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Abstract This paper addresses target tracking in wireless

sensor networks (WSN) where the observed system is

assumed to evolve according to a probabilistic state space

model. We propose to improve the use of the variational

filtering (VF) by optimally quantizing the data collected by

the sensors. Recently, VF has been proved to be suitable to

the communication constraints of WSN. Its efficiency relies

on the fact that the online update of the filtering distribution

and its compression are executed simultaneously. However,

this problem has been used only for binary sensor networks

neglecting the transmission energy consumption in a WSN

and the information relevance of sensor measurements. Our

proposed method is intended to jointly estimate the target

position and optimize the quantization level under fixed and

variable transmitting power. At each sampling instant, the

adaptive method provides not only the estimate of the target

position by using the VF but gives also the optimal number

of quantization bits per observation. The adaptive quanti-

zation is achieved by minimizing the predicted Cramér–Rao

bound if the transmitting power is constant for all sensors,

and optimizing the power scheduling under distortion

constraint if this power is variable. The computation of the

predicted Cramér–Rao bound is based on the target position

predictive distribution provided by the VF algorithm.

The proposed adaptive quantization scheme suggests that

the sensors with bad channels or poor observation qualities

should decrease their quantization resolutions or simply

become inactive in order to save energy.

Keywords Wireless sensor networks � Variational
filtering � Adaptive method � Cramér–Rao bound

1 Introduction

Wireless Sensor Networks [1] nodes are powered by small

batteries, which are in practical situations non recharge-

able, either due to cost limitations or because they are

deployed in hostile environments with high temperature,

high pollution levels, or high nuclear radiation levels.

These considerations enhance energy-saving and energy-

efficient WSN designs. One technique to prolong battery

lifetime consists of optimizing quantization of measure-

ments collected by sensors. The problem of quantizing

observations to estimate a parameter, either the target

position or any other physical field (temperature, humidity,

. . .), is different from the problem of quantizing a signal for

later reconstruction [2]. Instead of reconstructing a signal,

our objective is rather estimating the target trajectory using

quantized observations.

There has already been a certain amount of research in

the area of quantization for target tracking in wireless

sensor networks. In [3], authors have derived the optimal

number of quantization levels as well as the optimal energy

allocation across bits, but they have neglected the infor-

mation content relevance of measured data. On the other

hand, the work in [4] used a VF algorithm to estimate the

target position but it assumed that the transmitting power is
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the same for all sensors. The approaches proposed in [5, 6]

are limited to a particular 1-bit per quantized observation.

The work in [7] has considered an increasingly complex

activation schemes in an attempt to reduce the consumed

energy and the error estimation. In [8], the authors have

proposed a ‘‘location-centric’’ method by dynamically

dividing the sensor set into geographic groups run by a the

cluster head. In the case of multiple observations, they

compare the data fusion versus the decision fusion meth-

ods. A distributed protocol for the tracking in sensor net-

works was developed in [9]. This technique organizes

sensors in clusters and uses three sensors to participate in

data collection to perform the target tracking process.

Target tracking using quantized observations is a non-

linear estimation problem that can be solved using

unscented Kalman filter (KF) [10], particle filters (PF) [11]

or variational filtering (VF) [12]. Recently, a variational

filtering has been proposed for solving the target tracking

problem since: (1) it respects the communication con-

straints of sensor, (2) the online update of the filtering

distribution and its compression are simultaneously per-

formed, and (3) it has the nice property to be model-free,

ensuring the robustness of data processing.

Concerning the particle filtering (PF) algorithm, the

enormous amount of particles has hampered its implemen-

tation in wireless sensor networks. In the literature, different

methods to approximate the particles distribution were

proposed in order to apply the PF inWSN [13–15]. The work

in [15] has proposed amessage approximating scheme based

on the greedy KD-tree approximation. The proposed

Gaussian Particle Filtering (GPF) algorithm [13] and the

Gaussian Sum Particle Filtering (GSPF) algorithm [14]

consist in approximating the posterior distribution by a

single Gaussian distribution and a weighted sum of Gaussian

distributions respectively. The principal defect of these

algorithms is the error propagation through the sensor net-

work, when approximating the particle representation by a

few number of Gaussian statistics.

The VF approach was only extended to Binary Sensor

Network (BSN) considering a cluster-based scheme [16].

The BSN is based on the binary proximity observation

model; it consists of making a binary decision according to

the strength of the perceived signal. Hence, only one bit is

transmitted for further processing if a target is detected.

This work has also been done considering a cluster-based

scheme, where sensors are partitioned into clusters [16]. At

each sampling instant, only one cluster of sensors is acti-

vated according to the prediction made by the VF algo-

rithm. Resource consumption is thus restricted to the

activated cluster, where intra-cluster communications are

dramatically reduced. Thanks to its power efficiency, the

cluster-based scheme is also considered in this paper. As

only a part of information is exploited (hard binary

decision), tracking in binary sensor networks suffers from

poor estimation performances. Our contribution is twofold:

(1) we investigate the impact of the choice of a fixed (in

time) quantization level and uniform power on the VF

algorithm performances and propose an adaptive quanti-

zation scheme; (2) we jointly optimize the power sched-

uling to minimize the transmission energy consumption in

WSNs.

