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The study of sensation and perception in humans and
other animals is expensive and involves a number of pit-
falls and difficulties. Fechner, in 1860, first recognized
that inner consciousness might be measurable by outward
behavior. It is the measurement of that behavior directly,
interpreted as an indirect measure of perception, that is the
purviewof psychophysics.Over more than a century, meth-
ods have been developedand refined that support the sys-
tematic exploration within sensory systems of the limits
of detection and discriminationamong similar and confus-
able physical stimuli.

The measurement methodologies developed since
Fechner’s realization have as their primary goal the valid
reflection of sensory events. In order to have confidence in
the validity and reliability of such measures, many samples
of a given behavior typically must be observed in a struc-
tured and systematic process, in response to carefully con-
structed stimuli. Changes in stimulus strength or other
characteristics are associated with changes in the ability
to detect or discriminate such stimuli. Measures of perfor-
mance on psychophysical tasks as a function of stimulus
strength or other characteristics constitute a psychometric
function. A complete characterization of psychometric
performance as a function of changes in stimulus strength
may be developedby using the method of constant stimuli,
one of the classical psychophysical methodologies. With
this procedure, a set of stimuli with strengths spanning the
range of sensation from imperceptible to consistently per-
ceptible is created. Each member of the stimulus set is pre-

sented to an observer many times, at random, and an ob-
servation response is requested after each presentation.
The psychometric function may be sampled by evaluating
the percentage of presentations of each member of the
stimulus set that is detected.The function is assumed to be
continuous along the stimulus axis, usually with monoto-
nic increases in performance being associated with in-
creasing stimulus strength.

Figure 1 shows an example of a psychometric function,
measuring the number of times a particular auditory stim-
ulus was heard, depending on what the strength of the
stimulus was. In this example, a method of determining
the response to a given stimulus was used that is called a
yes–no method: On each stimulus presentation, the ob-
server givesone of those two responses, indicatingwhether
the stimuluswas perceivedor not.Othermethodshave been
developed to make this determination, such as those that
involve two or more sequential presentations that differ
along some characteristic of interest.The observer is asked
to indicate which of the multiple sequential presentations
on each trial was a target stimulus. Because the target is al-
ways present in one and only one of the presentations on a
trial and the observer must select one of the presentations
as a response, these are called forced-choicemethods. Per-
haps the most common of the forced-choice methods is
the two-alternative forced choice (2AFC), althoughas will
be shown later, forced-choice procedures with three or
four alternatives provide more satisfactory measurement
of psychometric performance.

Although such a function is assumed to underlie the
perception of sensory stimuli, often only one or two para-
meters of the function will suffice to summarize percep-
tion. The most commonly determined parameter is a mea-
sure of location of the function along the stimulus axis,
typically specified as a threshold stimulus value. The
threshold is determined as a level of detection (or dis-
crimination) performance, and frequently the criterion
performance for threshold is selected to be the midpointof
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As research on sensation and perception has grown more sophisticated during the last century, new
adaptive methodologies have been developed to increaseefficiencyand reliabilityof measurement.An
experimental procedure is said to be adaptive if the physical characteristicsof the stimuli on each trial
are determined by the stimuli and responses that occurred in the previous trial or sequence of trials. In
this paper, the general development of adaptive procedures is described, and three commonly used
methods are reviewed. Typically, a threshold value is measured using these methods, and, in some
cases, other characteristicsof the psychometric function underlying perceptual performance, such as
slope, may be developed. Results of simulations and experiments with human subjects are reviewed
to evaluate the utility of these adaptive procedures and the special circumstances under which one
might be superior to another.
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the function spanning the range from chance performance
to perfect performance.A second summary parameter used
to describe performance is the slope of the psychometric
function, which is a measure of how rapidly performance
changes with a given change in stimulus value. Often, sen-
sory capabilities can be adequately described by a thresh-
old measure alone—that is, one single point on the psy-
chometric function. However, in the method of constant
stimuli, the threshold is extracted from a fully sampled
function, making the measurement of this single point on
the function very expensive in terms of experiment time.
Of necessity, many trials are placed at stimulus levels of
the underlying psychometric function that are not infor-
mative about threshold. It is necessary to have informa-
tion about performance at these off-threshold levels in
order to fully develop the psychometric function, but in
many cases that additional information is neither neces-
sary to the goals of the experiment nor worth the extra ex-
perimental time and effort. Adaptive psychometric proce-
dures have been developed to address this major problem
in psychophysical measurement—that is, an inefficient
placement of trials along the stimulus array in order to ex-
tract a relevant measure. An experimental procedure is
adaptive if the placement of each trial along the stimulus
array is determined by the results of the trial or trials that
have gone before. It is a characteristic of all adaptive pro-
cedures that knowledge about the outcome (e.g., a thresh-
old) increases systematicallyas the procedureis in progress.
That is, the selection of stimuli is determined during the
course of the experiment, and stimulus placement is dri-
ven by the adaptive algorithm toward the desired mea-
surement point.

Adaptive procedures are designed to rapidly extract rel-
evant measurements from a psychometric function thought
to underlie performance on a given sensory/perceptual

task. Generally, two types of measures are of interest: lo-
cation along a stimulus axis (e.g., threshold) and the slope
of the function (how rapidly performance changes with
changes in stimulus values). Often, only a location mea-
sure is required, but there are some investigations whose
goal is a more complete description of the underlying
function, requiring both location and slope measures. The
procedures themselves involve two separate parts: place-
ment of trials along a stimulus axis and analysis of the data
obtained to extract characteristics of the underlying psy-
chometric functions.

The challengeof adaptivepsychophysicsis to make rel-
evant observations on the psychometric function with
maximum efficiency without sacrificing accuracy. Adap-
tive methods of measurement have been developed with
the goal of preserving accuracy and reliability, while maxi-
mizingefficiency and minimizingsubjectand experimenter
time. This article will trace the development of modern
adaptiveprocedures, with special attention to the strengths
and weaknesses of three of the most commonly used meth-
ods. In addition,some special applicationswill be discussed,
includingthe use of these procedures to monitor changes in
performance that are due to learningor attentionallapses by
subjects, as well as some characteristics of adaptive meth-
ods that become important with application to more com-
plex applicationsor in studying multidimensionalstimuli,
such as speech. The reader is directed to Treutwein (1995)
for an excellent, quantitativedescription of psychometric
functions and adaptive techniques.

