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Abstract

We introduce an approach for efficient distribution and adaptive
rendering of 3D mesh models supporting a simple quad param-
eterization. Our method extends and combines recent results in
geometric processing, real-time rendering, and web programming.
In particular: we exploit recent results on surface reconstruction
and isometric parametrization to transform point clouds into two-
manifold meshes whose parametrization domain is a small collec-
tion of 2D square regions; we encode the resulting parameterized
meshes into a very compact multiresolution structures composed
of variable resolution quad patches whose geometry and texture
is stored in a tightly packed texture atlas; we adaptively stream
and render variable resolution shape representations using a GPU-
accelerated adaptive tessellation algorithm with negligible CPU
overhead. Real-time performance is achieved on portable GPU
platforms using OpenGL, as well as on exploiting emerging web-
based environments based on WebGL. Promising applications of
the technology range from the automatic creation of rapidly render-
able objects for games to the set-up of browsable 3D models repos-
itories in the web that will be accessible by upcoming generation of
WebGL-enabled web browers.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/Network Graphics I.3.3 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Display Algorithms
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1 Introduction

As it already happened with photography and audio/video, the cre-
ation of 3D content is becoming more and more affordable in terms
of time, user skills and, consequently, economic investment. In the
last few years, 3D scanning systems have become commodity com-
ponents. At the same time, the rapid evolution and proliferation of
low-cost graphics hardware has made advanced 3D modeling avail-
able to a variety of user. As content becomes easier to create and
cheaper to host, more companies and individuals are building vir-
tual worlds (e.g., Second Life hosts 270 terabytes of user-generated
content in 2009 [Lab 2009], and this is growing by approximately
100% every year).

With the increasingly widespread introduction of mobile terminals
and WebGL enabled browsers, 3D graphics over the Internet is ex-

pected to attract a lot of additional attention. Still, unlike what has
happened for standard media, which have converged high quality
compressed formats specifically designed for storage and stream-
ing, essentially based on the same small set of concepts, distribut-
ing and rendering non-trivial 3D models, especially on low-cost
or mobile platforms, is still challenging. Detailed 3D models are
heavy, non-trivial to render, and are experienced in a highly non-
linear interactive way. These characteristics impose fast incremen-
tal loading and reasonable compression, GPU accelerated rendering
methods, and adaptive view-dependent culling techniques. While a
lot of generic solutions have been presented for general “desktop”
platforms [Yoon et al. 2008], there is now an increasing interests
for techniques tuned for lightweight, interpreted, and scripted en-
vironments. The limitations of such platforms imposes additional
constraints on the 3D streaming formats, which should be based as
much as possible upon preexisting components in order to avoid the
overhead of coding complex decoders in non-optimized program-
ming environment, such as JavaScript.

Contribution. We introduce a remote rendering approach in
which a large class of textured geometric models are converted into
compact multiresolution representations suitable for storage, distri-
bution, and real-time rendering on modern commodity/web plat-
forms. Our method extends and combines recent results in ge-
ometric processing, real-time rendering, and web programming.
In particular: we exploit recent results on surface reconstruction
and isometric parametrization to transform the point cloud into a
two-manifold mesh whose parametrization domain is a small col-
lection of 2D square regions; we encode the resulting parameter-
ized mesh into a very compact multiresolution structure composed
of variable resolution quad patches whose geometry and texture
is stored in a tightly packed texture atlas; we adaptively stream
and render variable resolution shape representations using a GPU-
accelerated adaptive tessellation algorithm with negligible CPU
overhead. Real-time performance is achieved on portable GPU
platforms using OpenGL, as well as on exploiting emerging web-
based environments based on WebGL. Although not all the tech-
niques presented here are novel in themselves, their elaboration and
combination in a single system is non-trivial and represents a sub-
stantial enhancement to the state-of-the-art.