The proposed method provides not only the Bayesian

filtering distribution of the target position but also opti-

mizes the quantization level under constant and variable

transmitting power. The optimal quantization level is

computed by minimizing the predicted Cramér–Rao bound

under constant transmitting power, and by optimizing the

power scheduling under variable power transmitting.

As the target position is unknown, the Cramér–Rao

bound is averaged according to the target position predic-

tive distribution provided online by the VF algorithm.

Similarly, the power scheduling is approximated using this

predicted information.

The rest of the paper is organized as follows. Section 2

presents the problem statement. The overview of the VF

algorithm and the prediction-based cluster activation are

described in Sect. 3. Then, the main contribution of this

paper which is the adaptive quantization under fixed and

variable transmitting power is presented in Sect. 4

Numerical simulations are shown in Sect. 5, and finally

concluding remarks are given in Sect. 6.

2 Modeling and problem statement

2.1 Quantized observation model

We assume that WSN is composed of randomly deployed

sensor, whose locations si ¼ si1; s
i
2

� �
; i ¼ 1; 2; . . .;Ns are

known, Ns is the total number of sensors. Sensor nodes

work collaboratively for mobile target tracking , while the

sink node gathers the information sensed by the sensor

nodes [9, 10, 11]. We are interested in tracking a target

position xbt ¼ ðx1;t; x2;tÞ
T

at each instant tðt ¼ 1; . . .;N;

where N denotes the number of observations). Consider the

activated sensor i, its observation ct
i is modeled by:

cit ¼ Kkxt � s
i
tk

g þ �t ð1Þ

where �t is aGaussian noisewith zeromean and a variancer2� ;

g and K are known constants. The sensor transmits its

observation if and only ifRmin�kxt � sitk�Rmax where Rmax

denotes the maximum distance at which the sensor can detect

the target, and Rmin is the minimum distance from which the

sensor can detect the target. Before being transmitted the

observation is quantized by partitioning the observation space
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into wt
i intervalsRj ¼ ½sjðtÞ; sjþ1ðtÞ�; where j 2 1; . . .;wi

t

� �
:

wt
i presents the quantization level to be determined. The

quantization level wt
i is sub-indexed by the sampling instant

t since it will be optimized online jointly with the target

position online estimation. The quantizer, assumed uniform,

is specified through: (1) the thresholds fsjðtÞg
j¼wi

tþ1

j¼1 ; where

(if g C 0): s1(t) = KRmin
g, sj(t) B sj?1(t) and swi

tþ1ðtÞ ¼

KRg
max; and (2) the quantization rule:

yit ¼ dj if cit 2 ½sjðtÞ; sjþ1ðtÞ� ð2Þ

where, the normalized dj is given by dj ¼
sjðtÞþD

2

s
wi
tþ1

ðtÞ�s1ðtÞ
; and

Q() is the quantization function. Figure 1 depicts a simple

example for the quantized observation model.

Then, the signal received by the CH from the sensor i at

the sampling instant t is written as,

zit ¼ bit:y
i
t þ nt ð3Þ

where bt
i
= ri

k is the ith sensor channel attenuation coef-

ficient at the sampling instant t, ri is the transmission dis-

tance between the ith sensor and the CH, k is the path-loss

exponent and nt is a random Gaussian noise with a zero

mean and a known variance rn
2. Figure 2 summarizes the

transmission scheme occurring during the data processing.

2.2 General state evolution model (GSEM)

Instead of the kinematic parametric model [17–19] which

is usually used in tracking problems, we employ a General

State Evolution Model (GSEM) [12, 20]. This model is

more appropriate to practical non-linear and non-gaussian

situations where no a priori information on the target

velocity or its acceleration is available. The target position

xt 2 R
nx at instant t is assumed to follow a Gaussian model,

where the expectation lt and the precision matrix kt are

both random. The randomness of the expectation and the

precision of the target position is used here to further

capture the uncertainty of the state distribution. A practical

choice of these distributions is a Gaussian distribution for

the expectation and a nx-dimensional Wishart distribution

for the precision matrix. In other words, the hidden state xt
is extended to an augmented state at ¼ ðxt; lt; ktÞ; yielding
this hierarchical model,

xt �Nðlt; ktÞ

lt �Nðlt�1;
�kÞ

kt �Wnxð�V; �nÞ

8
><

>:
ð4Þ

where the fixed hyper-parameters �k; �n and �V are respec-

tively the random walk precision matrix, the degrees of

freedom and the precision of the Wishart distribution.

Assuming a random mean and a random covariance for the

state xt leads to a probability distribution covering a wide

range of tail behaviors, which allows discrete jumps in the

target trajectory. The GSEM is depicted in Fig. 3.

The next section describes the Bayesian tracking solu-

tion based on a Quantized Variational Filtering (QVF)

algorithm.

3 Bayesian estimation approach via a QVF

3.1 Overview of the VF algorithm

In this section, we assume that the quantization level is

already optimized (see next Sect. 4). Hence, the observa-

tion model is completely defined. The aim of this section is

to describe the target position estimation procedure.