ORIGINS OF ADAPTIVE
PSYCHOPHYSICAL PROCEDURES

Although adaptive procedures have been in use in some
form for many years (see Levitt, 1992, for a brief discus-

Figure 1. Example of a psychometric function showing percentage of correct de-
tections as a function of stimulus level. The individual data points are fitted with a lo-
gistic psychometric function.
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sion), the systematic applicationof adaptivealgorithms to
the measurement of sensory function may be traced to
clinical roots. The development of the new discipline of
audiology to test hearing during and after World War II in-
cluded a method devised by Hughson and Westlake
(1944) for searching quickly for an auditory threshold by
starting with an inaudible sound level and increasing the
level until a positive response was exhibitedby the patient.
Hughson and Westlake emphasized the importance of
sound levels beginning below a listener’s threshold, then
increasinguntil the threshold of sound was reached. Their
procedure underwent minor modificationsby Carhart and
Jerger (1959), who proposed that an auditory test should
begin at a relatively high level in order to demonstrate the
sound for the listener. The level would then drop in fairly
large steps until the sound became inaudible (signaled by
a negative response from the subject), when the level
would increase in a search for threshold. Once the listener
indicated that the sound was audible (a positive response),
the level would drop again, and another increasing thresh-
old search would be initiated. The final threshold was
taken to be the average level, during an increasing series,
at which the listener indicated that the sound was heard.
Although bearing a superficial similarity to one of the
classical psychometric methodologies called the method
of limits, this clinical method differs in that the threshold
search always occurs on the ascending trials and the de-
scending levels are used only as subject preparation and
to get intopositionfor the ascending thresholdsearch. In the
classical method of limits, both ascendingand descending
trials are used to identify where a response changes from
one of audibility to inaudibility or vice versa, and the
threshold is estimated from those boundary levels.

Another early adaptive procedure that has enjoyed
widespread use both clinically and in research applica-
tions is Bekesy tracking, originally developed by the au-
ditory scientistwhose work in cochlear modelingwon him
the Nobel prize in 1962. In this procedure, a mechanical
arm with a pencil attached is driven by a patient listening
to tones changing continuously in intensity and, some-
times, in frequency. As the patient indicates that the tone
is heard, the pen draws lower on an intensity-scaledgraph,
and the level of the tone decreases; if the patient indicates
that the tone is not heard, tone level increases, accompa-
nied by marks higheron the graph. The threshold, defined
as that intensity at which a tone is just barely heard, is
taken to be the midpoint of the up-and-down tracings of
the mechanical pen.

The more commonly used adaptive procedures in re-
search today emerged from these clinical beginnings and
from methodological research in the 1940s to the 1960s.
Dixon and Mood (1948) were among the first to system-
atically investigate the characteristics and statistical prop-
erties of simple adaptiveprocedures that search for thresh-
old through a combination of increasing and decreasing
stimulus steps, responding to negativeand positive subject
responses. This type of procedure has come to be called a
staircase and forms the basis for a great deal of psycho-

metric testing used today. Staircase procedures differ from
earlier clinical techniques in that they collect a number of
threshold estimates from both ascending and descending
series of trials. They refine the method of limits by not re-
quiring responses to a complete set of levels and by re-
sponding with changes in direction of the staircase after a
change in the subject’s response.

MODERN ADAPTIVE METHODS

The common characteristics of currently used adaptive
methods are the collection of subject responses to each
trial, with a systematic manipulationof the stimulus level
along the experimentaldimensionof interest. Each method
results in a series of stimulus levels presented over the
course of the experiment, along with the associated sub-
ject responses. Experimental variables that may impact
the results of the methodology include the amount of dif-
ference between stimulus values presented (the step size),
the initial starting value of the stimulus, the process that
guides the sequenceof presentation levelson each trial (the
tracking algorithm), and the decisionfor ending the process
(the stopping rule). The general goal of each procedure is
to measure characteristics of the subject’s performance
over the shortest amount of time, without sacrificing ac-
curacy. Each method may be most appropriate in a given
experimental situation, and there is a substantial literature
comparing the abilities of these methods to provide bias-
free results with high reliability.

Adaptive methodologies that currently enjoy wide-
spread use may be placed into three general categories, de-
fined by their systems for placing trials along a stimulus
array and by the manner in which each estimates a final
outcome. The first category to be described is called pa-
rameter estimation by sequential testing (PEST), and it is
characterized by an algorithmfor threshold searching that
changes both step sizes and direction (i.e., increasing and
decreasing level)across a set of trials.A second typeof adap-
tive procedures has been called maximum-likelihood pro-
cedures but their more general characteristic is that sets of
stimulus–response trials are fit with some type of ogival
function and subsequent trial placement and threshold es-
timation is taken from those fitted functions. Finally, a
common form of adaptive procedures, known generically
as staircase procedures, will be described. For each of
these three categories of procedures, an example of a
tracking history will be shown, in order to understand the
differences in the manner in which the adaptive rules lead
to an estimate of threshold.

Parameter Estimation by Sequential Testing
The PEST procedure, first described in 1967 by Taylor

and Creelman, uses changes in step size to focus the adap-
tive track ever more finely, stopping the track when the es-
timate has been adequately defined. The final estimate is
simply the final value determined by the trial placement
procedure. The PEST algorithm is designed to place trials
at the most efficient locations along the stimulus axis in
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order to increase measurement precision while minimiz-
ing the number of trials required to estimate a threshold.

Figure 2 shows a typicalPEST adaptive threshold track,
modified from Hall (1981), carried out according to the sug-
gestions of Taylor and Creelman (1967). Note that an ini-
tial level and a step size are selected to begin a track. After
each presentation at a fixed level, a statistical test is ap-
plied to indicate whether performance at that level is bet-
ter or poorer than the targeted performance level (e.g.,
75% correct detections).Once that determination is made,
the level may change by the current step size, and a series
of presentationsoccurs at the new level, again testing after
each presentationwhether the level should be changed. In
Figure 2, an initial step size of 8 dB is used; after four pre-
sentations, the level changes; nine presentationsat the new
level are needed to determine that the current level is too
low, and the track moves back up, but this time with a step
size half as large. The next change in direction (occurring
at Trial 21) produces another halving of step size. Further
changes in step size (always according to PEST rules) occur
throughout the track, which terminates when a criterion
step size is reached. The level specified by this final step
size is taken as the final threshold value. The important
characteristics of this type of threshold track are that the
step sizes change according to rule throughout the track,
so that the track excursions tend to become smaller as a
threshold value is approached,and that the final threshold
estimate is taken to be the final value in the track, without
specifically considering performance on previous trials.

The rules for implementation of PEST were originally
outlinedby Taylor and Creelman (1967), but many subse-
quent authors have proposed modifications. The original
rules include when to change levels, a process for decid-
ing the next level involving a step size changing through-
out the track according to rule, a stopping rule based on
the approach of the decreasing step size to a criterion
value, and a rule for estimating the final threshold mea-
sure, typically the last level indicatedby the tracking rules.

Taylor and Creelman also described a metric, termed the
sweat factor, that could be used to evaluate the efficiency
of a given psychometric procedure. Likening the sweat
factor to a measure of the amount of “work” necessary to
reach a certain level of precision in the measuring algo-
rithm, they defined the sweat factor as the product of the
number of trials and the variance of the measures.
Through simulations, they determined the variance of the
PEST thresholds and the mean number of trials necessary
to achieve that level of variability. Comparing results of
those realistic simulationswith an ideal sweat factor (gen-
erated from a simulated threshold device with complete
statistical knowledge of the probabilities associated with
each stimulus level) produced a measure of efficiency of
the PEST procedure, which Taylor and Creelman calcu-
lated to be about 40%–50%.

