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Adaptive quantum state tomography via linear regression
estimation: Theory and two-qubit experiment
Bo Qi1,2,3, Zhibo Hou4,5, Yuanlong Wang6, Daoyi Dong6, Han-Sen Zhong4,5, Li Li3, Guo-Yong Xiang4,5, Howard M. Wiseman3,
Chuan-Feng Li4,5 and Guang-Can Guo4,5

Adaptive techniques have great potential for wide application in enhancing the precision of quantum parameter estimation. We
present an adaptive quantum state tomography protocol for finite dimensional quantum systems and experimentally implement
the adaptive tomography protocol on two-qubit systems. In this adaptive quantum state tomography protocol, an adaptive
measurement strategy and a recursive linear regression estimation algorithm are performed. Numerical results show that our
adaptive quantum state tomography protocol can outperform tomography protocols using mutually unbiased bases and the two-
stage mutually unbiased bases adaptive strategy, even with the simplest product measurements. When nonlocal measurements are
available, our adaptive quantum state tomography can beat the Gill–Massar bound for a wide range of quantum states with a
modest number of copies. We use only the simplest product measurements to implement two-qubit tomography experiments. In
the experiments, we use error-compensation techniques to tackle systematic error due to misalignments and imperfection of wave
plates, and achieve about a 100-fold reduction of the systematic error. The experimental results demonstrate that the improvement
of adaptive quantum state tomography over nonadaptive tomography is significant for states with a high level of purity. Our results
also show that this adaptive tomography method is particularly effective for the reconstruction of maximally entangled states,
which are important resources in quantum information.
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INTRODUCTION
One of the central problems in quantum science and technology
is the estimation of an unknown quantum state.1 Quantum state
tomography (QST) as the procedure of experimentally determin-
ing an unknown quantum state has become a standard
technology for verification and benchmarking of quantum
devices.2–7 Two key tasks in QST are data acquisition and data
analysis. The aim of data acquisition is to devise appropriate
measurement strategies to acquire information for reconstructing
the quantum state. Then, in the step of data analysis, the acquired
data generates an estimate of the unknown quantum state by use
of an estimation algorithm.
In order to enhance the efficiency in data acquisition, it is

desired to develop optimal measurement strategies for collecting
data. However, an optimal measurement strategy, which is only
known for a few special cases,2, 8, 9 depends on the unknown
state. To circumvent this issue, many kinds of fixed sets of
measurement bases have been designed to be optimal either
in terms of the average over a certain quantum state space10–14 or
in terms of the worst case in the quantum state space.6 For
instance, improved state estimation can be achieved by taking
advantage of mutually unbiased bases (MUB)10, 14 and symmetric
informationally complete positive operator-valued measures
(SIC-POVM).15, 16 For multi-partite quantum systems, MUB and

SIC-POVM are difficult to experimentally realize since they involve
nonlocal measurements. There are also other choices of optimal
measurement bases in terms of robustness against errors.17, 18 The
question of how to efficiently acquire information of an unknown
quantum state using simple measurements that are easy to realize
experimentally remains open.
For data analysis in tomography, although many methods, such

as maximum-likelihood estimation,4, 19, 20 Bayesian mean estima-
tion,21, 22 and least-squared inversion,23 have been used to
reconstruct the quantum state, this task can be computationally
intensive, and may take even more time than the experiments
themselves. It has been reported in ref. 5 that using the maximum-
likelihood method to reconstruct eight-qubit took weeks of
computation. Therefore, the development of an efficient data
analysis algorithm is also a critical issue in QST.6, 24 In ref.6, a
recursive linear regression estimation (LRE) algorithm was
presented which is much more computationally efficient in the
sense that it can greatly save the cost of computation as
compared to the maximum-likelihood method with only a small
amount of accuracy sacrificed. This method has even further
optimized to fully reconstruct a 14-qubit state within four hours
via parallel GPU programming.25