According to the model (4), the augmented hidden state

is now at ¼ ðxt; lt; ktÞ: We consider the posterior distri-

bution pðatjz1:tÞ; where z1:t ¼ fz1; z2; . . .; ztg denotes

the collection of observations gathered until time

Fig. 1 The quantized

observation model is described

by a simple example. With

respect to the first sensor, the

target is within its sensing range

at instant t. Observation yt
1 is

thus transmitted to the CH.

However the second sensor

keeps silent. The situation at

instant t ? 1 can be similarly

deduced
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t. The variational approach consists in approximating

pðatjz1:tÞ by a separable distribution qðatÞ ¼ PiqðaitÞ ¼
qðxtÞqðltÞqðktÞ that minimizes the Kullback–Leibler (KL)

divergence between the true filtering distribution and the

approximate distribution,

DKLðqjjpÞ ¼

Z
qðatÞ log

qðatÞ

pðatjz1:tÞ
dat ð5Þ

To minimize the KL divergence subject to constraintR
qðatÞdat ¼ Pi

R
q ait
� �

dait ¼ 1; the Lagrange multiplier

method is used, yielding the following approximate

distribution [12]

q ait
� �

/ exp hlog pðzt; atÞiPj 6¼iq a
j
tð Þ ð6Þ

where h:i
q a

j
tð Þ denotes the expectation operator relative to

the distribution q a
j
t

� �
:

Taking into account the separable approximate distri-

bution qðat�1Þ at time t - 1, the filtering distribution

pðatjz1:tÞ is sequentially approximated according to the (7)

(see Appendix for details):

p̂ðatjz1:tÞ ¼
pðztjatÞ

R
pðatjat�1Þqðat�1Þdat�1

pðztjz1:t�1Þ

/ pðztjxtÞpðxtjlt; ktÞpðktÞqpðltÞ;

with qpðltÞ ¼

Z
pðltjlt�1Þqðlt�1Þdlt�1:

ð7Þ

Therefore, through a simple integral with respect to lt-1,

the filtering distribution pðatjz1:tÞ can be sequentially

updated. Considering the GSEM proposed in above, the

evolution of q(lt-1) is Gaussian, namely pðltjlt�1Þ�N

ðlt�1; kÞ: Defining qðlt�1Þ�N l�t�1; k
�
t�1

� �
; qpðltÞ is also

Gaussian (see Appendix for details), with the parameters,

qpðltÞ�N ðlpt ; k
p
t Þ

where lpt ¼ l�t�1 and kpt ¼ ðk�t�1
�1 þ k

�1
Þ�1

ð8Þ

The temporal dependence is hence reduced to the inc-

orporation of only one Gaussian component approximation

qpðlt�1Þ: The update and the approximation of the filtering

distribution pðatjz1:tÞ are jointly performed, yielding a natural

and adaptive compression [21]. According to the (6),

variational calculus leads to this iterative solution (see

Appendix):

qðxtÞ / pðztjxtÞN ðxtjhlti; hktiÞ

qðltÞ / N ltjl
�
t ; k

�
t

� �

qðktÞ / Wn� ktjS
�
t

� �

qðltjlt�1Þ / N ðlpt ; k
p
t Þ

where the parameters are iteratively updated according to

the following scheme:

l�t ¼ k��1
t hktihxti þ kpt l

p
t

� �

k�t ¼ hkti þ kpt

n� ¼ �nþ 1

S
�
t ¼ hxtx

T
t i � hxtihlti

T � hltihxti
T þ hltl

T
t i þ

�S�1
� ��1

lpt ¼ l�t�1

kpt ¼ k��1
t�1 þ �k�1

� ��1

3.2 Prediction-based cluster activation using

the VF algorithm

The main advantage of the variational approach is the

compression of the statistics required for the update of the

filtering distribution between two successive instants.

This implicit compression makes the variational algorithm

adapted to be distributively implemented through the net-

work. In other words, it can be executed on a cluster-base

which is considered in this paper. The cluster head is here

Fig. 2 Illustration of the

communications path-ways in a

WSN: The 1st sensor makes a

noisy reading ct
1 . The

quantized measurement y1t ¼

Q c1t
� �

with Lt
1 bits of precision

is sent to the CH. The

measurement zt
1 is received by

the CH, it is corrupted by an

additive white Gaussian noise nt

Fig. 3 General state evolution model GSEM
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determined based on the predicted target position given by

the VF algorithm. Indeed,after updating the VF distribu-

tion, the role of the cluster head CHt (at the sampling

instant t) is to calculate the predictive distribution.