Advantages. The pipeline is fully automatic and targets densely
tessellated models, such as those created by 3D scanning or mod-
eling systems such as ZBrush. Our approach bridges the gap that
currently exists from general-purpose meshes to rendering oriented
structures based on real-time tessellation with normal/bump maps,
which are typical of modern gaming platform but currently require
considerable human effort to create. The simplicity of a regularly
remeshed representation has many benefits. In particular it reduces
random memory accesses and eliminates the indirection and stor-
age of per triangle vertex indices and per vertex texture coordinates.
The resulting representation is compact, can be built on top of exist-
ing image representations, and is very well suited to streaming. Due
to the negligible run-time CPU overhead, real-time performance
is achieved both on conventional GPU platforms using OpenGL,
and on the emerging web-based environments based on WebGL.



Promising applications of the technology range, thus, from the au-
tomatic creation of rapidly renderable objects for local and online
games to the set-up of browsable 3Dmodels repositories in the web.

Limitations. The proposed method is not general purpose, but
targets meshes defininig closed objects with large components (i.e.,
typical solid objects without fine topological details). As for other
compressed streamable formats, we do not strive to exactly repli-
cate the original geometry and color, but only to visually approx-
imate them in a faithful way. As a result, and similarly to com-
pressed video/image formats, our representation is lossy, and thus
not applicable in situations where precise measures of the original
geometry are required (e.g., CAD systems).

Despite these limitations, as demonstrated by our results, the
method provides good scalability in the distribution of compact
streamable and renderable 3D representations of objects.

2 Related Work

In the following, we will briefly discuss the approaches that are
most closely related with our work. Readers may refer to well es-
tablished surveys [Yoon et al. 2008] for further details.

Compact mesh models for distribution and rendering. Much
of the work in mesh distribution has focused on compression rather
than adaptive view-dependent streaming. MPEG-4 is a reference
work in the area [Jovanova et al. 2008]. Early methods for view-
dependent LOD and progressive streaming over arbitrary meshes
use fine grained updates based on edge collapses or vertex clus-
tering [Xia and Varshney 1996; Hoppe 1997; Luebke and Erikson
1997]. These methods are the basis upon which many compres-
sion and streaming formats for the web have been built [Maglo
et al. 2010; Blume et al. 2011; Niebling et al. 2010]. These ap-
proaches are however CPU bound and spend a great deal of ren-
dering time to compute the view-dependent triangulation prior to
rendering, making their implementation in a scripting language
particularly challenging. As the GPU has become more power-
ful, more recent methods typically either reduce the per-primitive
workload by composing at run-time pre-assembled optimized sur-
face patches [Cignoni et al. 2004; Yoon et al. 2004; Borgeat et al.
2005; Gobbetti and Marton 2004a; Gobbetti and Marton 2004b]
or introduce techniques for performing view-dependent refinement
within geometry shaders [Hu et al. 2010]. These methods proved
very effective in terms of rendering speed, but still require cod-
ing of non-trivial data structures and techniques for decompression,
leading to potential problems in a script-based web implementation.
We therefore employ a solution that encodes much of the shape and
appearance of a model into a texture. This is also the goal of geom-
etry images [Gu et al. 2002; Sander et al. 2003], which enable the
powerful GPU rasterization architecture to process geometry in ad-
dition to images, and the networking component to rely on already
existing and optimized libraries for compression and streaming of
images. Geometry images focus on reparametrizations of meshes
onto regular grids, while we focus on developing a specific mul-
tiresolution structure on top of a reparameterized model. Our quad-
based parametrization leads in addition to a tighter texture packing
and a simple handling of chart boundaries.