For a given number of copies of the system, in order to improve
the tomography accuracy by better tomographic measurements, a
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natural idea is to develop an adaptive tomography protocol where
the measurement can be adaptively optimized based on data
collected so far. Adaptive measurements have shown more
powerful capability than nonadaptive measurements in quantum
phase estimation,26–28 phase tracking,29 quantum state discrimi-
nation,30, 31 and Hamiltonian estimation.32, 33 Actually, adaptivity
has been proposed for QST in various contexts.2, 21, 24, 34–39 For
example, the results on one qubit have demonstrated that
adaptive QST can improve the accuracy quadratically considering
the infidelity index.24 However, when generalizing their results to
n-qubit systems, the adaptive tomography protocol will involve
nonlocal measurements which are hard to realize in experiments.
Adaptive QST based on Bayesian estimation21, 38 has been
presented and experimental results of factorized adaptive
measurements have been demonstrated in two-qubit systems.40

However, Bayesian algorithm estimation algorithm has usually a
much higher computational complexity than LRE for QST.
In this paper, we combine the computational efficiency of the

recursive technique of ref. 6 with a new adaptive protocol that
does not necessarily require nonlocal measurement to obtain a
new protocol: adaptive QST via LRE. In this paper, we call it
recursively adaptive quantum state tomography (RAQST) because
the parameter estimation is recursively updated41 and adaptive
measurements are used. In our RAQST protocol, no prior
assumption is made on the state to be reconstructed. The state
estimate is updated based on the current estimate and the new
measurement data. Thus, we do not have to combine all the
historical information with the new acquired data to update the
estimate as the maximum-likelihood method. Thanks to the
simple recursive estimation procedure, we can obtain the estimate
state in a realtime way, and using the estimate we can adaptively
optimize the measurement strategies to be performed in the
following step. In our RAQST protocol, the measurement to be
performed at each step is optimized upon the corresponding
admissible measurement set determined by the experimental
conditions.
It is first demonstrated numerically that our RAQST, even with

the simplest product measurements, can outperform the tomo-
graphy protocols using MUBs and the two-stage MUB adaptive
strategy. For maximally entangled states (MESs), the infidelity can
even be reduced to beat the Gill-Massar (GM) bound which is a
type of quantum Cramér–Rao inequality.2 This is possible because
the GM bound assumes an unbiased estimator, whereas our
experiments are biased because they are constrained to satisfy the
positivity condition, which is particularly relevant in the case of
high purity. Moreover, if nonlocal measurements are available,
with our RAQST the infidelity can be further reduced. For a wide
range of quantum states, the infidelity of our RAQST can be
reduced to beat the Gill–Massar bound with a modest number of
copies. We perform the two-qubit state tomography experiments
using only the simplest product measurements, and the experi-
mental results demonstrate that the improvement of our RAQST
over nonadaptive tomography is significant for states with a high
level of purity. This limit (very high purity) is the one relevant for
most forms of quantum information processing.

RESULTS
Adaptive LRE
A LRE method for QST was proposed in ref. 6, and the results have
shown that the LRE approach has much lower computational
complexity than the maximum-likelihood estimation method for
quantum tomography. Here, we further develop this LRE method
to present an adaptive QST protocol that can greatly improve the
precision of tomography.
We first convert a QST problem into a parameter estimation

problem of a linear regression model. Consider a d-dimensional

quantum system with Hilbert space H. Let fΩigd
2�1

i¼1 denote a set
of Hermitian operators satisfying (i) Tr(Ωi) = 0 and (ii) Tr(ΩiΩj) = δij,
where δij is the Kronecker function. Using this set, the quantum
state ρ to be reconstructed can be parameterized as

ρ ¼ I
d
þ

Xd2�1

i¼1

θiΩi; ð1Þ

where I is the identity matrix and θi = Tr(ρΩi). Let
Θ ¼ ðθ1; � � � ; θd2�1ÞT , where T denotes the transpose operation.
A quantum measurement can be described by a positive

operator-valued measure (POVM) fEigMi¼1, which is a set of positive
semidefinite matrices that sum to the identity, i.e., Ei≥ 0 andPM

i¼1Ei ¼ I. In QST, different sets of POVMs should be appro-
priately combined to efficiently acquire information of the
unknown quantum state. Let M ¼ ∪

j¼1
MðjÞ denote the admissible

measurement set, which is a union of POVMs determined by the

experimental conditions. Each POVM is denoted as

MðjÞ ¼ fEðjÞi gMðjÞ
i¼1 . Using the set of fΩkgd

2�1
k¼1 , elements of the POVM

can be parameterized as

EðjÞi ¼ γ
ðjÞ
i;0

I
d
þ

Xd2�1

k¼1

γ
ðjÞ
i;kΩk ;

