely infeasible or trivially easy without a learned task generator.

Grid-World

Manipulation

Figure 7: Examples of randomly generated tasks from the two task domains.

A.1 GRID-WORLD.

The Grid-World domain is based on the popular benchmark for RL research (Chevalier-Boisvert
et al., 2018). In each task, the agent (red triangle) chooses discrete actions to reach the goal (green
tile) by navigating around a grid surrounded by border walls and interacting with the objects therein.
Diverse labyrinths can be constructed with walls (gray tiles) and lava regions (orange tiles). When
the agent hits these obstacles it receives penalties or terminates the episode. Paired keys and doors
may be placed in the labyrinth for the agent to make use of. To open a door, the agent needs to
first find the key of the corresponding color. The agent perceives the whole map at each step but
has no prior knowledge of the functionality and rewards of the different tile types and the goals.
Each episode has a finite horizon of 50 time steps. Although this task domain has a relatively
shorter horizon than some of the similar hard-exploration tasks (Salimans & Chen, 2018), no sub-
task reward (e.g. finding a key and opening a door) is provided as in those tasks in prior work, which
introduces extra challenges to the agent.

Parameterization. The environment is a 10 × 10 grid which consists of a 8 × 8 configurable grid
and the border walls surrounding the area. The environment is parameterized by 74 independent
variables including a 8×8 array that represents the type of each tile in the grid and a 10-dimensional
vector that represents the coordinates of the objects in the environment (the goal, two doors, and two
keys). The x, y coordinates of the doors, the keys, and the goal in the Grid-World environment are
defined as continuous variables such that they can be smoothly adapted across space. The objects
are placed to the closest tile to the computed coordinates in the environment. To enable gradient
descent in the task generation pipeline, the 8 × 8 array is converted to a 8 × 8 × 3 array where
the last dimension represents the logits of the tile category. The objects can be initialized to one of
the 10 × 10 locations. If the chosen location is not on the border walls or is already occupied by a
previous object, it will be placed on an empty tile there. Otherwise, the object will not appear in the
environment.

State and Action Spaces. The agent receives the state that includes the location of the agent as a
2-dimensional vector, a local view of the surrounding tiles as a 7×7 array centered at the agent’s lo-
cation, and the relative positions of the objects (the goal, the doors, and the keys) as 10-dimensional
vectors. If an object does not appear in the grid, the relative position will be set to (0, 0). Starting at
the upper left corner of the grid, the agent chooses to move along one of the four directions by one
tile at each time step. If the next tile along the chosen direction is empty, the agent will be moved
there. If a key is on the next tile, the agent will take the key and the corresponding door of the same
color with the key will disappear.
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Rewards. If the agent reaches the goal, the agent will succeed with a goal-reaching reward of 1. If
the agent hits a wall, it will stay still and receive a penalty of 0.001. If the agent hits a lava region
or a closed door, the episode will terminate with a penalty of 0.5. In addition, a time penalty of
0.001 is added to the return at each time step. If the agent is initialized on the goal, the episode will
immediately terminate with a penalty of -1.

A.2 MANIPULATION.

The Manipulation tasks involve a simulated robotic arm that interacts with multiple objects in
a configurable table-top environment. The task is adapted from Fang et al. (2019) and simulated by
a real-time physics engine (Coumans & Bai, 2016–2019). The robotic arm has the same mesh and
physical parameters of a real-world Sawyer robot. The table is composed of configurable building
blocks. Each block can be a flat surface, a pitfall, or a roadblock. 1 to 3 movable objects and a goal
(cyan circle) are placed on the table at the beginning of each episode. The landscape of the table
and the placement of the objects jointly form a puzzle in each task. The robot is asked to push the
designated target object (blue can) to the goal using a tool. To achieve the goal, the robot needs to
move around objects that block the way and avoid pitfalls and roadblocks. Each episode has a finite
horizon of 15 steps and will terminate early if objects collide or fall off the table.

Parameterization. The table-top environment is formed by building blocks of a side length of 15
cm. The scene is parameterized by totally 31 independent variables including a 6 × 4 array that
represents the types of the building blocks, a 6-dimensional vector that represents the initial position
of the three objects, and a scalar that represents the range of the goal ranging from 10 cm to 50
cm. Same as in Grid-World, the 6 × 4 array is converted to a 6 × 4 × 3 array where the last
dimension represents the logits of the type of the building block. The objects are initially placed
on the 90 cm × 60 cm table surface. Since it is in general hard for GANs and Gaussian functions
to directly capture the distribution of valid positions on complex table surfaces in presence of holes
and obstacles, we instead adopt a structured generation process. The model first computes a 3× 24
array that represents which tile each object will be placed on. Continuous offsets ranging from -2
cm to 2 cm are then added to the x, y coordinates of the tile. If an object is initialized to a non-flat
tile or the same tile with a previous object, it will not show up on the table.