PEST was designed to be as efficient as possible in the
placement of trials along an array of stimulus levels and
to force convergence of an adaptive track on a given per-
formance level (i.e., threshold) as rapidly as is consistent
with accuracy and reliability of measurement. The origi-
nal PEST procedure called for trial placement throughout
the track basedon a statisticaldeterminationof performance
at the current level, in comparison with expected perfor-
mance at a targeted level, and a threshold estimate that
was simply the final value of the track. Although some
modifications to the original PEST tracking rules were
suggested by Findlay (1978) in order to encourage more
rapid convergenceof the track, later developmentsemerg-
ing from the use of PEST have changed its two basic char-
acteristics of trial placement and threshold estimation.

Hall (1981) proposed a hybrid procedure that followed
PEST rules for trial placement along the stimulus axis, but
instead of taking the final value of the track as threshold,
at the end of the track, he used performance on all trials to
construct a psychometric function, from which a threshold
valuewas extracted.The value of this hybrid procedurewas
that efficient trial placement could proceed in a prescribed

Figure 2. Adaptive track following the PEST procedure. These decibel values are relative to an
arbitrary threshold of 0 dB, shown with the horizontal line. These data are modified from Figure 1
in Hall (1981).
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manner according to the PEST rules, but, in the end, all the
data gathered during the procedure were used to construct
the final psychometric function.Through simulationsand
experimental trials with human subjects, Hall (1981)
demonstrated that the hybrid procedure could overcome
many of the shortcomings identified in previous use of
PEST: The procedure was relatively tolerant of subject
lapses, not affected significantly by inappropriatestarting
levels or step sizes, and provided estimates of both a
threshold value and a slope of an assumed psychometric
function.

Maximum-Likelihood Adaptive Procedures
Although Hall’s (1981) hybrid procedure changed the

PEST method of final threshold estimate, further modifi-
cations of PEST changed the rules for stimulus placement
as well. These modifications may be classified into a sec-
ond category of adaptive procedures, characterized by
stimulus placement on each trial, driven by consulting the
current best estimate of the entire underlying psychomet-
ric function after every stimulus–response trial. As the
adaptive track grows in length, the estimated function be-
comes better defined by the collection of data points gen-
erated from previous trials. After each trial, the set of stim-
ulus levelsand theproportionofcorrect responses associated
with each level are combined to form a psychometric func-
tion, as is shown schematically in Figure 1. The individual
points are fitted with an ogival function of some kind (Fig-
ure 1 shows a logistic function) and a current estimated
threshold level is extracted. A new psychometric function
is generated after each trial or set of trials, and subsequent
trials are placed at a targeted performance level on the
most up-to-date function. A maximum-likelihood fitting
algorithm is typically used with this type of procedure.

The link between the original PEST and the maximum-
likelihood adaptive procedures may be clearly seen in pa-
pers by Pentland (1980) and Watson and Pelli (1983).
Pentland developed what he called “the best PEST,” to
take advantageof the strength of the maximum-likelihood
procedures in the context of a PEST adaptive track. As-
suming a logistic psychometric function with a given
slope, Pentland’s procedure seeks to maximize the infor-
mation provided by each trial by placing levels at the most
current estimate of the 50% point on the assumed psy-
chometric function. In simulation comparisons with the
original PEST and two other adaptive procedures, Pent-
land’s maximum-likelihood procedure proved to be the
most efficient, requiring the least number of trials to reach
a given level of precision. In Pentland’s best PEST, levels
are set according to a fitted function after each trial (using
all previous trials), and a fixed number of trials is pre-
sented. The threshold estimate is simply the last value es-
timated as the 50% point of the ultimate psychometric
function.Watson and Pelli, in their QUEST procedure, ad-
vocated the use of all information available from previous
trials in the track, supplementedby prior knowledge (from
the literature, previous experiments, etc.) to set the next
test level. However, a distinction was made between the

use of prior information to drive the track and the final es-
timate of a threshold, which used only the data within the
track. For an adaptive track consisting of 128 trials, Wat-
son and Pelli report an efficiency of 84% for their QUEST
procedure, as compared with 40%–50% efficiency for the
original PEST.

Maximum-likelihoodadaptive procedures are attractive
to investigators because they make full use of all trials in
an experiment in order to determine a threshold, rather
than estimating threshold only from the levels visited at
the end of an adaptive track, as in the original PEST pro-
cedure. In most applications of these procedures, both a
function shape (e.g., a logistic or Weibull function) and a
slope value must be assumed, so that from trial to trial, the
function moves its location along a stimulus level array in
order to find the function leading to a threshold estimate.
Most of the developmentof these procedures has occurred
in the contextof visionor auditoryresearch, butLinschoten,
Harvey, Eller, and Jafek (2001), in this issue, have demon-
strated the value of maximum-likelihood adaptive meth-
ods in studying taste and smell. They assumed a logistic
psychometric function and reported that the methods
worked well in estimating thresholds with precision and
speed. Although for well-studied psychophysical tasks,
information concerning the function underlying perfor-
mance may be known from the literature, additional non-
adaptivemeasures mightbe necessary to establish the func-
tion before maximum-likelihoodadaptiveprocedures may
safely be implemented. This was the approach taken by
Saberi and Green (1997) to evaluate the use of maximum-
likelihoodadaptive procedures in some measures of audi-
tory discrimination of time and frequency.

An illustrationof this type of adaptivemethodologymay
be taken from Green (1993), who developed a maximum-
likelihoodadaptive procedure involvinga yes–no psycho-
metric task that promises highly efficient trial placement
and threshold estimation. Green’s method is similar to the
QUEST procedure of Watson and Pelli (1983), as well as
to some other implementations, but Green’s procedure
does not carry as many prior assumptionsas does QUEST,
and has a less theoretically based scheme for the place-
ment of trials. In Green’s procedure, a particular psycho-
metric function is assumed (e.g., a logistic function), and
a range of stimulus values thought to include the thresh-
old to be estimated is identified, perhaps through pilot
work or consulting the literature. A set of candidate psy-
chometric functions is computed on the basis of the as-
sumed form of the function and the possible stimulus val-
ues. Each of the candidate functions is fitted to all the data
collected to that point after each stimulus presentation,
and the likelihood associated with each function is com-
puted. The most likely psychometric function is then vis-
ited at the target performance level to determine the stim-
ulus level to be used on the next trial, followed by another
updatingof the candidate functionprobabilities.The final
estimate of threshold is extracted from the most likelypsy-
chometric functionafter some number of trials or in accord
with some stoppingrule. Figure 3 shows a typical adaptive
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track, followingGreen’s (1993) maximum-likelihoodpro-
cedure. The track is characterizedby a wide excursion over
the first few trials, but a rapid convergence to a threshold
stimulus level. Green asserted that a reliable threshold es-
timate could be generated using this method in as few as
12 trials; Leek, Dubno, He, and Ahlstrom (2000), describ-
ing a stopping rule based on a criterion variability in the
adaptive track, reported that, typically, 24 trials would pro-
duce highly reliable threshold estimates. In the example
depicted in Figure 3, the threshold level appears to stabi-
lize after about 20–25 trials. The procedure, developed as
a yes–no task, has been extended to a forced-choice pro-
cedure by Dai and Green (1992) in a study of auditory in-
tensity discrimination, and for frequency and intensity
discrimination by He, Dubno, and Mills (1998). Further
assessment of the use of this procedure for different ex-
perimental tasks and with different types of subject popu-
lations has also been reported by Leek et al. (2000).