Parameterization and remeshing. Representing complex two-
manifold models as a collection of quads requires a parametriza-
tion of input models (refer to [Sheffer et al. 2006] for a survey).
The simplest approach is single-disk parameterization [Floater and
Hormann 2005], which, however, can be applied only to genus-0
meshes and leads to high distortions unless the mesh has almost

zero Gaussian curvature everywhere. In this work, we take the ap-
proach of using a base mesh to parameterize the model [Pietroni
et al. 2010]. While in these base meshes approach the 3D
parametrization domain is often based on triangles [Lee et al. 1998;
Praun and Hoppe 2003; Khodakovsky et al. 2003; Schreiner et al.
2004; Kraevoy and Sheffer 2004], there are clear advantages in our
case in adopting a quad-based domain, since it provides tight pack-
ing and simple handling of chart boundaries.

Details and Adaptive mesh refinement on GPU. An approach
to the problem of rendering generalized displacement mapped sur-
faces by GPU raycasting was proposed in [Oliveira et al. 2000;
Wang et al. 2003; Wang et al. 2004]. Other generalizations in-
volve replacing the orthogonal displacement with inverse perspec-
tive [Baboud and Décoret 2006], replacing the texture plane with
a quadric [Manuel M.Oliveira 2005], handling self shadowing in
general meshes [Policarpo et al. 2005]. The evolution of graph-
ics hardware has allowed many surface tessellation approaches to
migrate to the GPU, including subdivison surfaces [Shiue et al.
2005], NURBS patches [Guthe et al. 2005], constrained urban mod-
els [Cignoni et al. 2007], and procedural detail [Boubekeur and
Schlick 2005; Boubekeur and Schlick 2008]. This makes it pos-
sible to generate geometric details directly in the vertex shader. We
adapt semi-uniform adaptive patch tessellation [Dyken et al. 2009]
to handle quad patches with textured detail. Whereas previous ap-
proaches are typically used to amplify coarse geometry, our end-
to-end framework is designed to faithfully reproduce a resampled
high-resolution model.

3 Pipe-line Overview

Our contribution is an unattended software pipeline for automati-
cally converting a large variety of textured geometric models into
compact multiresolution representations suitable for storage, dis-
tribution, and real-time rendering on modern commodity/web plat-
forms. Fig. 1 illustrates the main components of our pipeline.

The pipeline takes as input a dense point sampling of the original
model. This kind of sampled representation can be created from a
large variety of models - point clouds, meshes, or parametric ob-
jects. A two-manifold triangular mesh is first fit to the point cloud
using a surface reconstruction and topology cleaning step, and the
resulting two-manifold mesh is parameterized (see Sec. 4). Our pa-
rameterization domain D consists in a small collection of almost
isometric square patches. Since each of these patches can be sam-
pled on a grid with lines parallel to its sides, storing 3D positions,
normals and colors of the associated point on the mesh in aN ×N
square patch, the overall shape representation consists ofM square
patches of N ×N samples. This regular structure is then encoded
into a compact multiresolution structure composed of variable reso-
lution quad patches assembled in 2D images. Geometry and texture
are stored in a tightly packed multiresolution texture atlas, which
can be streamed over the network for generating variable resolution
shape representations using a GPU-accelerated adaptive tessellation
algorithm (see Sec. 5). The resulting rendering subsystem has neg-
ligible CPU overhead and is heavily built on top of consolidated 2D
image representations. It can thus be efficiently implemented both
on conventional commodity platforms and on the newly emerging
scripting platforms for the web. The various steps of our pipeline
are detailed in the following sections.



Figure 1: The AQP pipeline. We take as input renderable models and generate compact adaptive streamable representations.

4 Surface Reconstruction, Parametrization,

and Quad Remeshing

We assume that the input to our pipeline is a point cloud or a tessel-
lated mesh, possibly with artifacts such as non manifoldness.

The first phase of the method transforms the input in a clean man-
ifold triangle mesh. As a first step, we use Poisson reconstruc-
tion [Kazhdan et al. 2006] to obtain a manifold and watertight ver-
sion of the input mesh, which is saved in a streaming format. We
then perform a single streaming pass over the generated triangle
mesh, and discard from it the connected components with less than
a prescribed number of triangles, to remove topological noise. It
should be noted that these reconstruction and filtering steps may not
be necessary if the input mesh is already two-manifold, or it may be
replaced with other reconstruction or topological repair techniques.