The predictive distribution can be efficiently updated by

the VF approach. In fact, taking into account the separable

approximate distribution at time t - 1, the predictive dis-

tribution is written,

pðatjz1:t�1Þ / pðxt; ktjltÞ

Z
pðltjlt�1Þqðlt�1Þdlt�1 ð9Þ

The exponential form solution, which minimizes

the Kullback–Leiblerdivergence between the predictive

distribution pðatjz1:t�1Þ and the separable approximate

distribution qtjt�1ðatÞ; yields Gaussian distributions for the

state and its mean and Wishart distribution for the precision

matrix:

qtjt�1ðxtÞ / N ðxtjhlti; hktiÞ

qtjt�1ðltÞ / N ltjl
�
t ; k

�
t

� �

qtjt�1ðktÞ / Wn� ktjS
�
t

� �
ð10Þ

where the parameters are updated according to the same

iterative scheme as in (9) and the expectations are exactly

computed as,

hxtiqtjt�1
¼ hltiqtjt�1

;

hxtx
T
t iqtjt�1

¼ hltiqtjt�1
þ hltiqtjt�1

hlti
T
qtjt�1

:
ð11Þ

Hence, the QVF provides at the sampling instant t, the

predicted target position xt=t�1 ¼ hxtiqtjt�1
: As shown in

Fig. 4, based on the predicted target position hxtiqtjt�1
; the

cluster head CHt-1 at sampling instant t - 1, selects the

next cluster head CHt. If the predicted target position

hxtiqtjt�1
remains in the vicinity of CHt-1, which means that

at least four of its salve sensors can detect the target [22],

then CHt = CHt-1. Otherwise, if hxtiqtjt�1
is going beyond

the sensing range of the current cluster, then a new CHt is

activated, based on the target position prediction hxtiqtjt�1

and its future tendency.

CHt ¼ argmax
k¼1;...;K

cos hkt
dkt

� �

where dkt ¼ khxtiqtjt�1
� LCHk

t
k

and hkt ¼ angleðhxt�1ihxtiqtjt�1

���������!
; hxt�1iLCHk

t

������!
Þ

ð12Þ

where K is the number of CHs in the neighborhood of

CHt-1 and LCHk
t
is the location of the kth neighboring CHt.

The next section is devoted to the developed method aimed

at adaptively (and jointly) optimizing the number of

quantization bits per observation.

4 Adaptive quantization for target tracking

The key idea behind the optimization of the quantization is

that under constant or variable transmitting power, a higher

quantization level could affect the estimation perfor-

mances. In fact, a quantizer is identified with quantization

level Nt
i, the decision boundaries sj and the corresponding

representation values dj. If the quantization level increases,

the quantized values dj are very close and the distance

between the symbols decreases. Hence, a small noise could

affect the decision rule, thus the estimation error increases

(see Fig. 5).

At sampling time t - 1, the selected cluster head CHt-1

executes the VF algorithm and provides the Gaussian

predictive distribution N xt=t�1; kt=t�1

� �
: The predicted

position allows the selection of the cluster to be activated

Fig. 4 Prediction-based CHt activation

Fig. 5 MSE versus the number of quantization bits (fixed in time)

varying in f1; 2; . . .; 8g for SNR = 3
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as described in Sect. 3.2. Furthermore, this target position

is used by the CHt-1 to give the optimal quantization level

bwi
t minimizing the predicted Cramér–Rao bound where the

transmission power is constant. When this transmitting

power is variable, the optimal of quantization level is

computed by optimizing the power scheduling. This opti-

mal quantization level is then transmitted to the CHt before

being broadcasted to the activated sensors so that they use

it to quantize their observations. These quantized obser-

vations are then used by the CHt to execute the VF algo-

rithm at the sampling instant t. In the following, we

describe the two techniques in details.

4.1 Optimizing the quantization for constant

transmitting powers

Where the transmitting power between sensors is fixed,

the optimal quantization level could be obtained by

minimizing the Cramér–Rao bound (CRB). This bound is

often used to evaluate the efficiency of a given estimator.

Inits simplest form, the bound states that the covariance

of any estimator is at least higher as the inverse of the

Fisher Information (FI) matrix. The FI matrix is a quan-

tity measuring the amount of information that the obser-

vable variable zt
i carries about the unknown parameter

xt: The FI matrix elements at the sampling instant t are

given by:

FI xt; s
i;wi

t

� �	 

l;k

¼
o logðpðzitjxtÞÞ

oxðl;tÞ

o logðpðzitjxtÞÞ

oxðk;tÞ

� �

zit jxt

ðl; kÞ 2 f1; 2g � f1; 2g ð13Þ

where zt
i denotes the observation of the i-th sensor at the

sampling instant t; xt ¼ ½x1; x2�
T

is the unknown 2 9 1

vector to be estimated, and

p zitjxt
� �

¼
Xwi
t�1

j¼0

p sjðtÞ\cit\sjþ1ðtÞ
� �

N bdj;r
2
�

� �
ð14Þ

where

p sjðtÞ\cit\sjþ1ðtÞ
� �

¼

Zsjþ1ðtÞ

sjðtÞ

N qcitðxtÞ; r
2
n


 �
dcit ð15Þ

is computed according to the quantization rule defined in

(2), in which

qcitðxtÞ ¼ Kkxt � sitk
g; ð16Þ

Then, the derivative of the log-likelihood function can

be expressed as,

o logðpðzitjxtÞÞ

oxl;t
¼

gKffiffiffiffiffiffiffi
2r2n

p ðxl;t � sl;iÞkxl;t � sl;ik
g�2

�
Xwi

t

k¼1

exp �
1

2

ðsk � qcitðxtÞÞ
2

r2n

 " !

� exp �
1

2

ðskþ1 � qcitðxtÞÞ
2

r2n

 !#

� exp �
1

2

ðztðkÞ � dkÞ
2

r2�

 !