Staircase Procedures
Both PEST and the maximum-likelihood procedures

involve fairly complex stimulus placement rules and, in
some cases, development of threshold estimates from the
tracking data. The maximum-likelihood procedures also
require the assumption of a particular form of the under-
lyingpsychometric function,which is not well established
for some psychometric tasks. The simplicity and flexibil-
ity of adaptive staircases have led to their adoption as the
procedures of choice in many laboratories. These meth-
odsgenerallyuse the previousone or more responseswithin
an adaptive track to select the next trial placement, then
provide a threshold estimate in a variety of ways, most
commonly by averaging the levels at the direction rever-
sals in the adaptive track (i.e., the turnaroundpoints). Sim-
ple up–down staircases call for a reduction in stimulus
level when the subject’s response is positive (e.g., “I hear
a tone”) and an increase in stimulus level when the re-
sponse is negative. Figure 4A shows an example of a sim-
ple up–down adaptive track. Beginning at a level above
threshold, positive responses lead to continued decreases
in stimulus level until a negative response occurs. This

triggers a reversal in the direction of the track, and levels
on subsequent trials increase until the next change in re-
sponse. The simple up–down staircase procedure targets
the 50% performance level on a psychometricfunction that
extends from 0% correct performance at chance to 100%
correct performance. In other words, the track targets the
stimulus level for which the probability of a correct re-
sponse equals the probability of an incorrect response or,
equivalently, the level at which the track would move up
or down on the stimulus axis with equal probability. The
value of this type of procedure is in the very few assump-
tions necessary for its implementation. In contrast to the
maximum-likelihoodmethods, no form of the psychome-
tric function need be assumed, and there is no need for
complicated computation and fitting procedures between
trials. Furthermore, in contrast to PEST, the trial place-
ment, step size, and stoppingdecisionsare all relativelysim-
ple and straightforward. The only necessary assumption
for use of these methods is a monotonic relationship be-
tween stimulus levels and performance levels.

Levitt (1971) described a general transformation pro-
cedure for targeting specific locations on a psychometric
function. In the transformed methods, instead of a track
level change in response to every trial, as mandated for the
simple up–down procedure targeting the midpoint of the
psychometric function, sequences of positive or negative
responses are determined that result in an equal probabil-
ity of the track’s moving in either direction. For the sim-
ple up–down procedure, both the positive and the nega-
tive sequences consist of one trial, and the track level
moves after each response, targeting the 50% performance
level. To target a higher performance level, the sequence
for a downward movement may be two or more positive
responses, and the sequence for an upward movement may
remain at one negative response. This example is the ex-
tensively used two-down,one-up procedure, which targets
the 70.7% level on the psychometric function. Recalling
that the probability of the down sequence must equal the
probability of an up sequence, we see that a positive re-
sponse to two consecutive trials must occur in order to
move the track downward. If p is the probability of a pos-

Figure 3. Adaptive track following a maximum-likelihood adaptive procedure, as devel-
oped by Green (1993). Decibel values are relative to the arbitrary threshold of 0 dB.
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itive response on a given trial, then p 3 p must equal .50,
and therefore the target probability is Ï.5 5 .707. Simi-
larly, a three-down, one-up transformation leads to a per-
formance target of .794 (i.e., p3 5 .50; the cube root of.50
is.794), as is shown in the example track in Figure 4B. As
in the simple up–down staircase, the threshold search
starts above threshold, but in this case, a decrease in stim-
ulus level requires three sequential positive responses. A
reversal in the track occurs after one negative response,
and again, three positive responses are required to begin
another descendingrun of trials. In his 1971 article, Levitt
outlineda number of possible transformations, along with
their target performance levels. One obvious implication
is, of course, that the more complicated the sequence rule,
the more trials typically required in an adaptive track in
order to reach an estimate of threshold.

Although the transformed up–down methods are widely
used, one restriction that has been noted is that only a small
number of target levels can be estimated. Kaernbach
(1991) described a simple up–down procedure that could
be used to estimate performance at many more target lev-
els than allowed by the transformed methods, by varying
the step sizes used in the two different staircase directions.
The value of Kaernbach’s procedure, as he described it,

was in the simplicity of the algorithm, relative to the
sometimes quite elaborate rules necessary for the trans-
formed procedures, and its ability to target any perfor-
mance level, not just those that could be estimated with a
specific sequence of up and down trials. In Kaernbach’s
simple up–down weighting procedure, a performance
level is analyzed according to the desired ratio of up to
down steps, and the stimulus level is changed after every
trial. Kaernbach described an example of targeting 75%
correct performance with a ratio of up to down step sizes
of (1 p)/p or, in this case, .25/.75, or 1/3. In order to tar-
get that point on the psychometric function, the stimulus
level should be changed upward after an incorrect re-
sponse and downward after a correct response, and the
size of the upward step should be three times the size of
the downward step.Using MonteCarlo simulations,Kaern-
bach (1991) reported a modest savings of about 10% of
experimenter time with the weighted procedure over a
more “traditional” staircase, using a two-down, one-up
rule (i.e., targeting 70.7% correct). Rammsayer (1992)
evaluated Kaernbach’s (1991) weighted method, using
human subjects in an auditory temporal discrimination
task. He reported that, at the beginningof adaptive tracks,
the weighted up–down method was more efficient than a

Figure 4. Adaptive tracks following a staircase procedure. (A) Simple up–down staircase; (B)
transformed up–down staircase, following a three-down, one-up algorithm.
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transformed fixed-step-size procedure but that, for tracks
longer than about 40 trials, there was little difference in ef-
ficiency between the two procedures. Because there was
a rather large difference in step size between the up and
the down steps, Rammsayer noted that his subjects re-
ported an awareness of the direction of the track, which
might bias the outcome of the procedure. Rammsayer sug-
gested that this problem could be reduced by interleaving
more thanone thresholdtrack. However, it might be pointed
out that any savings in experimental time would be lost if
more than one track were found to be necessary for rea-
sons other than efficiency. Kaernbach’s (2001a) article in
this issue uses this weighting procedure in an evaluation
of threshold tracking, using an unforced-choice method.
He argues that, although the psychometric properties of
including“don’t know” in the array of subject responses in-
dicate only a small improvement over the forced-choice
selections, subjects are generally more comfortable not
having to indicate an answer when they are very unsure.