The second phase consists of parameterizing the mesh on a simple
quad-based domain. We first construct an almost isometric trian-
gle mesh parameterization through abstract domains [Pietroni et al.
2010] (see Fig. 2.(b)), which maps the original mesh to a simplified
parametrization domain made of equilateral triangles. The method
works by applying local simplification operations to the input mesh,
and remapping the triangles of the original region onto those of the
simplified region. By iterating the simplification and remapping
process, the algorithm ends with a small parametric domain con-
sisting of a simple triangle mesh. This domain is in turn remapped
into a collection of 2D square regions by adding a vertex in the
barycenter of each triangle and building a quad for each edge (see
Fig. 2.(c)). The produced parameterization exhibits very low iso-
metric distortion, because it is globally optimized to preserve both
areas and angles. In order to manage larger models than those han-
dled by the original method [Pietroni et al. 2010], we have heavily
reduced memory usage by employing a multiple-choice approach
instead of a global queue to select the edge collapses during the
simplification phase [Wu and Kobbelt 2002].

Once we have obtained the quad-based parametrization of the input
model, we resample each quad, taking the samples from the original
geometry. The sampling phase, which works on the point cloud
representation used as input for the reconstruction step, associates
to each quad a regular grid of samples (position, color, normals).
This final collection of regular grids (see Fig. 2.(d)) is used as input
for the multiresolution structure creation phase.

5 Quad-based Multiresolution Structure

The previous steps of the pipeline are able to produce a
parametrized mesh made of a set of equally sized quad patches,
each of them composed of w × w samples. Vertex, color and nor-

Figure 2: Reconstruction steps. The original model (a) is param-
eterized on a simple quasi isometric triangulation (b), which is in
turn remapped to a collection of 2D square regions (c), used as a
basis for resampling the model (d).

mal information are available for each sample.

Figure 3: Rampant model. Example of rendering with patch color,
level color and with original color.

In order to achieve adaptivity, we encode the resulting parametrized
mesh into a very compact multiresolution structure composed of a
collection of variable resolution quad patches, whose geometry and
texture is stored in a tightly packed texture atlas. At run time, we ex-
ploit this structure to rapidly distribute and generate seamless view-
dependent multiresolution visualizations. These view-dependent
representations are constructed by adaptively loading and combin-
ing patches at different resolutions, depending on viewing param-
eters. Surface continuity is guaranteed by carefully handling patch
boundaries (see Fig. 3).

5.1 Quad Structure

The main advantage of our quad parametrization is that a complex
surface can be compactly and efficiently by storing geometry in a



tightly packed texture atlas. Since all quads have the same size,
packing is trivial and very efficient.

Each image quad represents a square surface patch, and is made
independent from the others by replicating in it the boundary ver-
tices. The patch triangulation is implicit. A surface is thus repre-
sented by a 2D texture that contains a number of patches, arranged
in a 2D grid. Because of the GPU maximum texture size limita-
tion (generally 4K or 8K), a single large model can be split into a
number of texture pyramids, each of them with the maximum reso-
lution lower than the limit. Amulti-resolution representation is con-
structed from the high-resolution representation by building a tex-
ture mip-map through a filtering operation (see Fig. 4(a)). Each half
resolution representation can be constructed by a simple average
filter, with special care taken only for properly handling samples
at quad boundaries (see Sec. 5.2). Inside a single pyramid, square
patches are simply organized as a square 2D matrix of N × M
patches (see Fig. 4(a)).

The geometry mipmap is enriched by parallel color and a normal
mipmaps, which are based on the same concept of quad patch sim-
plification. These two mipmaps are not constrained in our system to
have the same resolution of the geometry. In general, they will have
higher resolution with respect to the geometry one, allowing us to
achieve the same effect of surface texturing with color and normal
maps (which typically are at higher resolution than the geometry).

