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Abstract. In this paper, we introduce an enhanced form of random
testing called Adaptive Random Testing. Adaptive random testing seeks
to distribute test cases more evenly within the input space. It is based on
the intuition that for non-point types of failure patterns, an even spread
of test cases is more likely to detect failures using fewer test cases than
ordinary random testing. Experiments are performed using published
programs. Results show that adaptive random testing does outperform
ordinary random testing significantly (by up to as much as 50%) for
the set of programs under study. These results are very encouraging,
providing evidences that our intuition is likely to be useful in improving
the effectiveness of random testing.

1 Introduction

There are basically two approaches towards the selection of test cases, namely
the white box and the black box approach. Among the black box techniques,
random selection of test cases is generally regarded as not only a simple but also
an intuitively appealing technique (e.g. see White [1]). In random testing, test
cases may be randomly chosen based on a uniform distribution or according to
the operational profile. As pointed out by Hamlet [2], the main merits of random
testing include the availability of efficient algorithms to generate its test cases,
and its ability to infer reliability and statistical estimates.

In all random testing studies, only the rate of failure-causing inputs (hereafter
referred to as the failure rates) is used in the measurement of effectiveness. For
example, the expected number of failures detected and the probability of detect-
ing at least one failure are all defined as functions of the failure rates. However,
in a recent study by Chan et al. [3], it has been found that the performance of
a partition testing strategy depends not only on the failure rate, but also on the
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geometric pattern of the failure-causing inputs. This has prompted us to investi-
gate whether the performance of random testing can be improved by taking the
patterns of failure-causing inputs into consideration. We have developed a new
type of random testing, namely adaptive random testing. Our studies show that
the effectiveness of random testing can be significantly improved without incur-
ring significant overheads. We observe that adaptive random testing outperforms
ordinary random testing in general.

2 Preliminaries

In this study, we assume that the random selection of test cases is based on
a uniform distribution and without replacement. As a reminder, most of the
analytical studies of random testing assume that selections are with replacement
[4]. The assumption of selection with replacement has long been criticised by
practitioners, because in reality, test cases should not be repeated. It has been
used mainly because it has a simpler mathematical model and hence of easier
analysis. Thus, the model of our study reflects the reality more closely.

We basically follow the notation used by Chen and Yu [4]. Elements of an
input domain are known as failure-causing inputs, if they produce incorrect
outputs. For an input domain D, we use d, m and n to denote the size, number
of failure-causing inputs and number of test cases, respectively. The sampling
rate σ and failure rate θ are defined as

n

d
and

m

d
, respectively.

In previous studies of random testing, the two most popular effectiveness
metrics are: the probability of detecting at least one failure (referred to as the
P-measure) and the expected number of failures detected (referred to as the
E-measure). There have been some criticisms on these two metrics despite their
popularity. The main criticism of using the E-measure is that higher E-measures
do not necessarily imply more faults or more distinct failures; and the main
disadvantage of using the P-measure is that there is no distinction between
cases of detecting different number of failures. Although these two measures are
not ideal, they have been used extensively in the literature.

In this paper, rather than using the P-measure and the E-measure as the
effectiveness metrics as done in previous studies, we propose another effective-
ness metric. We use the expected number of test cases required to detect the
first failure (referred to as the F-measure), as the effectiveness metric. For ran-
dom selection of test cases with replacement, the F-measure, denoted by F , is

equal to
1
θ
, or equivalently

d

m
. Intuitively speaking, the F-measure reflects the

effectiveness of a testing strategy more naturally and directly, as the lower the
F-measure the more effective the testing strategy because fewer test cases are
required to reveal the first failure. In practice, when a failure is detected, testing
is normally stopped and debugging starts. The testing phase would normally be
resumed only after fixing of the fault. Hence, the F-measure is not only more
intuitively appealing but also more realistic from a practical perspective.
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In a recent study, Chan et al. [3] have observed that the performance of
some partition testing strategies varies with the patterns of failure-causing inputs
(hereafter referred to as the failure patterns). They have classified the patterns
of failure-causing inputs into three categories: point, strip and block patterns.
To illustrate this, let us assume that the input domain has two dimensions.
Figures 1-3 show the point, strip and block patterns, respectively. The outer
boundaries represent the borders of the input domain and the filled regions de-
note the failure-causing inputs, that is the failure patterns, in each of the figures.
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Fig. 1. Point Pattern
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Fig. 2. Strip Pattern Fig. 3. Block Pattern

The main characteristic of the point pattern is that either the failure-causing
inputs are stand alone points, or they form regions of a very small size which are
scattered over the whole domain. For the strip pattern, the failure-causing inputs
form the shape of a narrow strip. A typical example of this failure pattern is White
and Cohen’s [5] domain errors. For the block pattern, the main characteristic is
that the failure-causing inputs are concentrated in either one or a few regions.