ESTIMATES OF SLOPE
FROM ADAPTIVE PROCEDURES

Adaptive methods have tended to focus on measuring
one point on the psychometric function in order to esti-
mate a threshold or location of the function along a stim-
ulus axis. However, in many cases, the slope of the func-
tionmay be useful in fullydefiningthe shapeof the function
or, for theoretical or clinical reasons, in establishing the
relationshipbetween rates of change in performance level
and stimulus level. In his seminal paper, Levitt (1971) dis-
cussed the optimal placement of levels along the stimulus
axis. If a measure of the mean of a psychometric function
is desired as an estimate of threshold, it is most efficient
to place trials as near as possible to the midpoint of the
function. However, the staircase procedures may be used
to estimate a slope of a psychometric function by placing
trials on each side of the mean of the function. There have
been a number of investigations of adaptive procedures
meant to evaluate how precisely and accurately the slope,
perhaps in addition to a threshold, can be determined from
an adaptive procedure.

Three slightly different procedures have been proposed
recently that are designed to efficiently and precisely iden-
tify the slopeand thresholdof the psychometricfunctionun-
derlying subjectperformance. These proceduresbear some
similarity to the earlier described maximum-likelihood
procedures, in that, starting with a set of candidate psycho-
metric functions(either explicitlyor implicitlydescribed),
trial placement occurs at the most likely threshold value, a
response is collected, and then that response is included
with all other responses collected in the experimental run
to generate a new set of candidate functions.The next pre-
sentation level is located at the predicted performance
level most likely (at that point in the experiment) to reflect
threshold (or some other targeted parameter). In the three
procedures described below, meant to focus on a slope es-
timate, the candidate functions are not explicitly defined,

but rather a two-dimensionalprobabilitydistribution is up-
dated after each response, and the two dimensions repre-
sent the two parameters definingthe psychometricfunction.

Watt and Andrews (1981) described a procedure that
was intended to maintain the advantages of a method of
constant stimuli in developing a good estimation of the
underlyingpsychometric function,using a probit fit to the
data, but employing an adaptive change in stimulus pre-
sentation levels in order to increase efficiency over the
method of constant stimuli. Probit (Finney, 1971) is a
method of fitting a cumulative normal function to a set of
psychometricdata, using a maximum-likelihoodcriterion.
Each data point to be included in the fit is weighted accord-
ing to its binomial variability, and the number of trials
placed at that stimulus level. Thus, points on the psycho-
metric function that are calculated from many trials are as-
sumed to be more reliable and, therefore, are more impor-
tant in the fitting calculations. In Watt and Andrews’s
procedure, a few stimulus levels are selected for testing
from a larger set of predetermined values, a number of tri-
als are presented using only those levels, and then a func-
tion is fit using the probit method. A new set of stimulus
levels is selected on the basis of the probit-fitted psycho-
metric function, and a further block of trials is presented.
The threshold and spread (slope) of the cumulative-
normal psychometric function assumed by the probit fit
converge on the values that best reflect the subject’s per-
formance on the sets of trials. Watt and Andrews advo-
cated the use of this procedure to improve the efficiency
of measuring a complete psychometric function, such as
one could generate with the method of constant stimuli,
without the need to assume a slope value.

More recently, King-Smith and Rose (1997) reported a
method specifically designed to measure the slope of the
psychometric function.They agree with Levitt (1971) that
the placement of trials on the psychometric function can
be selected in order to maximize efficiency of measure-
ment either of slope or of threshold, but not of both. If
threshold is the target, for maximum efficiency, trials
should be placed near the target performance level on the
psychometric function, and the closer to the correct per-
formance level, the more efficient will be the measure-
ment.However, to maximizeefficiency in measuring slope,
points that better define the spread of the psychometric
function are appropriate. If the function itself is a sym-
metric function about its midpoint, two points equidistant
from the midpoint of the function should be selected. An
unbalancedfunction will require a slightly different place-
ment of trials. King-Smith and Rose developed an adap-
tive method for maximum efficiency in measuring either
slope or threshold, making use of the binomial variability
associated with each probability level on an assumed psy-
chometric function. Stimuli for each trial are placed with
the goal of maximizing efficiency by minimizing the vari-
ability of estimates after each set of trials. The method is
adaptive in that a stimulus level is determined from a
probability density function generated from previous tri-
als. The level most likely to correspond to threshold (or a
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slope value) is presented.The response at this level is used
to update the probabilityof a given response as a function
of the true threshold, expressed as a likelihood function.
The information provided by the likelihood function is
combinedwith the initial probabilityfunction by Bayesian
multiplication, resulting in an updated function describ-
ing the probability that each intensity is the threshold after
the response to that stimulus.This new probabilityfunction
is then used to begin the next trial and to estimate a thresh-
old for optimum placement of the subsequent trial. This
process can be applied to simultaneously converge on a
best threshold and best slope by using two-dimensional
probability density functions and likelihood functions to
generate the next stimulus level. King-Smith and Rose re-
ported that these methods result in relatively high effi-
ciency for the measurement of both threshold and slope,
which can be improved to the extent that prior knowledge
of either of these parameters may be incorporated or that
assumptions concerning one of them may allow experi-
mental focus on the other.

King-Smith and Rose (1997) noted that it is somewhat
more difficult to get precision in the slope parameter than
in a threshold parameter. Kontsevich and Tyler (1999) de-
veloped an adaptive process similar to that of King-Smith
and Rose, reporting that their procedure could produce
reasonable precision in the estimate of threshold in about
30 trials for a 2AFC task but that about 300 trials were re-
quired in order to estimate slope with similar precision.
As with the earlier study, the key to estimating a threshold
and slope is to use each trial to update the posterior prob-
ability of a given two-dimensional probability distribu-
tion. Kontsevich and Tyler identified a potential problem
with selecting the minimum variance of this distribution
in that the two dimensions of threshold and slope are in-
commensurate and, therefore, some weightingconvention
must be imposed. Instead, these authors proposed a dif-
ferent cost factor, which could be minimized in order to
determine the next stimulus level for presentation. This
minimized factor corresponds to maximum information
gain after each trial. Using computer simulationsand psy-
chophysicalexperimentswith humans, this procedure was
shown to converge to threshold and slope values within a
relatively small number of trials.