5.2 Preprocessing

For each pyramid we build three mipmap hierarchies: a geometry, a
color and a normal mipmap. Processing of the three structures share
some aspects: they start sampling the input dataset on a patch basis,
and then build inner mipmap level, with a patch filter approach that
maintains continuity among boundary samples of adjacent patches.
Inner patch samples are simply averaged from 4 children samples,
instead boundary samples are averaged without taking into consid-
eration the 2 samples which do not belong to the boundary. The
corner samples which are shared among 4 adjacent patches, are fil-
tered with pure sub-sampling for the same reason, see figure 4(b).
Operating without this special care would produce corresponding
boundary samples with different contribution for adjacent patches,
thus loosing continuity.

We exploit the geometry patch structure to encode the positions as a
map of 3D displacements with respect to the bilinear interpolation
of the patch corners at the corresponding u,v parametric coordi-
nates. The corners of all the square patches are stored quantized
at 16 bits per component, in a root file, which would correspond
to the coarsest level of our multiresolution structure. All other lev-
els, which represent displacements with increasing resolution with
respect to the root, are stored quantized at 8 bits per component. In-
stead of using a global, per level, uniform quantization range, which
would introduce too many discretization artifacts, we decided to
modulate the quantization range per generated vertex.

In a first step, quad quantization ranges are computed for each
patch, by taking the minimum and the maximum differences be-
tween positions inside the patch and predictions obtained through
bilinear interpolation of corner positions. In order to avoid discon-
tinuities caused by different per-patch quantization, we move quan-
tization information to the patch corners. We thus determine for
each patch corner the minimum of all the adjacent quad minimum
values, and the maximum of all the maximum values. Using these
corner values, the quantization range for a sample of a patch at para-
metric coordinates u,v is given by the bilinear interpolation at u,v
of all the for corner quantization factors. This way, quantization on
edges depends only by the two corners defining the edge, and thus

(a) Geometry Mipmap (b) Patch filtering

Figure 4: Multiresolution structure. In figure 4(a) there is an ex-
ample of three levels of a geometry mipmap with 76 patches on a
grid 9 × 9, with highlighted the filtered patch of figure 4(b). Fig-
ure 4(b) shows three levels of a quad patch. Circles inside quads
shows which samples contribute to the generation of the parent
sample: one for the corner (sub-sampling), two for edges, and four
for inner sample. Upper level correspond to the root patch repre-
sentation with only the four corners.

is shared among the two adjacent patches, solving the quantization
continuity problem.

Geometry is finally stored using PNG compression to avoid to in-
troduce further artifacts due to possibly uncontrolled lossy com-
pression. For colors and normals, instead, we can choose between
storing them as PNG files or using DXT1 (for colors) and DXT5
(for normals) compression. Using these hardware-supported com-
pressed formats is only possible when using our OpenGL renderer,
since WebGL currently lacks support for them. Data is stored in
separate files: each mipmap is subdivided by levels, and then the
level is split into tiles if its width is bigger than a predefined value,
512 samples in the current implementation. This approach is useful
to avoid to require a complete level at a single time, which surely
would be too big for the finest level of details. Tile width is a mul-
tiple of the patch finest width to avoid to split a patch into separate
files.