=

Xwi
t

k¼1

erfc
sk � qcitðxtÞffiffiffiffiffiffiffi

2r2n
p

 !"

�erfc
skþ1 � qcitðxtÞffiffiffiffiffiffiffi

2r2n
p

 !#

� exp �
1

2

ðztðkÞ � dkÞ
2

r2�

 !

ð17Þ

Substituting expression (17) in (13), the FI matrix is

easily computed by integrating over the likelihood function

p zitjxt
� �

at the sampling instant t.

It is worth noting that the expression of the FI given in (17)

depends on the target position xt at the sampling instant t and

on the quantization level wt: However, as the target position
is unknown, the FI is replaced by its expectation according to

the predictive distribution p xtjzi1:t�1

� �
of the target position:

FI xt; s
i;wi

t

� �� �
¼ FI xt;w

i
t

� �� �
pðxt jzi1:t�1

Þ
ð18Þ

Computing the above expectation is analytically

untractable. However, as the VF algorithm yields a Gaussian

predictive distribution Nðxt; xt=t�1; kt=t�1Þ; expectation (18)

can be efficiency approximated by a Monte Carlo scheme:

FIðxt; s
i;wi

tÞ
� �

’
1

J

XJ

j¼1

FIð~x j
t ; s

i;wi
tÞ;

~x j
t �NðxpðtÞ; xt=t�1; kt=t�1Þ

ð19Þ

where ~x
j
t is the jth drawn sample at instant t, and J is the

total number of drawn vectors ~xt:

Then, the CH can compute at the sampling instant t the

optimal quantization level used by ith sensor by maxi-

mizing the FI matrix:

bwi
t ¼ arg maxð FIðxt; s

i;wi
tÞ

� �
Þ: ð20Þ

4.2 Optimizing the quantization for variable

transmitting power

Contrary to the previous subsection, we assume here that

the transmitting power could be controlled by the sensors.
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The objective is then the optimization of the transmitting

power while ensuring a good tracking performance.

The total amount of the required transmission power used

by the ith sensor within a cluster [23] is proportional to:

PiðtÞ / rki wi
t � 1

� �
: ð21Þ

The optimal resource allocation problem is expressed as

an optimization of the quantization level wt
i over the field

Zþ subject to an average estimation error constraint M0,

min
wi
t2Zþ

X

i¼1;...;Na

PiðtÞ2

s.t CRB xt;w
i
t

� �
\M0

ð22Þ

where Na is the number of activated sensors at instant t.

The Lagrangian formulation of this constrained opti-

mization is expressed as,

L ¼
X

i

r2ki wi
t � 1

� �2
þ lCRB xt;w

i
t

� �
�M0

� �
ð23Þ

where l is the Lagrange multiplier constant.

Then, the optimal value of bwi
t is a solution of the

following equation:

f bwi
t

� �
¼

oL

o bwi
t

¼ bwi
t � 1

� �
� g bwi

t

� �
¼ 0 ð24Þ

where g bwi
t

� �
denotes � l

2r2k
i

oCRBðxt ;bw i
tÞ

obw i
t

:

Applying the Newton–Raphson procedure yields the

following sequence converging to the solution of (24):

bwi
tðnþ 1Þ ¼ bwi

tðnÞ �
f bwi

tðnÞ
� �

f 0 bwi
tðnÞ

� �

¼ bwi
tðnÞ �

bwi
tðnÞ � 1

� �
� g bwi

tðnÞ
� �

1� g0 bwi
tðnÞ

� � ð25Þ

The overall proposed method is summarized in

Algorithm 1 and its diagram is shown in Fig. 6.

5 Simulation results analysis

The performance of the tracking algorithm can be

essentially assessed by the tracking accuracy (detailed in

Sect. 5.1), by the Root Mean Square Error (RMSE)

(detailed in Sect. 5.2), and by computing the energy

expenditure during the whole tracking process (detailed in

Sect. 5.3).

In the following, we compare the tracking accuracy of

the proposed adaptive quantized variational filter (AQVF)

method, with the quantized variational filter processing

under an uniform transmitting power (QVF-U), the binary

variational filtering (BVF) [24], the centralized quantized

gaussian particle filter (QGPF) and the centralized quan-

tized particle filter (QPF). All the simulations shown in this

paper are implemented with Matlab version 7.1, using an

Intel Pentium CPU 3.4 GHz, 1.0 G of RAM PC.

The system parameters considered in the following

simulations are: g = 2 for free space environment, the

constant characterizing the sensor range is fixed for sim-

plicity to K = 1, the cluster head noise power is

rn
2
= 0.05, the total number of sensors is Ns = 100, the

total sampling instants is N = 100, the sensor noise power

is r2� ¼ 0:01; the maximum sensing range Rmax (resp. the

minimum sensing range Rmin) is fixed to 10 m (resp. 0 m)

and 100 particles were used in AQVF, QVF-U, BVF,

QGPF and QPF methods.

To investigate the impact of the choice of a fixed

(in time) quantization level on the VF algorithm perfor-

mance, we run the VF algorithm for different fixed quan-

tization levels used per observation and compute the

average estimation error over the target trajectory (MSE).