Leek, Hanna, and Marshall (1992) investigatedthe util-
ity of using performance on all the trials that make up an
adaptive threshold track to generate a full psychometric
function from which a threshold and slope value could be
extracted, reminiscent of Hall’s (1981) earlier suggestion
of a hybrid PEST–maximum-likelihood procedure. Leek
et al. (1992) used computer simulations to determine the
precision of estimate of slopes that could be accomplished
from a staircase procedure designed to track threshold at
a particular performance level. The simulations were
meant to determine whether both slope and threshold
could be obtained by simply reconstructing a psychomet-
ric function on the basis of the trial-by-trial performance
within an up–down transformed staircase track. A proce-

dure that is optimized to produce threshold measurements
might also provide slope information, with little loss in
precision. Experimental runs were generated following
selected staircase algorithms by consulting a known psy-
chometric function on each trial to determine a response.
At the end of an adaptive track, the trial-by-trial data were
summarized according to performance at each level vis-
ited by the track and then fit to a psychometric function of
the same form as the one consulted in the simulation.
Thresholds generated by the tracking algorithm were
compared with thresholds extracted from the original and
reconstructed psychometric functions. Slope estimates
from the fitted psychometric functions were compared
with those underlying performance on the adaptive trials.
The functions reconstructed from the trial-by-trial data
were accurate reflections of the underlying functions as
long as the tracks were at least 200 trials long. Shorter
tracks resulted in estimates of psychometric function
slope that were biased high (i.e., slopes too steep). It was
noted that a maximum-likelihoodfit of the data to the psy-
chometric function provided greater stability of estimates
than did an earlier set of analyses carried out using the
probit fitting procedure (Finney, 1971). The authors cau-
tioned against using the probit procedure when the psy-
chometric function was transformed so that the range of
performance was less than 0%–100%. The statistical
properties of such a fit, described fully by McKee, Klein,
and Teller (1985), alter the variability associatedwith each
point in the transformed function, which is critical as a
weighting component in the probit procedure. Thus, when
the psychometric function is truncated, as in forced-
choice procedures, McKee et al. recommended that the
probit fit should be avoided. The Leek et al. (1992) re-
constructions of psychometric functions from tracking
data resulted in a finding regarding slope estimates simi-
lar to that frequently reported: It is possible to obtain ac-
curate and reliable slope estimates from adaptive proce-
dures, but the cost is more trials and subsequently more
experiment time.

Slopes estimated from adaptive tracking procedures re-
ported by Leek et al. (1992) tended to be too high unless
the tracks were fairly long. This tendency for an overesti-
mation of slope from adaptivemethods has been observed
before and has usually been attributed to an asymmetry in
the distribution of trial placements along the underlying
psychometric function. Typically, more trials are placed
higher than the midpoint of the function than are placed
lower. However, Kaernbach (2001b), in this issue, argues
that the source of the slope overestimation is not the poor
distributionof trials, but, instead,may be found in the adap-
tive algorithms themselves. Kaernbach shows that, for tri-
als placed identicallyto trial placement within an adaptive
track but presented in random order instead of according
to the sequence of the algorithm, slopes are not overesti-
mated, lendingsupport to his notion that the sequential as-
pects of the trial placement, according to adaptive rules, is
the source of the slope bias.
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Determination of slope requires some assumptions
about the form of the psychometric function. There are a
number of ogival functions to choose from, and criteria
for an experimenter’s choice may depend on theoreticalor
computational issues. Strasburger (2001a), in this issue,
points out that comparisons across studies and tasks are
hampered by the variety of psychometric functions that
are selected and provides formulas for converting among
a number of the most commonly used functions. It is sug-
gested in that paper that for comparison of results across
studies, the maximum slope of a function, or the slope at
the point of inflection of the ogival function, would be a
useful metric. In a second paper in this issue (Strasburger,
2001b), character recognition is measured using a 10-
alternative forced-choice procedure with a maximum-
likelihood/PEST procedure, and the maximum-slopemet-
ric is used to compare results across studies.

Also in this issue may be found three articles address-
ing the best way to sample and fit the psychometric func-
tion. Although probit fitting is commonlyused, it is not al-
ways the most appropriate choice, because of changes in
binomial variability with truncation of the function for
forced-choice procedures and because it assumes a par-
ticular form of the function—that is, the cumulative nor-
mal. Two papers by Wichmann and Hill (2001a, 2001b)
take up the issues of how best to sample the function and
how to determine the goodnessof fit of the assumed func-
tion. Miller and Ulrich (2001) describe a method for fit-
ting the psychometric function that makes no assumption
about the underlying distribution, as does the more com-
monly used probit analysis.

VIOLATION OF ASSUMPTIONS
IN ADAPTIVE METHODS

One of the strongest arguments for using adaptive pro-
cedures for the rapid and accurate estimates of character-
istics of psychometric performance is that there are very
few restrictions that must be accommodated. Two such
commonly accepted requirements, however, involve sta-
bility of the measurement over time and the monotonic re-
lationship between stimulus strength and performance.
Most experimenters acknowledge that absolute stability
of the underlying psychometric function generally is not
a realistic assumption, since subjects typically experience
some perceptual learning during the course of an experi-
ment, reducing the true threshold, or occasionally have
lapses in attention that may serve to increase the measured
threshold. Changes in threshold across the measurement
track may also result in shallower calculated slopes of the
underlying function. Violations of a second assumption,
monotonicity of the psychometric function, may occur if
members of the stimulus set under examinationare not ho-
mogenous along a given stimulus dimension. Stimuli with
greater complexity and dimensionality—such as speech,
for example—are likely not homogenous and, therefore,
pose special problems when tested adaptively. There have
been attempts to monitor violationsof the assumptions of

stability of the functions and homogeneity of the stimuli
and to assess the costs of such violations.

Tracking Threshold Changes With Multiple
Adaptive Tracks

Although a potential problem in the implementationof
adaptive procedures, it is also one of its benefits, as iden-
tified by Levitt (1971) and earlier papers, that adaptive
tracking procedures may be used to follow changes in the
psychometric function occurring during the course of an
experiment. For example, as perceptual learning occurs
over many trials, the threshold may be seen to gradually
(or suddenly) improve, as reflected in the shapes of the
threshold tracks. Leek and Watson (1984) used this method
to trace the improvements in detection of individual tones
embeddedwithin a 10-tonepattern. Ten interleaved thresh-
old tracks, one testing each of the 10 pattern components,
were examined to determine how the tone frequency and
temporal placement within the pattern affected the im-
provements in detection thresholds. In contrast to improve-
ments in thresholdover time, adaptive tracks may also sig-
nal subject fatigue or distraction over the course of an
experiment. Hall (1983) suggested a method of identify-
ing a shift in a subject’s threshold, by comparing the sub-
ject’s response on each trial with the response predicted
from the estimated psychometric functionunderlyingper-
formance. To the extent that the differencebetweenobtained
and predicted performance is close to zero for each trial in
the track, the estimated psychometric function is taken to
be stable throughout the track. Leek, Hanna, and Marshall
(1991) also proposed a method for determining whether
the true threshold of a subject was shifting during the time
of its measurement, thereby producing an inaccurate
threshold estimate. Their approach was to investigate the
psychometric properties of an unstable underlying psy-
chometric function by simulating systematic changes in
function locationand comparing the variabilitywithin and
across two interleaved adaptive tracks. The logic was that
if a psychometric function were changing over time, the
variability in levels visited within a single track would ex-
ceed the variability observed between tracks on trials oc-
curring close together in time. In addition to using these
two sources of variability to monitor whether the function
is shifting in time, Leek et al. (1991) showed how the across-
track variability may be used to generate an estimate of
the slope of the underlying function. In computer simula-
tions and human subject data, both the slope estimates and
the stability-monitoring procedure were shown to work
well as long as the shift in thresholds did not occur so
rapidly that the tracks could not follow the changes.