where γ
ðjÞ
i;0 ¼ TrðEðjÞi Þ, and γ

ðjÞ
i;k ¼ TrðEðjÞi ΩkÞ. Let Γ

ðjÞ
i ¼

ðγðjÞi;1; � � � ; γðjÞi;d2�1
ÞT : When we perform the POVM MðjÞ on copies

of a system in state ρ, the probability that we observe the result m

is given by

pðmjMðjÞÞ ¼ TrðEðjÞm ρÞ ¼ γ
ðjÞ
m;0=d þ ΘTΓðjÞm : ð2Þ

Assume that the total number of experiments is N, and we

perform a measurement described by MðjÞ ¼ fEðjÞi gM
ðjÞ

i¼1 n(j) times.

Let nðjÞm denote the number of the occurrence of the outcome m
from the n(j) measurement trials of MðjÞ. Let p̂ðmjMðjÞÞ ¼ nðjÞm =nðjÞ,
and eðjÞm ¼ p̂ðmjMðjÞÞ � pðmjMðjÞÞ. According to the central limit

theorem, eðjÞm converges in distribution to a normal distribution
with mean 0 and variance ½pðmjMðjÞÞ � p2ðmjMðjÞÞ�=nðjÞ . Using
(2), we have the linear regression equations for m = 1, …, M(j),

p̂ðmjMðjÞÞ ¼ γ
ðjÞ
m;0=d þ ΘTΓðjÞm þ eðjÞm : ð3Þ

Note that p̂ðmjMðjÞÞ, γðjÞm;0=d and Γ
ðjÞ
m are all available, while eðjÞm

may be considered as the observation noise. Hence, the problem
of QST is converted into the estimation of the unknown vector Θ.
To give an estimate with a high level of accuracy, the basic idea

of LRE is to find an estimate Θ̂t such that

Θ̂t ¼ argminΘ̂
Xt

k¼1

XMðjk Þ

m¼1

WðjkÞ
m ½p̂ðmjMðjkÞÞ � γ

ðjkÞ
m;0=d � Θ̂

T
ΓðjkÞm �2: ð4Þ

Here, MðjkÞ denotes the POVM MðjkÞ ¼ fEðjkÞm gM
ðjk Þ

m¼1 being
performed at the k-th step. The notation WðjkÞ

m denotes the weight
of the corresponding linear regression equation. In general, the
smaller the variance of eðjkÞm is, the more the information can be
extracted by EðjkÞm . Therefore, the corresponding weight of the
regression equation should be larger. A sound choice of WðjkÞ

m is
the estimate of the inverse of the variance of eðjkÞm , i.e.,
WðjkÞ

m ¼ nðjkÞ=½p̂ðmjMðjkÞÞ � p̂2ðmjMðjkÞÞ�.
A recursive LRE algorithm6 can be utilized to find the solution of

Θ̂t . For completeness, we present the recursive LRE algorithm in
section A of the Supplementary Material. Its basic idea is that one
only needs to store the best estimate state so far, and then update
it using a bunch of new measurement results with a fixed setting.
This is quite different from the maximum-likelihood estimation
method since there one has to combine all the historical
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information with the new collected data to update the estimate,
which is quite computationally intensive. It has been demon-
strated in Fig. 1 of6 that the LRE tomography algorithm can greatly
reduce the total cost of computation with only a small amount of
accuracy sacrificed in comparison with the maximum-likelihood
estimation method.
As demonstrated in Section B of the Supplementary Material,

when the number of copies N of the unknown quantum state
becomes large, the only relevant measure of the quality of
estimation becomes the mean squared error matrix
EðΘ̂t � ΘÞðΘ̂t � ΘÞT . The mean squared error matrix depends
upon the state ρ (i.e., Θ) to be reconstructed and the chosen
POVMs. Thanks to the iterative algorithm, we can obtain the
estimate of the state ρ recursively, and then adaptively optimize
the POVM measurements that should be performed in order to
minimize the mean squared error in the next step. By doing so,
the accuracy of the tomography can be greatly improved. The

details of how to adaptively choose POVMs are presented in
Section C of the Supplementary Material.
Using the solution Θ̂t in (4) and the relationship in (1), we can

obtain a Hermitian matrix μ̂ with Trμ̂ ¼ 1. However, μ̂ may have
negative eigenvalues and be nonphysical due to the randomness
of measurement results. In this work, the physical estimate ρ̂ is
chosen to be the closest density matrix to μ̂ under the matrix 2-
norm. In standard state reconstruction algorithms, this task is
computationally intensive20. However, we can employ the fast
algorithm in ref. 20 with computational complexity O(d3) to solve
this problem since we have a Hermitian estimate μ̂ with Trμ̂ ¼ 1. It
can be verified that pulling μ̂ back to a physical state can further
reduce the mean squared error.7