Figure 5 plots the MSE versus the number of bits per

observation varying in f1; 2; . . .; 8g: We note that the MSE

is minimum for a quantization bit number bL ¼ 3:

Algorithm 1 Pseudo-code of the proposed algorithm

— Initialization:

1) Select sensors

2) Quantize using an uniform power

3) Execute the VF algorithm

— Iterations:

1) Select sensors according to Sub. III-B.

2) Compute the Cramér–Rao bound based on the predicted target position.

a) Compute the optimal level quantization by minimizing the CRB, if the transmitting power is constant for all sensors using

the equation (25).

b) Compute the optimal level quantization by optimizing the power scheduling, if the transmitting power is variable using

the equation (21).

3) Quantize using the optimal level quantization.

4) Execute the VF algorithm.
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5.1 Analysis of tracking accuracy

To show the efficiency of the proposed method, we com-

pare it with four previously proposed methods. The quan-

tized proximity observation model, formulated in (2), was

adopted for all the algorithms, except for the BVF algo-

rithm, which is based on the binary proximity sensors.

One can notice from Fig. 7a that, even with abrupt

changes in the target trajectory, the desired quality is

achieved by the AQVF algorithm and outperforms the

QVF-U algorithm. Figure 7b compares their tracking

accuracies in terms of Root Mean Square Error (RMSE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ðx� bxÞ2

 �r

:

where x (resp. bx) is the true trajectory (resp. the estimated

trajectory).

The results confirm the impact of neglecting the trans-

mission energy consumption in a WSN and the information

relevance of sensor measurements. Unlike the QPF algo-

rithm, the temporal dependence in the VF is reduced to one

single Gaussian statistic instead of a huge number of par-

ticles. On the other hand, the precision of the PF algorithm

depends on the choice of the importance sampling distri-

bution. The VF yields an optimal choice of the sampling

distribution over the target position xt by minimizing the

KL divergence. In fact, variational calculus leads to a

simple Gaussian sampling distribution whose parameters

(estimated iteratively) depends on the observed data. As

can be expected, with the amount of particles increasing,

the QPF algorithm demonstrates much more accurate

tracking at the cost of a higher computation complexity. In

particular, the computation time grows proportionally to

the increment of the number of particles. The tracking

Fig. 6 A global overview

of the proposed method
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accuracies of the QPF and QGPF are compared to that of

AQVF in Figs. 9, 10 respectively. The smaller RMSE of

the AQVF in comparison with the two approximation

methods confirms once again the effectiveness of the

AQVF algorithm in terms of tracking accuracy.

5.2 Root mean square error (RMSE) analysis

The Root Mean Square Error (RMSE) of the above algo-

rithms may depend on several factorssuch as the trans-

mitting power between the candidate sensors and the CH,

the nodes density, thesensing range, the pass losses as well

as the sensor noise variances. The purpose of this subsec-

tionis to study the impact of these factors when comparing

the performance of the above mentionedtracking algo-

rithms. Figure 11a shows the variation of the RMSE with

respect to the nodes densityvarying in f50; . . .; 200g: As
can be expected, the RMSE decreases for all the algorithms

when the nodes density increases. One can also note that

the proposed AQVF method outperforms all the other

methods when varying the nodes density. It is also worth

noting that its RMSE decreases more sharply than the other

filtering methods. Figure 11b plots the RMSE versus the

nodes noise variances varying in f0; . . .; 0:25g and Fig. 12a
plots the RMSE with respect to the nodes transmitting

power (varying in f50; . . .; 200g). From the Fig. 12b, we

can show that when sensing range varying in f5; . . .; 13g;
the error estimation decreases. These results confirm that

the proposed method outperforms the classical methods

when varying the simulation conditions.

5.3 Energy analysis

The energy consumption evaluation is done following the

model proposed in [25]; in which we assume that: (1) the

communication between the active sensors is via single
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hop, (2) the energy consumed in scheduling and computing

can be neglected relative to the energy consumed during

communications.

The communication energy consists of three compo-

nents: transmitter electronics energy, radio energy, and

receiver electronics energy. The transmit power consumed

at sensor (i), while transmitting data to CH is given by:

ET ¼ �e þ Li�ar
k
i ð26Þ

where �a is the energy dissipated in Joules per bit per m2; �e
is energy consumed by the circuit per bit.

The receiving power consumed at ith sensor when

receiving data from the CH, is given by:

ER ¼ Li�r ð27Þ

Similarly, the power consumed in sensing is defined by:

ES ¼ Li�s ð28Þ

where �s is the energy expending parameter for sensing Li

bits of data.

Considering the energy model, we choose �a ¼

100 pJ=bit=m2; �e ¼ 50 nJ=bit; �r ¼ 135 nJ=bit; �s ¼ 50 nJ=
bit [26]. Let Np denote the number of particles, Nw the

number of corresponding weights, Lopt the optimal bits

number obtained by AQVF, and Lf the fixed bits number.