Nonmonotonic Psychometric Functions
and Heterogenous Stimuli

Early in the course of developmentof modern adaptive
methods, Levitt and Rabiner (1967) attempted to apply an
adaptiveprocedure to the measurement of levels of speech
necessary for a given level of performance. Typically,
speech testing is accomplished by presenting a list of
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speech stimuli at a given level and asking listeners to re-
peat the stimuli they heard. The speech commonly con-
sists of standardized lists of monosyllables, consonant–
vowel nonsense syllables, sentences, or running discourse.
Often, it is desired to measure performance at a number of
different presentation intensities or in different types and
levels of competing noise. Speech recognition as a func-
tion of increasing level or increasing signal-to-noise ratio
is an ogival psychometric function. Speech testing typi-
cally focuses on some portion of the rising part of the
function.Levitt and Rabiner applied an up–down staircase
and blocks of stimuli at each tested level to determine 50%
correct identification of the speech. Bode and Carhart
(1973) extended these findings by developing what they
called the doublet procedure, using a transformed up–
down adaptive method. They ran two sequential tracks,
targeting the 29.3% and the 70.7% correct identification
signal-to-noise level. The average of the final threshold
levels from each track constitutedan estimate of 50% cor-
rect performance. Steele, Binnie, and Cooper (1978) used
the doublet adaptive procedure to study the impact of vi-
sual cues (lip reading) on tests of speech understanding,
using monosyllabic words as stimuli.

Although adaptive procedures continue to be widely
used in measuring speech recognition, the nature of
speech stimuli creates greater variability in measurement
than is observed in testing more homogenoussets of stim-
uli, such as tone detection or discrimination. When stim-
uli are homogenous in all characteristics except the one
under test (e.g., the level of a pure tone in a fixed noise),
the procedure can work well. Similarly, if a set of speech
stimuli is homogenous in all factors affecting intelligibil-
ity, the level of the stimuli either in quiet or in noise may
be used in an adaptive procedure. However, if the stimuli
are not homogenous, the tracking procedure may be com-
promised. For example, a series of easily heard monosyl-
lables may drive the level of the track low, but a subse-
quent presentation of an inherently more difficult word
will occur at a level that is too low, and the track may not
truly reflect overall performance. Heterogeneity within
stimulus sets thus leads to inappropriateplacement of trial
levels, greater variability in the track, and possible confu-
sion to the subject. Dirks, Morgan, and Dubno (1982)
noted this difficulty when testing identification of mono-
syllables and of spondee words (i.e., two-syllable words
with equal stress on each syllable) in a group of normal
hearing and a group of hearing-impaired subjects. The
speech level was held constant throughout an adaptive
track, whereas the level of multitalker babble was varied
according to an adaptive algorithm designed to target
29.3%, 50%,or 70.7% correct word identification.In these
procedures, a simple up–down procedure was first initi-
ated to find the correct range of performance levels for a
given individual, after which either the simple up–down
algorithmwas continued(50% correct) or one of the trans-
formed up–down algorithms was implemented to target
the other two performance levels. Dirks et al. established
thresholds for each target and stimulus set but reported

that performance of the tracks was indeed more variable
when the stimuli were monosyllables,rather than the more
homogenous set of spondee words. This increased vari-
ability was especially striking for the group of hearing-
impaired listeners, who likely experienced other sources
of variability associated with their hearing loss as well. It
is important, therefore, in using adaptive methods with
sets of speech stimuli, to control the heterogeneity of the
stimuli to the extent possible and to be alert to violationof
the monotonicity assumption across trials of an adaptive
track.

COMPARISONS OF
ADAPTIVE PROCEDURES

Are any of these adaptive procedures better than others,
and how do the procedures interact with other psychome-
tric experimental choices? There have been a number of
papers comparing the accuracy and efficiency of the pro-
cedures described above in measuring thresholds and
slopes of psychometric functions. These comparisons
have been made by using computer simulations of exper-
imental tests and, in some cases, evaluating the perfor-
mance of human listeners.

Shelton, Picardi, and Green (1982) evaluated an adap-
tive staircase, a maximum-likelihoodprocedure, and PEST
in collecting data from human subjects. In each case, they
chose parameters for the adaptive procedures that were
commonly used in practice, measuring human perfor-
mance on a simultaneous- and a forward-masking audi-
tory task. Although the procedures did not produce large
differences, therewere somecharacteristics of each thatmight
suggest one choice or another under certain circum-
stances. For short adaptive runs (i.e., less than 30 trials),
both the staircase and the maximum-likelihood proce-
dures resulted in slightly biased threshold estimates, al-
though the bias could be mostly overcome by randomiz-
ing starting levels for each adaptive run. The maximum-
likelihood procedure, however, was the only one of the
three methods that could converge within about 10 trials,
even with a slightly biased threshold. Shelton et al. sug-
gested that this procedure might be most useful in testing
infants and animals, where the thresholds must be gath-
ered rapidly. However, they pointedout that the maximum-
likelihoodmethod may be particularly difficult for inexpe-
rienced listeners, because there are very few suprathreshold
trials afforded to the subjects.

Kollmeier, Gilkey, and Sieben (1988) used a mathe-
matical model, as well as human data, to compare two
staircase procedures and the PEST procedure, with both a
2AFC and a three-alternativeforced-choice (3AFC) exper-
imental task. They also evaluated both model and human
listeners on a set of fixed level (nonadaptive) procedures.
Their human listeners were all experienced in the task,
which was detection of a signal embedded in noise—that
is, simultaneous masking. The model predicted similar
thresholds from adaptive and nonadaptiveprocedures, but
in practice, human listeners actuallyproduced slightly bet-
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ter thresholds in adaptive procedures. The model pre-
dicted that a 2AFC procedure used in a staircase targeting
71% correct wouldbe the least efficient procedure,whereas
the 79% 3AFC staircase would be the most efficient. The
human data also supported the latter as the most efficient
procedure, but results were somewhat variable.One of the
problems identified with human data, in contrast to the
modeled data, was that the model underestimated the vari-
ability produced by human listeners. The authors sug-
gested that the reason for this might be an underlyingpsy-
chometric function that is slowly varying and suggested
that variability in the tracks may be partitioned into a rapid
trial-to-trial variability, combined with variability con-
tributed from a slowly varying function. Hall (1983) had
earlier made such a suggestion, and it later was taken up
in simulationsof unstablepsychometric functionsby Leek
et al. (1991). Kollmeier et al. suggested that the variabil-
itymightbe controlledby combining thresholdsfrom short
tracks, rather than using long, perhaps varying, tracks to
estimate thresholds. Hicks and Buus (2000) agreed with
this notion, finding more consistent thresholds from in-
terleaving several short tracks than from following one
long track involving the same total number of trials. In
summary, Kollmeier et al. reported that, if no other ex-
perimental considerations dictate otherwise, the most ef-
ficient combination of methods is the 79% 3AFC. This
conclusionhas been reached by a number of other authors.