State and Action Spaces. The agent receives the state that includes a continuous vector represent-
ing the positions of the objects and the goal and an array representing the surrounding landscape of
each object. The surrounding landscape is represented by a 3 × 4 array where the first dimension
corresponds to the object index and the second dimension corresponds to the height of the neighbor-
ing points. If the object does not appear on the table, its position will be set to (−1,−1). The goal
scale is not provided to the agent as part of the state and requires the agent to figure it out through
trial-and-error. The robot chooses from an action space of 12 discrete actions that represent which
of the three objects to push and which of the four directions to push towards.

Rewards. The episode will terminate with a goal-reaching reward of 1, if the target object reaches
the center of the goal which is a circle of a radius of r1 = 10 cm. Once the target object enters the
goal region of a radius of r2, it will receive a progress reward d/(r2 − r1) where d is the moving
distance towards the goal. The r2 is controlled by the task parameter ranging from 10 cm to 60 cm.
If any object falls off the table, the episode will terminate with a penalty of -0.2. If objects collide
with the roadblocks or other objects, the episode will terminate with a penalty of -0.1.

B IMPLEMENTATION DETAILS

B.1 NETWORK ARCHITECTURES

Neural networks are designed for the two task spaces respectively to tackle their different state
spaces, action spaces, and task parameter spaces. The network architectures for each task space are
shown in Figure 8 and Figure 9. The design of the task discriminator is shown in Figure 10. These
neural networks are implemented with fully-connected (FC) layers, convolutional (Conv) layers, av-
erage pooling (Pool) layers, and flatten operations (Flatten). The names of different modalities of
the states and the task parameters in each task domain are indicated in the figures as they are sepa-
rately processed or produced. All models are implemented in Tensorflow and the hyperparameters
are chosen through random search.
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Q-Network. The Q-network (Mnih et al., 2015) takes input as the current state and predicts the
Q values for each discrete action. In both task spaces, we encode each vector in the state using a
single fully-connected layer and encode the grid using two convolutional layers followed by a fully-
connected layer. The information of different modalities is merged at the end with a fully-connected
layer at the end. The fully-connected layers for each modality are 64-dimensional and the final layer
is 128-dimensional. Each convolutional layer has a 3 × 3 kernel of 16 channels and a stride of 2.
Each layer is followed by a rectified linear unit (ReLU). Our model and the baseline methods use
the same Q-network in each task space.

Task Generator. The design of our task generators is inspired by generative adversarial networks
(GANs) in other domains (Goodfellow et al., 2014; Radford et al., 2015). It first encodes the input
noise using a 64-dimensional fully-connected layer and then separately produces each modality. The
vectors are computed by fully-connected layers. We apply a sigmoid function at the output layer of
each continuous modality and scale the output by the range of each modality which is defined by the
task space. To compute the arrays (grid and table) of categorical values, we use a stream consists of
two deconvolution layers, a convolutional layer, and a softmax layer. The convolutional layers and
the deconvolution layers both have 3 × 3 kernels of 16 channels and a stride of 2. Following the
practice of (Radford et al., 2015), batch normalization (Ioffe & Szegedy, 2015) is used in all layers
of the task generators.

Task Discriminator. As shown in Figure 10, the task discriminator separately encodes the initial
state s1 using the initial state encoder φinit and each transition step (st, at, rt, st+1) of time step t
using the step encoder φstep. Fully-connected layers are used to predict a score for each encoding.
Average pooling is applied to the predicted scores at the output layer. The architectures of φinit

and φstep for the two task spaces are shown in Figure 8 and Figure 9. The initial state encoders
are similar to the Q-networks with minor modifications to reduce the depth of the networks. The
step encoder separately encodes st, , at, rt, and st+1 and then merge the information using another
fully-connected layer. In the step encoder, we do not encode the modalities in the states which do
not change across time. The hyperparameters of these layers are the same as that in the Q-networks.

Value Networks. The value networks that are used to predict the task progress η and the expected
return E[

∑

t γ
trt] share the same architectures in each task space. The designs of the value networks

are similar to the initial state encoders except that the inputs are the task parameter w instead of s1.

B.2 ADAPTIVE ADJUSTMENT OF THE KKT MULTIPLIER

We adopt an automated procedure (Schulman et al., 2017) to adjust β to balance the task progress
and the expected return. The average expected return on the generated tasks is constantly evaluated
in the replay buffer. When the average expected return exceeds a predefined threshold, β will be
scaled accordingly. Otherwise, it will remain the same. Maximum and minimum values of β are
chosen by hand to prevent the optimization to explode. Specifically, we use δ = 0.5 with a tolerance
of 0.1. If E[

∑

t γ
trt] < 0.4, β ← min(β × 2, 8); if E[

∑

t γ
trt] > 0.6, β ← max(β/2, 1/8). In

practice, we find that the performance of the policy is not sensitive to the choice of δ between 0.3
and 0.7. An ablation study on the influence of δ can be found in Sec. D.
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15k 30k 45k Grid-World-A

15k 30k 45k Grid-World-B

15k 30k 45k Grid-World-C

Figure 11: Progression of the generated tasks for target tasks in Grid-World.