5.3 Adaptive seamless rendering

We adaptively stream and render variable resolution shape repre-
sentations using a GPU-accelerated adaptive tessellation algorithm
with negligible CPU overhead. Seamless rendering is substantially
performed by the GPU through a vertex/fragment shader pair, leav-
ing to the CPU only the tasks of selecting the proper level of de-
tails for each patch, and of querying missing data from a server.
Adaptive tessellation of a coarse mesh could be done exploiting
the geometry shader, but this GPU stage cannot output more than
a certain number of primitives, (1024 in the original specification)
thus limiting the subdivision levels. We preferred to use the in-
stancing approach, creating during the initialization a small num-
ber of subdivision regular grids, containing the (u, v) parametric
coordinates of the vertices and an index telling where the vertex re-



Figure 5: Seamless point dequantization. Vertices on the bound-
ary of the two adjacent patches, like the red one, share the same de-
quantization values derived by the linear interpolation of the same
two corners C0, C3. Inner vertices quantization min, max are de-
rived from the bilinear interpolation of the 4 corners min,max val-
ues. White circles show corners interpolations on the patch. Verti-
cal arrows shows the corner min,max ranges, used for dequantiza-
tion.

sides (inside or on the boundary) relatively to the patch. We use
K = log2(w) − 1 vertex buffer objects, (being w the linear size
of a patch at maximum resolution) to tessellate the patches from a
size of 4 linear samples to the maximum size w, with resolutions
doubled for each level. Let’s say that root is at level 0, first patch
at level 1, and finest patch at level K. The renderer preallocates
for each pyramid three texture mipmaps (geometry, color and nor-
mals) initialized only with the root data and which will contain the
patches at various resolutions, once they will be available. At each
frame the renderer selects the proper level of detail for each patch,
if it is not available chooses the finest available level for it and posts
a request for the tile containing the desired data (see Sec. 5.4). To
produce a continuous representation patches must match perfectly
along the edges, so they must have the same level of resolution for
each edge. The patch LOD evaluation first computes the desired
LOD for each edge of the quad by projecting it to the screen and
comparing it with the desired screen tolerance. Edge LOD cannot
be higher than the minimum of the two finest level of available data
of the two adjacent patches along this edge. The quad patch LOD is
set to the maximum (finest) of the 4 edge LODs. A texture is filled
at each frame with the 4 edge LODs for each quad.

In the draw procedure for each patch the tessellation corresponding
to the selected quad LOD is drawn with a proper vertex/fragment
shader pair. The tessellation vertices are triple with (u, v, e) where
e represent the edge to which belongs that vertex (0, 1, 2, 3) or 4 for
inner vertices. The vertex shader convert the (u, v) and quad patch
id to the corresponding coordinates in the texture mipmap, where it
can fetch the geometry displacement. When a vertex belongs to the
inner part is simply a matter of scaling and translating (u, v) to fetch
proper data. Instead when detecting edge vertices we need to han-
dle them properly before fetching data, to be able to stitch together
adjacent patches. Edge LOD is always coarser or equal than patch
LOD. To get a seamless representation we snap boundary patch ver-
tex parametric coordinates (u, v) at the edge resolution, which is
the same for adjacent patches also if their quad LOD is different.
The snap procedure identifies the edge id from the third component
of the vertex and read the corresponding LOD value from the edge
LOD texture at (quad, edge id) texture coordinates. Then snaps the
vertex (u, v) parametric coordinates from current quad LOD to the

Figure 6: LOD seamless tessellation. Seamless tessellation among
patches at different LODs: vertices are snapped on the edges at the
edge LOD, which depends from the projected edge length on the
screen.

edge LOD using following equations:

edgesize = 2edgelevel+1
− 1

uv =
round(uv · edgesize)

edgesize

Once modified (u, v), and set LOD as the current edge LOD, the
sampling procedure is the same as for inner vertices. The dequanti-
zation is performed with a scale factor that depends from (u, v) as
highlighted in 5.2: we need to get the 4 quad corners quantization
min and max values, and bilinearly interpolate them. The result-
ing min,max pair is used to dequantize the vertex displacement.
The quantization factors obtained in such a way permits to have
the same values all over the edge between two adjacent patches,
because they derives only from the interpolation of the two cor-
ners defining that edge. Corners min,max quantization factors are
four pairs of 16 bit values stored for each quad of each levels into
a static texture which is loaded at initialization and reused at each
frame. The base quad position is given by the bilinear interpolation
of the 4 quad corners at the possibly modified (u, v) coordinates.
Then, if vertex is not one of the four corners, its value is offset by
the vector found in the geometry texture mipmap at remapped uv
coords, considering the quad offset and the quad size (see Fig. 5).
The resulting rendering is seamless (see Fig. 6).