Numerical results
In this section we present the numerical results. First of all, we
would like to stress two advantages of the LRE method: (a) as we
have demonstrated in ref. 6, the LRE method can greatly reduce
the cost of computation in comparison with the maximum-
likelihood method; (b) the recursive LRE algorithm is naturally
suitable for optimizing measurements adaptively. The argument
for the advantage (b) can be explained as follows. For state
tomography the optimal measurements generally depend upon
the state to be reconstructed. By utilizing the LRE algorithm, we
can obtain the estimate of the real state in a computationally
efficient way. Using the state estimate, the measurements to be
performed can be adaptively optimized. In the following, we
perform numerical simulations of two-qubit tomography using
only the LRE method while with six different measurement
strategies: (i) standard cube measurements11; (ii) mutually
unbiased bases (MUB) measurements; (iii) MUB half-half24; (iv)
“known basis”24; (v) RAQST1, in which the admissible measure-
ment set only contains the simplest product measurements; (vi)
RAQST2, in which the admissible measurement set is not limited.
Each of the tomography protocols (iii)-(vi) consists of two

stages. In the first stage, they all use the standard cube
measurements. Standard cube measurements for multi-qubit
systems are defined in 11 as product cube measurements on
each qubit, such as the tensor product of three Pauli measure-
ments. For the MUB half-half, we first perform standard cube
measurements on N/2 copies and obtain a preliminary estimate ρ̂0
via LRE, and then measure the remaining half of copies so that one
set of the bases is adaptively adjusted to diagonalize ρ̂0 and it
together with another four sets of bases constitutes a complete
set of MUB as proposed in ref. 24. In contrast to the MUB half-half,
for the “known basis”,24 in the second stage, we perform a set of
measurements so that one of the five bases of the MUB is the
eigenbasis of the state to be reconstructed. Although it is
impossible physically (since the state is not known), this is a
useful comparison. For the RAQST, we first perform standard cube
measurements on N1 copies and obtain a preliminary estimate.
Then we adaptively optimize the measurement to be performed
at each iteration step upon the corresponding admissible
measurement set (see Section D of the Supplementary Material).
In RAQST1, the basic admissible measurement set is the standard
cube measurement bases. At each iteration step, we add another
set of product measurements obtained by solving a conditional
extremum problem to the basic admissible measurement set (see
Section E of the Supplementary Material). In RAQST2, at each
iteration step, the set of the eigenbases of the current estimate
state is also added into the admissible measurement set. Note that
the admissible measurement set in RAQST2 will involve nonlocal
measurements in general if there are more than one particle. The
details can be found in Section D of the Supplementary Material.
For the RAQST, we need to specify N1, which is the number of

copies measured in the first stage, and the number K of the
iteration steps such that N = N1 + K⋅N2, where N2 is the number of
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Fig. 1 Performance of the RAQST protocol for pure states. a
Infidelity vs. N for HVj i � VHj i= ffiffiffi

2
p

with different tomography
protocols. Each point is averaged over 100 realizations. Error bars
are the standard deviation of the average. b Histogram of
improvement proportion of infidelity (a value greater than one
means beating the Gill–Massar bound; see text for details.) for 200
randomly selected MESs and 200 pure states when the total number
of copies is N= 104 for each random state. Each generated state is
repeated through the RAQST protocol for 200 times
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copies for each POVM in the second stage. In principle, the
number K of the iteration steps in the second stage may depend
on the preliminary estimate in the first stage. For simplicity, in this
work, we give empirical formulas depending only upon the
total number N of the copies. Note that in RAQST1 and RAQST2,
the admissible measurement sets are different, and so are their
empirical formulas. For RAQST1, Nð1Þ