Kollmeier et al. (1988) also found that thresholds from
adaptive tracks in human performance tended to be biased
low (i.e., better thresholds) than would be expected by
fixed trials. Even though some simulation studies suggest
that thresholds should be similar from fixed-level and
adaptiveprocedures, there are consistent reports of thresh-
olds of human subjects being better in adaptiveprocedures
meant to target the same level as fixed-level methods. Tay-
lor, Forbes, and Creelman (1983) reported this in describ-
ing their comparisons of PEST procedures with fixed-
level procedures. Stillman (1989) compared thresholds
measured with the adaptive procedures and thresholds
from fixed-level tests, finding that the adaptive methods
always produced thresholds that were lower, just as was
reported by Kollmeieret al. (1988)and Sheltonet al. (1982).
In other words, the adaptive procedures always overesti-
mated subjects’ performance, producing better (lower)
thresholds than were evidenced in a nonadaptive task.

In Stillman’s (1989) study, both inexperienced and ex-
perienced subjects were used, and comparisons were made
for results from adaptive and nonadaptiveprocedures and
for two staircase procedures and a PEST adaptive proce-
dure. The task was a 2AFC detection of a 1-kHz tone in a
bandpass noise centered at 1 kHz. Results indicated sim-
ilar thresholds for the 79% staircase and the PEST proce-
dures (targeting80% correct) and similar variabilitywithin
the two staircase procedures. Shelton and Scarrow (1984)
also measured performance of human listeners to deter-
mine whether some experimental choices were better than
others. All their listeners were inexperienced, and they
used separate groups of 10 listeners each for each of four

conditions,staircase and maximum likelihood,using both
a 2AFC and a 3AFC procedure in each. The task was de-
tection of a tone in noise. Together with Shelton et al.
(1982), these authors reported that thresholds were essen-
tially equivalent for all the 2AFC procedures tested (stair-
case, PEST, and maximum-likelihood) and for the 3AFC
staircase and maximum-likelihood procedures. They did
observe some differences in variability and eff iciency
across the procedures, noting that the 3AFC staircase pro-
vided the most stable thresholds across adaptive runs but
that the maximum-likelihood method produced stability
early in a run. Therefore, according to these authors, if prac-
tice trials are not possible or the number of trials is limited,
the maximum-likelihood procedure should be favored.

Schlauch and Rose (1990) primarily used simulations
with a small set of human data to investigate the use of
staircase procedureswith 2-, 3-, and 4AFC tasks.Theymea-
sured both efficiency (variability) and threshold bias as a
functionof number of intervals, step size, and the target of
the adaptivetrack (equivalently, the decisionrule for chang-
ing stimuluslevels).They identifiedlessvariabilityin thresh-
old measurements as the number of intervals increased—
especially, from 2 to 3 intervals, less so between 3 and 4
intervals—and for the higher performance target (79% vs.
71%). Even taking into account the greater experimental
time necessary to present the larger number of intervals,
the 3AFC and 4AFC procedures were still more efficient
than the 2AFC. They also reported greater variability in
threshold estimates for larger step sizes. The 2AFC 71%
target was more biased (i.e., identifying better perfor-
mance) than the 4AFC 79%, and there was more bias for
larger step sizes, especially for the 71% 2AFC procedure.
Schlauch and Rose suggested that this bias was a result of
behavior near chance performance and the effects of
guessing.They also foundno improvements in performance
of the methods for adaptive tracks longer than 100 trials.
By fitting the trial-by-trial data, using a probit method
(Finney, 1971), the thresholds recovered some of the bias
that was associated with all the adaptive procedures. In
order to improve efficiency and reduce bias, these authors
recommended fitting the trial-by-trial data in the adaptive
track to estimate a threshold and the use of small step sizes
in the tracking procedure. Although the 4AFC procedure
gave the best efficiency and the least bias, the time taken
to present four intervals on each trial may strain the mem-
ory of subjects and may, in the end, increase experimental
time even though fewer trials might be necessary.

In summary, there is little to recommend any of the
three reviewed psychometric procedures from the stand-
point of the performance of the methods themselves. It
seems clear that some experimenter selections of various
implementationsof the methods may increase or decrease
the bias and reliability of the procedures. In particular, the
2AFC task is generally a poor choice, particularly when
paired with a staircase target of 71%. McKee et al. (1985)
provided a clear description of the impact of truncating
the 0%–100% psychometric functionwhen using a forced-
choice procedure such as the 2AFC. Instead of the func-



ADAPTIVE PROCEDURES 1291

tion’s spanning a large range from chance performance at
0% correct to perfect performance at 100%, these trun-
cated functions result from increased chance levels (e.g.,
50% for 2AFC, 33.3% for 3AFC), and therefore, the range
of the psychometric function is decreased. The variability
associated with each point of the function, however, con-
tributes to the bias and variability of measurement ac-
cording to the binomialdistribution.Therefore, in general,
points falling lower than the midpoint of the truncated
functions generally have greater variability. McKee et al.
suggested that measurements are likely to be more reli-
able if they are on the upper side of the midpoint of the
function. The binomial variability of the truncated psy-
chometric functions may account for the relatively poorer
psychometricperformance of the 2AFC 71% combination
(target lower than the 75% midpoint of the 2AFC func-
tion), with better performance when the combination of
forced-choice task and target performance level lead to tri-
als placed higher on the function. Green (1990) addressed
a similar point, arguing that the best placement of stimulus
trials was near the top end of the psychometric function.

SUMMARY AND CONCLUSIONS

Three categories of adaptiveprocedures were reviewed.
PEST procedures do not require assumptions about the
shape of the underlying psychometric function and pro-
vide a rapid and systematic convergence on a threshold.
Maximum-likelihood procedures for placing trials at op-
timal stimulus levels and for providing threshold and slope
estimates are computationally intensive and require as-
sumptions regarding the shape of the underlying function.
However, they convergeon targeted valuesvery quickly and
make good use of all the data collected in a track. Staircase
methods require very few assumptions and have fairly
simple algorithms for placement of stimuli and estimation
of thresholdvalues.They may support an estimate of slope,
so long as sufficient trials are presented.

Some of these methods have slight advantagesover oth-
ers, given particular experimental circumstances. For ex-
ample, when testing must be accomplished very quickly,
as in testing animals or infants, the faster converging
maximum-likelihood procedures might offer some bene-
fit over longer staircase procedures. There is strong con-
sensus, however, that the popular2AFC procedures do not
have desirable statistical properties, particularly when
paired with adaptive procedures that target relatively low
performance levels (i.e., below the midpoint of the psy-
chometric function) and should be avoided. Finally, stim-
uli tested in adaptive procedures should have the charac-
teristic of homogeneity and a monotonic relationship
between stimulus level and performance level. This has
been shown to be problematic (although not fatal) in test-
ing some kinds of speech recognition adaptively.

Adaptivemethodsoffer high precision and reliability in
psychometric testing, at a significant savings in time over
nonadaptive testing. Over the last 50 years, refinements
and evaluations of these procedures have shown the way

to a selection of experimental variables and parameters
that result in little cost for the savings in time. Although
there are inherent biases in some of the methods, these can
be mostly compensated by a thoughtful consideration of
experimental techniques and parameters.
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