B.3 TRAINING

Solver and Hyperparameters. For all experiments, we use the ADAM optimizer (Kingma & Ba,
2014) with learning rate of 3×10−4, β1 = 0.9, β2 = 0.999 and the batch size of 128. Totally 10,000
environment steps are collected to initialize the replay buffers. We only sample from the most recent
10,000 steps in each replay buffer to train the task discriminator to encourage it to estimate the return
of the updated policy. After collecting each environment step, the policy is trained for 10 iterations
and the other models are trained for 1 iteration. The β is updated every 500 environment steps
according to the average returns of the most recent 50 episodes. All hyperparameters are chosen by
random search.

Stability. One of the technical challenges is that the training could be unstable when the policy
learns to solve a changing distribution of tasks, which is a common issue in related problems such
as continual learning (Kirkpatrick et al., 2017). This issue is intensified in the Grid World task space
since the reward is more sparse. While fundamentally resolving this issue of reinforcement learning
in non-stationary task distribution is beyond the focus of our focus in this paper, we propose two
simple techniques to improve the stability of the RL agent during training. First, as the stability is
often affected by overestimation of the Q-values, we clip the next Q-values in the DQN algorithms
by the maximum and minimum episodic return observed in the replay buffer. Second, we restore the
policy network’s parameters if its performance in the target task has reached above 0 but drops since
the last round of evaluation. We found that these two modifications to the original DQN algorithm
significantly improves the stability of the training in APT-Gen and baseline methods.

Computation and Runtime. During each run, the method is trained on a single NVIDIA GeForce
GTX1080 Ti GPU and 8 CPU cores with 32 GB memory. The overall data collection and training
time of each run takes around 2 hours for Grid World and 30 hours for Robotic Manipulation.

B.4 EVALUATION

The evaluation is conducted after collecting every 1,000 environment steps. In all quantitative eval-
uation in this work, each data point is evaluated for 50 episodes. The means and the error bars of
the episode returns are computed across 5 different runs of training the same method. To have fair
comparisons, all methods are trained with a fixed budget of total steps collected by the agent.
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C ADDITIONAL RESULTS ON TASK PROGRESSION

In Figure 11 and Figure 12, we present more examples of the generated tasks for the two domains.
Each row shows three generated tasks and the target task (marked by green borderlines) with the
number of collected environment steps and the task name shown on the upper right of the images.
As shown in the figure, the tasks generated by APT-Gen form curricula of ascending difficulties and
similarity with the target task during training.

20k 40k 60k Manipulation-A

20k 40k 60k Manipulation-B

20k 40k 60k Manipulation-C

Figure 12: Progression of the generated tasks for target tasks in Manipulation.

D ABLATION ON MINIMUM EXPECTED RETURN

In this section, we conduct an additional ablative experiment to demonstrate the influence of the
minimum expected return δ. We train APT-Gen in Manipulation-C with different choices of
δ ranging from -0.1 to 1.1 for 5 runs each. The training curves are shown in Figure 13 where we
report the average returns achieved by the policy and the shaded area indicates the standard deviation
across different runs. Using 0.3 ≤ δ ≤ 0.7, the learned policies can achieve similar performances.
Using δ outside of this range, the feasibility of the generated tasks becomes less distinguishable by
the threshold and the performance of the policy decreases.

Figure 13: Ablation on the minimum expected return.
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E DISCUSSION AND FUTURE WORK

While APT-Gen is able to procedurally generate tasks as curricula for various target tasks, it does
have limitations. These limitations will lead to several exciting future directions. First, without a
structured representation of the task, it is often hard for the task generator to produce task parameters
that will result in useful and feasible tasks. Since our task generator directly uses convolutional
layers to produce the category of each tile, it usually takes a large number of steps before it learns
to properly form the walls of rooms and place the doors in the right place. This can potentially be
improved with recent advances of deep generative models using geometric structures (Tian et al.,
2019; Huang et al., 2020a). Second, this work focuses on learning to generate tasks as curricula
for a single target task. Extending APT-Gen to generate tasks for multi-task learning and meta-
learning would be a promising future direction. Lastly, while the parameterized task spaces in this
work contain rich variations of the environment and the objects therein, the structure and properties
of the robotic agent are fixed. It would be interesting to combine APT-Gen with recent works on
morphology (Ha, 2018; Huang et al., 2020b) to adapt the agent in the task.
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