1 ¼ N=ð1:3þ 0:1log10NÞ,
Kð1Þ ¼ blog10N � 1c, and for RAQST2,
Nð2Þ
1 ¼ Nð0:8� 0:01 log10NÞ, Kð2Þ ¼ b1:5 log10N � 2c where bxc

returns the maximum integer that is less than or equal to x.
Obviously the formula for the resource distribution for RAQST2
applies only when N is not too large.
We use Monte Carlo simulations to demonstrate the results. The

figure of merit is the particularly well-motivated quantum

infidelity,24 1� Fðρ; ρ̂Þ ¼ 1� Tr2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
ρ̂

ffiffiffi
ρ

pp Þ. Fig. 1a depicts

average infidelity vs. N for the maximally entangled state
HVj i � VHj i= ffiffiffi

2
p

, where |H〉 and |V〉 correspond to the horizontal
and vertical photon polarization states, respectively. It can be seen
that the average infidelity of the static tomography protocols (i.e.,
(i) and (ii)) vs. N is in the order of Oð1= ffiffiffiffi

N
p Þ. However, the

Gill–Massar bound 2 for the infidelity in two-qubit state

tomography is 75=4N. This can be obtained by combining the

equations (5.29) and (A.8) in ref. 9 (see Supplementary Material). It
is clearly seen that, as compared to the static tomography
protocols and the adaptive MUB half-half, the average infidelity
using our RAQST protocol can be reduced to beat the Gill–Massar
bound even only with the simplest product measurements.
Furthermore, if there is no limitation on the admissible measure-
ment set, the RAQST2 can outperform the “known basis”
tomography. It can be seen that the average infidelity of RAQST1
and RAQST2 vs. N can be significantly reduced to the order of the
Gill–Massar bound, i.e., O(1/N).
Fig. 1b shows the histogram for RAQST over 200 randomly

selected pure states and 200 MESs when the total number of
copies is N = 104 for each random state. Random pure states are
created using the algorithm in ref. 42. Since all the MESs are
equivalent under local unitary operations, they are randomly
selected by applying randomly generated local unitary operators43

on the same MESs. We adopt the index Υ = (C−A)/(C−G) to
evaluate the performance of our RAQST protocol. Here, C and A
represent the log10 of the average infidelity between the
corresponding estimate and the true state when the standard
cube measurement bases and the RAQST are utilized, respectively,
while G is the Gill–Massar bound. Note that if ϒ > 0, our adaptive
protocol surpasses the standard measurement strategy, while if
ϒ > 1, our adaptive protocol beats the Gill–Massar bound. From
Fig. 1b we can see that our RAQST protocol is particularly effective
for the class of MESs which are important resources in quantum
information.
Fig. 2a depicts average infidelity vs. N for the Werner states in

the form of

ρWðpÞ ¼ p
ð HVj i � VHj iÞð HVh j � VHh jÞ

2
þ ð1� pÞ I

4
: ð5Þ

In this case we produce a state with p = 0.997, which has purity
Tr(ρ2) = 0.9955. Note that there are kinks in the four curves
corresponding to the four different adaptive protocols (iii)-(vi). We
can see that each of the four curves can be divided into three
segments from left to right. In the first segment, the infidelity
decreases quickly as N increases until the infidelity is reduced to
the order of the small eigenvalues of the state to be reconstructed,
then the curves go into the second segment where the infidelity
decreases slowly. After the infidelity is smaller than the smallest
eigenvalues, the infidelity decreases quickly again as N increases.
This is because infidelity is hypersensitive to misestimation of
small eigenvalues, as pointed out in ref. 24. Hence, we must

accurately estimate the eigenvalues that appear to be zero. When
the infidelity is of the order of the smallest eigenvalues, it will
be hard to estimate them accurately, so the decay rate of the
infidelity will become slow. Once the infidelity decreases to be
smaller than the smallest eigenvalues, we can estimate them
more accurately as N increases, and then the infidelity decreases
quickly. It can be seen that our RAQST1 can beat the static
tomography protocols and the adaptive MUB half-half protocol
even with the simplest product measurements. The infidelity can
be further reduced by using RAQST2, and when the total copies
N≥ 104.5, the infidelity can be reduced to O(1/N).
Fig. 2b shows average infidelity vs. different purity when the