Color and normal (u, v) coordinates are found in a similar way, ex-
cept for the snap step, which revealed to be not necessary for these
attributes. Then these coordinates are passed to the fragment shader
which takes care of properly sampling color and normal mipmaps
to perform per pixel texturing and shading.

5.4 Adaptive streaming

Our compressed representation forms the basis of a scalable stream-
ing system able to adapt to client characteristics and to exploit avail-
able network bandwidth.

The server component provides access to tile repositories, without
differentiate among position, normal, or color components. From
the server’s point of view, a repository is just a database with a
unique key for indexing a block of bytes containing an encoded
bit-stream representing a compressed wavelet coefficient matrix.
In order to increase server-side scalability, no processing is done



in the server, whose only behavior is to return a block of bytes
if present. This approach makes it possible to leverage existing
database components instead of being forced to implement a spe-
cific storage manager. In this work, storage management is done
through Berkeley DB, and data serving is done through an Apache2
server extended with an appropriate module.

The client implements streaming using asynchronous data fetching
during rendering. During rendering, requests for missing patches
are remapped to unique identifiers built from pyramid ids and tile
ids and stored in a request queue. The priority is the difference
between the desired patch LOD and the currently available one. At
the end of the frame, only as many new requests as those allowed
by the estimated network bandwidth are issued and managed by a
separate network access thread, and the remaining ones are ignored.

A separate thread takes care of getting data from the server and
possibly decompresses them as in the case of PNG tiles. When
data becomes available it is inserted into the proper pyramid texture
mipmap.

6 Implementation and Results

An experimental software library and viewer applications support-
ing the AQP technique have been implemented both using the
OpenGL and WebGL environments. The OpenGL version, imple-
mented in C++, works both on Linux and Windows platforms, and
can be also used as a web-browser plugin using QT 4.8. The We-
bGL version is written in JavaScript on top of the publicly available
SpiderGL library [Di Benedetto et al. 2010].

We have extensively tested our system with a number of datasets.
In this paper, we discuss the results obtained with the models in
Fig. 7, all coming from laser scanning acquisitions. The complexity
of the input datasets ranges from 8Mtriangles to 90Mtriangles (left
to right). Given the scope of this paper, we restrict the evaluation to
the WebGL version of our code.

6.1 Preprocessing and compression rates

Table 1 shows the processing results of the various datasets, using
the WebGL version of our code, which uses only PNG compres-
sion applied to delta encoded samples. It is clear that compres-
sion rates can be heavily improved by using DXT1 and DXT5 to
compress attributes, but these compressed encodings are not widely
supported in WebGL implementations. For this reason, the bench-
marks presented in this paper use plain textures and PNG encoding
for transport. Even with such a simple approach, the method is able
to encode a sampled geometry in about 15bps for models with po-
sitions and normals, and about 24bps for colored models. It should
be noted that our objective is not to achieve state-of-the-art com-
pression rates, but, rather, to propose a method supporting adaptive
streaming, and variable resolution rendering with an easy imple-
mentation in a WebGL context.

Dataset Input Out Patch Output Geom. Color Normal

Tri level Count Samples bps bps bps

Dwarf 8.4M 7 300 6.4M 6.3 9.54 8.53

Shepherd 8.4M 7 300 6.4M 6.3 0 8.71

Horse 8.4M 7 300 6.4M 6.3 9.21 8.42

Head 94.4M 9 180 62.5M 6.3 0 8.40

Table 1: Processing results. Adaptive quad patches representa-
tions of the test models.