The nodes communication of these algorithms were com-

pared when a hand-off operation occurred. One can notice

in Table 1 that the first components LfNa are equal for the

QVF-U, QPF and QGPF algorithms, since each activated

sensor that detects the target transmits Lf bits of informa-

tion to the CH. While for the AQVF algorithm, each
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Table 1 Nodes communication comparison

Method Nodes communication (bits)

AQVF LoptNa ? 32 ? 64

QVF-U LfNa ? 32 ? 64

BVF Na ? 32 ? 64

QPF LfNa ? 32Np ? 16Nw

QGPF LfNa ? 32 ? 64
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activated sensor can transmit Lopt (the optimal bits num-

ber) bits of data. However, for the BVF, each activated

sensor transmits one bit of information to the CH. By

approximating the filtering distribution with a single

Gaussian statistic, the VF and GPF just have to transmit

the expectation and the precision matrix. Nodes commu-

nication of the QPF mainly lies in communicating the

particles and their corresponding weights, which is much

greater than that of the VF and GPF. The nodes com-

munication is shown in Table 1. From Figs. 13, 14, 15,

and 16, wecan see that our protocol successfully balances

the trade-off between the energy consumptionand the

tracking accuracy even with several abrupt changes in

the trajectory for all algorithms. These results confirm that

the proposed method outperforms the classical algorithms

in terms of energy expenditure during the whole tracking

process.

6 Conclusions

The main objective of this contribution is to show that data

collection from sensors can beoptimized by adaptively

controlling the quantization level. As for economical rea-

sons, in the hardware layer, the deployment of quantized

sensors greatly saves energy. In the software layer, the

adaptive VF algorithm decreases the information exchan-

ged between CHs. The proposedmethod provides not only

the estimate of the target position using the variational

filteringalgorithm but also gives the optimal number of

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
x 10

−5

Time (s)

E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

Energy Consumption Comparison

AQVF

QPF

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8
x 10

−5

Time (s)

E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

Energy Consumption Comparison

AQVF

QPF

(a) (b)Fig. 15 Energy consumption

comparison between AQVF and

QPF algorithms for

a L = 3. b L = 4

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−5

Time (s)

E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

Energy Consumption Comparison

AQVF

QGPF

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−5

Time (s)

E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

Energy Consumption Comparison

AQVF

QGPF

(a) (b)Fig. 16 Energy consumption

comparison between AQVF and

QGPF algorithms for

a L = 3. b L = 4

1636 Wireless Netw (2011) 17:1625–1639

123



quantization bits per observation. This adaptivequantiza-

tion is obtained by minimizing the Cramer–Rao bound if

the transmitting power isfixed or by optimizing the power

scheduling if the transmitting power is variable. The cri-

teriacomputation is based on the target position predictive

distribution provided by the variationalfiltering algorithm.

Appendix: Variational calculus

Assuming that the approximate distribution for the mean

lt�1 follows a gaussian model qðlt�1Þ�N l�t�1; k
�
t�1

� �� �

and taking into account the Gaussian transition of the mean

(p ltjlt�1Þ�N ðlt�1;
�k

� �
), the predictive distribution of lt

is given by:

qpðltÞ ¼

Z
pðltjlt�1Þqðlt�1Þdlt�1

�N l�t�1; k�t�1
�1 þ �k

�1

 ��1

� �
: ð29Þ

Let denote l
p
t and k

p
t respectively the mean and the precision

of the Gaussian distribution qpðltÞ : qpðltÞ�N l
p
t ; k

p
t

� �
:

According to the (6), the approximate distribution qðltÞ is
expressed as:

qðltÞ / exphlog pðz1:t; atÞiqðxtÞqðktÞ

/ exphlog pðatjztÞiqðxtÞqðktÞ

/ exphlog pðztjxtÞ þ log pðxtjlt; ktÞ þ log pðktÞ

þ log qpðltÞiqðxtÞqðktÞ: ð30Þ

Therefore,

qðltÞ / qpðltÞexphlogpðxtjlt;ktÞiqðxtÞqðktÞ

/ qpðltÞexph�
1

2
ðxt �ltÞ

T
ktðxt �ltÞiqðxtÞqðktÞ

/ qpðltÞexp�
1

2
tr hktiqðktÞhðxt �ltÞ

Tðxt �ltÞiqðxtÞ

h in o

/ exp�
1

2
lt �lpt
� �T

kt lt �lpt
� �

� 2lTt hktihxti
h

þlt
Thktilt



;

ð31Þ

yielding a Gaussian distribution qðltÞ ¼N l�t ;k
�
t

� �
: The

first and the second derivatives of the logarithm of qðltÞ
are expressed as:

ologðqðltÞÞ

olt
¼ �

1

2
2kpt ðlt � lpt Þ � 2hktihxti þ 2hktilt
	 


;

o
2logðqðltÞÞ

oltolt
T

¼ �kpt � hkti;

the precision k�t and the mean l�t of qðltÞ are obtained as

follows:

k�t ¼ hkti þ kpt ; and l�t ¼ k��1
t hktihxti þ kpt l

p
t

� �
:

ð32Þ

The approximate separable distribution corresponding to kt
can be computed following the same reasoning as above:

qðktÞ / exphlog pðatjztÞiqðxtÞqðltÞ

/ exphlog pðztjxtÞ þ log pðxtjlt; ktÞ þ log pðktÞ

þ log qpðltÞiqðxtÞqðltÞ

/ pðktÞ exphlog pðxtjlt; ktÞiqðxtÞqðltÞ

/ W2ð�V; �nÞjktj
1
2 exp

�
1

2
tr kthðxt � ltÞ

Tðxt � ltÞiqðxtÞqðltÞ

h in o

/ jktj
�nþ1�ð2þ1Þ

2 exp

�
1

2

n
tr
h
kt hxtx

T
t i � hxtihlti

T
�

�hltihxti
T þ hltl

T
t i þ

�V
�1
�io

; ð33Þ

which yields a Wishart distribution W2ðV
�; n�Þ for the

precision matrix kt with the following parameters:

n� ¼ �nþ1;

V
� ¼ hxtxTt i�hxtihlti

T �hltihxti
T þhltl

T
t iþ

�V
�1


 ��1

:

(

ð34Þ

Finally, the approximate distribution qðxtÞ has the

following expression:

qðxtÞ / exphlog pðatjztÞiqðltÞqðktÞ

/ exphlog pðztjxtÞ þ log pðxtjlt; ktÞ þ log pðktÞ

þ log qpðltÞiqðltÞqðktÞ

/ pðztjxtÞ exphlog pðxtjlt; ktÞiqðltÞqðktÞ

/ pðztjxtÞ

exp�
1

2
tr hktiqðktÞhðxt � ltÞ

Tðxt � ltÞiqðltÞ

h in o

/ pðztjxtÞN ðhlti; hktiÞ; ð35Þ

which does not have a closed form. Therefore, contrary to

the cases of the mean lt and the precision kt; in order to

compute the expectations relative to the distribution qðxtÞ;
one has to resort to the importance sampling method

where samples are generated according to the Gaussian

Nðhlti; hktiÞ and then weighted according to the likelihood
pðztjxtÞ:

References

1. Chen, Y., & Zhao, Q. (2005). On the lifetime of wireless sensor

networks. IEEE Communications Letters, 9(11), 976–978.

Wireless Netw (2011) 17:1625–1639 1637

123



2. Gray, R. M. (2006). Quantization in task-driven sensing and

distributed processing. In IEEE International conference on

acoustics, speech, and signal processing (Vol. 5, pp. 1049–

1052).

3. Luo, X., & Giannakis, G. (2008). Energy-constrained optimal

quantization for wireless sensor networks. EURASIP Journal on

Advances in Signal Processing, 1–12.

4. Mansouri, M., Ouchani, I., Snoussi, H., & Richard, C. (2009).

Cramer–Rao bound-based adaptive quantization for target

tracking in wireless sensor networks. In IEEE/SP workshop on

statistical signal processing, 2009. SSP’09.

5. Ribeiro, A., Giannakis, G. B., &Roumeliotis, S. I. (2006). SOI-KF:

Distributed Kalman filtering with low-cost communications using

the sign of innovation. IEEE Transactions on Signal Processing,

54(12), 4782–4795.

6. Fang, J., & Li, H. (2008). Distributed adaptive quantization for

wireless sensor networks: From delta modulation to maximum

likelihood. Signal Processing, IEEE Transactions on, 56(10),

5246–5257.

7. Pattem, S., Poduri, S., & Krishnamachari, B. (2003). Energy-

quality tradeoffs for target tracking in wireless sensor networks.

In Information processing in sensor networks (pp. 553–553).

Springer: Berlin.

8. Brooks, R., Ramanathan, P., & Sayeed, A. (2003). Distributed

target classification and tracking in sensor networks. Proceedings

of the IEEE, 91(8), 1163–1171.

9. Yang, H., & Sikdar, B. (2003). A protocol for tracking mobile

targets using sensor networks. In Sensor network protocols and

applications, 2003. Proceedings of the First IEEE. 2003 IEEE

international workshop on IEEE (pp. 71–81).

10. Julier, S., & Uhlmann, J. (2004). Unscented filtering and

non-linear estimation. In Proceedings of the IEEE (Vol. 92,

pp. 401–422).

11. Djuric, P., Kotecha, J. Z. J., Huang, Y., Ghirmai, T., Bugallo, M.,

& Miguez, J. (2003). Particle filtering. IEEE Signal Processing

Magazine, 20, 19–38.

12. Snoussi, H., & Richard, C. (2006). Ensemble learning online

filtering in wireless sensor networks. In IEEE ICCS International

conference on communications systems.

13. Kotecha, J., & Djuric, P. (2003). Gaussian particle filtering. IEEE

Transactions on Signal Processing, 51(10), 2592–2601.

14. Kotecha, J., & Djuric, P. (2003). Gaussian sum particle filtering.

IEEE Transactions on Signal Processing, 51(10), 2602–2612.

15. Ihler, A., Fisher, J., III., Willsky, A. (2005). Particle filtering

under communications constraints. In Proceedings statistical

signal processing (SSP) 2005.

16. Teng, J., Snoussi, H., & Richard, C. (2007). Binary variational

filtering for target tracking in wireless sensor networks. In IEEE

workshop on statistical signal processing (pp. 685–689).
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