total number of the copies for each state is N = 104. The quantum
states are chosen as Werner states in Eq. 5 with different p. The
occurrence of the peak at the purity value around 0.95 is due to
the issue of misestimation of small eigenvalues, similar to that in
Fig. 2a. The results show that when the states have a high level of
purity, our RAQST1 with the simplest product measurements can
beat the MUB protocol. However, as the state becomes more
mixed (Tr(ρ2) decreases), using MUB measurements for state
tomography can do better than using the adaptive product
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Fig. 2 Performance of the RAQST protocol for mixed states. a
Infidelity vs. N with different tomography protocols for state ρ=
ρW(0.997), which has purity Tr(ρ2)= 0.9955. Each point is averaged
over 200 realizations. Error bars are the standard deviation of the
average. b Infidelity vs. different purity with different tomography
methods for Werner states in (5). The total number of copies for each
state is N= 104. Each point is averaged over 1000 realizations
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measurements. This fact is due to the essential limit of product
measurements on mixed states. As pointed out in ref. 2, nonlocal
measurements on a mixed state can extract more information.
Thus, to reconstruct mixed states, it is better to use nonlocal
measurements, e.g., MUB measurements. It is also clear that the
infidelity achieved by using RAQST2 is much lower than that using
MUB, and can beat the Gill–Massar bound for a wide range of
quantum states.

Experimental results
In this section, we report the experimental results using our RAQST
protocol for two-qubit QST. Since it is hard to perform nonlocal
measurements in real experiments, we only experimentally
implement tomography protocols using (i) standard cube
measurements and (v) RAQST1.As shown in Fig. 3, the experi-
mental setup includes two modules: state preparation (gray) and
adaptive measurement (light blue). In the state preparation
module, an arbitrary Werner state ρW(p) in Eq. 5 can be generated.
In the adaptive measurement module, the two-photon product
measurements can be adaptively adjusted according to the
analysis of the collected coincidence data.
In the first experiment, as shown in Fig. 4a, we realize RAQST1

and standard cube measurements tomography protocols for
entangled states with a high level of purity with respect to
different number of resources N ranging from 251 to 251,189.
First, we calibrate the true state ρ using RAQST1 with N = 107

copies so that the infidelity of the calibrated true state is 10 times
smaller even than the estimate accuracy achieved at N = 251,189
with RAQST1. The purity of the calibrated state is 0.983. Systematic
error is crucial in the experiments. Beam displacers, which
separate extraordinary and ordinary light, act as PBSs and have
an extinction ratio of about 10,000:1. As the precision of rotation
stages of QWPs and Half-wave plates (HWPs) are 0.01°, the
rotation error is determined by the calibration error of optic axes,
which is 0.1° in our experiment. Phase errors of the currently used
true zero-order QWPs and HWPs are 1.2°, which dominate the
systematic error of practically realized measurements. These error
sources induce a systematic error to the estimate state, which can
be characterized by its infidelity from the true state. The
systematic error is in the order of 10−3 when the error sources
take the above values. For resource number N≥ 103, the
systematic error is of the same scale as or even larger than the
statistical error due to finite resources (N copies). To deal with this
problem, we employ error-compensation measurements44 to

reduce the systematic error to the order of 10−5. In error-
compensation measurement technique, multiple nominally
equivalent measurement settings are applied to sub-ensembles
such that the systematic errors can cancel out in first order.
Tomography experiments using both RAQST1 and standard cube
measurements are repeated 10 times for each number of photon
resources.
In the second experiment, as shown in Fig. 4b, we realize

tomography protocols using RAQST1 and standard cube measure-
ments for Werner states with purities ranging from 0.25 to 0.98.
The purities are changed by adjusting the apertures. Since the
photon resource for each run of tomography protocols is 104,
we use 106 copies to calibrate the true state. There are 40
experimental runs and 1000 simulation runs for each of nine
Werner states. In each RAQST experiment, four adaptive steps are
used to optimize the measurements. To ensure measurement
accuracy, error-compensation measurements are also employed.
In both of these two experiments, our experimental results

agree well with simulation results. The improvement of RAQST1
protocol over the standard cube measurements strategy is
significant. According to the simulation results of MUB protocol
and the experimental results of RAQST1, even with only the
simplest product measurements, our RAQST1 can outperform the
tomography protocols using MUB for states with a high level of
purity. Taking into account the trade-off between accuracy and
implementation challenge, from Figs 2 and 4, RAQST using the
simplest product measurement seems to be the best choice for
reconstructing entangled states with a high level of purity.