Figure 8: WebGL implementation running in Chrome. 3D con-
tent can be delivered in a HTML5 canvas. Models are incrementally
loaded during rendering.

6.2 Adaptive rendering

The rendering tests were performed on a 1.6 GHz laptop, 4GB
RAM equipped with an Nvidia Geforce GTX 260M with 1 GB
video memory, and running a Linux Gentoo 2.6.39 distribution. In
the tests presented in this paper we used Chromium browser ver-
sion 19.0.1084.24 beta. The model exploration has been tested on a
variety of situations ranging from far views to strict close-ups with
sudden rotations to stress the capabilities of the system. In all cases
we were able to sustain interactive rendering rates with 1-pixel ac-
curacy with an average frame rates of 37 fps and never going below
13 fps. Lowest frame rates appear when the renderer is receiving
tiles when higher resolution patches are needed. The qualitative
performance of our adaptive renderer is illustrated in an accom-
panying video that shows live recordings of flythrough sequences.
Sequences were recorded on a window of 750× 350. Fig. 8 shows
a frame of the recorded sequence.

6.3 Network streaming

Extensive network tests have been performed on all test models, on
an ADSL 8Mbit/s connection, on a mobile broadband connection,
as well as on an intranet. Tests have been made for the viewer
application under interactive control.

In an interactive setting, since rendering is progressive and, on av-
erage, viewpoint motion is smooth, only few new patches per frame
need to be refined, and only data for patches not already cached are
requested to the server. We have measured the bandwidth required
by a client to provide a “no delay” experience in typical inspec-
tion sequences. We measured an average bit rate of 312Kbps for
exploration of areas not previously seen, and peaks of 2.8Mbps
at viewpoint discontinuities, i.e., when the application has to refine
the model all the way to the new viewpoint and the refinement algo-
rithm has to always push new patches to refine in the request queue
because of non incremental update.

By introducing client-side or server-side bandwidth limitations, it is
possible to reduce burden on network and server, making the system
more scalable while maintaining a good interactive quality. Due
to the reasonable compression rate and refinement efficiency, we
have found that using the system on a 8 Mbps ADSL line produces



Figure 7: Models rendered with the adaptive quad patch method. Top row shows the rendered models at pixel tolerance one. Bottom row
shows the patch structure. Complexity ranges from 6.4 to 62.5Msamples.

nice interactive results. In that case, delays in case of rapid motion
become visible, but with little detriment to interaction (e.g., only
2s are needed to produce a fully refined model visualization from
scratch). This also allows a single low-end server to manage a large
number of clients.

7 Conclusions and Future Work

We have presented an approach for creating and distributing com-
pact, streamable, and renderable 3D model representations. As for
other compressed streamable formats, we specialize on a particu-
lar kind of models and do not strive to exactly replicate the origi-
nal geometry and color, but only to visually approximate them in a
faithful way. With these constraints, we are able to produce an ef-
fective distributed system. Due to the small run-time CPU overhead
of the rendering component, and to the simplicity of the structures
involved, real-time performance is achieved both on conventional
GPU platforms using OpenGL, as well as on the emerging web-
based environments based on WebGL.

Besides improving the proof-of-concept implementation, we plan
to extend the presented approach in a number of ways. In partic-
ular, we plan to explore more aggressive compression techniques
based on exploiting the hierarchical representation and on factor-
ing repeated content. We are also currently incorporating occlusion
culling techniques, useful for datasets with a high depth complex-
ity, and we plan to introduce more sophisticated shading/shadowing
techniques.

Our approach can be seen as step aiming at bridging the gap that
currently exists from general-purpose meshes to rendering oriented
structures based on real-time tessellation with normal/bump maps,
which are typical of modern gaming platform but currently require
considerable human effort to create. We see a number of possible
applications of this technology. These include the automatic cre-
ation of rapidly renderable objects for local and online games and
the set-up of browsable 3D models repositories directly available
within WebGL-enabled browsers.
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