DISCUSSION
We have presented a new adaptive QST protocol using an
adaptive LRE algorithm and reported a two-qubit experimental
realization of the adaptive tomography protocol. In our RAQST
protocol, no prior assumption is made on the state to be
reconstructed. The infidelity of the adaptive tomography is greatly
reduced and can even beat the Gill–Massar bound by adaptively
optimizing the POVMs that are performed at each step. We
demonstrated that the fidelity obtained by using our RAQST with
only the simplest product measurements can even surpass those
obtained by using MUB and the two-stage MUB adaptive strategy,
for states with a high level of purity. Considering the trade-off
between accuracy and difficulty of implementation, it seems that
RAQST using the product measurements is the best choice for
reconstructing pure and nearly pure entangled states, which are

Fig. 3 Experimental setup. The experimental setup can be divided into two modules: state preparation (gray) and adaptive measurement
(light blue). In state preparation module, arbitrary Werner states ρW(p) in can be generated. In adaptive measurement module, the two-photon
product measurements are realized and can be adaptively changed by a Labview program. Key to components: HWP, half-wave plate; QWP,
quarter-wave plate; BS, beam splitter; IF, interference filter; SPD, single photon detector; PBS, polarizing beam splitter
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the most important resources for quantum information
processing.
It is worth stressing that our RAQST protocol is flexible and

extensible. For any finite dimensional quantum systems, once the
admissible measurement set is given, we can utilize the adaptive
measurement strategy to estimate an unknown quantum state.
As demonstrated by numerical results, if nonlocal measurements
can be experimentally realized through some breakthrough in
technology, the admissible measurement set M can be enlarged,
and our RAQST protocol can be better utilized accordingly. How to
give a more effective empirical formula for the parameters
defining the second stage is worthy of further exploration, in
particular allowing the parameters to depend upon the estimate
state of the first stage. This is actually related to the tomography
problem wherein some prior information is already known, e.g.,
pure entangled states, matrix-product states, low-rank states. By
taking full advantage of the prior information, an even more
efficient RAQST protocol may be designed. Thus, our RAQST
protocol may have wide applications in practical quantum
tomography experiments.

Note added After we completed the experiments, we became
aware of a highly relevant work40 taking a Bayesian estimation
approach to realize two-qubit adaptive QST using factorized
measurements. The updated optimal measurements are deter-
mined in terms of maximum information gain in ref. 40. Since
Bayesian estimation yields posterior distribution of quantum
states, it always gives a physical point estimate and can easily
generate reliable regions. Compared with the adaptive algorithm
based on Bayesian approach, our method via LRE is typically much
more computationally efficient.

MATERIALS AND METHODS
Experimental setup
As shown in Fig. 3, the experimental setup includes two modules: state
preparation (gray) and adaptive measurement (light blue). In the state
preparation module, a pair of polarization-entangled photons with a
central wavelength at λ = 702.2 nm is first generated after the continuous
Ar+ laser at 351.1 nm with diagonal polarization pumps a pair of type I
phase-matched β-barium borate crystals whose optic axes are normal to
each other.45 The generation rate is about 3000 two-photon coincidence
counts per second at a pump power of 60mW. HWPs at both ends of the
two single mode fibers are used to control polarization. Then, one photon
is either reflected by or transmits through a 50/50 beam splitter (BS). In the
transmission path, a QWP is tilted to compensate the phase of the
two-photon state for the generation of HVj i � VHj i= ffiffiffi

2
p

. In the reflected
path, three 446 λ quartz crystals and a half wave plate with 22.5° are used
to dephase the two-photon state into a completely mixed state I/4. The
ratio of the two states mixed at the output port of the second BS can be
changed by the two adjustable apertures for the generation of an arbitrary
Werner state ρW(p) in Eq. 5. Since the coherence length of the photon is
only 176 λ (due to the 4 nm bandwidth of the interference filter (IF)), much
smaller than the optical path difference of 0.5 m, two states from the
reflected and transmission paths only mix at the second BS rather than
coherently superpose. In the adaptive measurement module, the two-
photon product measurements are realized by the combinations of
quarter-wave plates (QWPs), HWPs, polarizing beam splitter (PBS), single
photon detector (SPDs) and a coincidence circuit. The rotation angles of
QWPs and HWPs can be adaptively adjusted by a controller according to
the analysis of the collected coincidence data on a computer.
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