3 Adaptive Random Testing

With ordinary random testing, the chances of hitting the failure patterns, that is
selecting failure-causing inputs as test cases, depends solely on the magnitude of
the failure rate. However, a closer inspection shows that for non-point patterns
which include both the strip and block patterns, the failure detection capability
can be significantly improved by slightly modifying the ordinary random testing
technique. Let us use an example to illustrate the intuition behind our modified
random testing.

Consider an input domain D. Suppose D has a ”regular” geometry, that is,
we assume that it is easy to generate inputs randomly from D. Let there be a
fault in the program. For example, let the input in D be consisting of values x
and y where 0 ≤ x, y ≤ 10. Suppose the fault lies in a conditional expression

x + y > 3

at a program statement while the correct expression should have been

x + y > 4
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Specifically, the domain D is a square {(x, y) | 0 ≤ x, y ≤ 10}. The fault
corresponds to a failure region {(x, y) | 3 < x + y ≤ 4}, which is a ”strip” of
width 1 across the square domain D.

We consider applying random testing to the program. Suppose we generate
one test case (2.2,2.2). Since 2.2+2.2 is larger than 4, the fault is not revealed.
Let the next test case generated be (2.1,2.1). Should we know in advance that
the error region is a strip of width 1, we could argue that the choice of the second
test case is too ”humble”. The test set should better be more spaced out such
that two neighbouring test cases are kept apart by a distance of length at least 1.

Thus, we propose to modify random testing as follows. To generate a new
test case, we need to make sure that the new test case should not be too close
to any of the previously generated ones. One way to achieve this is to generate a
number of random test cases and then choose the ”best” one among them. That
is, we try to distribute the selected test cases as spaced out as possible.

To summarize, we conjecture that test cases should be as evenly spread over
the entire input domain as possible in order to achieve a small F-measure. This
forms the basis of our new method of random testing, namely Adaptive Random
Testing.

An implementation of Adaptive Random Testing is as follows: Adaptive ran-
dom testing makes use of two sets of test cases, namely the executed set and the
candidate set which are disjoint. The executed set is the set of distinct test cases
that have been executed but without revealing any failure; while the candidate
set is a set of test cases that are randomly selected without replacement. The
executed set is initially empty and the first test case is randomly chosen from the
input domain. The executed set is then incrementally updated with the selected
element from the candidate set until a failure is revealed. From the candidate
set, an element that is farthest away from all executed test cases, is selected as
the next test case.

Obviously, there are various approaches to implement the intuition of ”far-
thest away”. In this paper the criterion for implementing this intuition is defined
as follows. Let T = {t1, t2, · · · , tn} be the executed set and C = {c1, c2, · · · , ck}
be the candidate set such that C ∩T = ∅. The criterion is to choose the element
ch such that for all j ∈ {1, 2, · · · , k},

n
min
i=1

dist(ch, ti) ≥
n

min
i=1

dist(cj , ti)

where dist is defined as the Euclidean distance.
In other words, in an m-dimensional input domain, for inputs

a = (a1, a2, · · · , am) and b = (b1, b2, · · · , bm), dist(a, b) =
√∑n

i=1 (ai − bi)
2. The

rationale of this criterion is to evenly spread the test case through maximising
the minimum distance between the next test case and the already executed test
cases.

It should be noted that there are also various ways to construct the candidate
set giving rise to various versions of adaptive random testing. It will be quite
difficult, if not impossible, to carry out an analytical study for the performance
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Table 1. Program name, dimension (D), input domain, seeded error types, and total
number of errors for each of the error-seeded programs. The error types are: arithmetic
operator replacement (AOR); relational operator replacement (ROR); scalar variable
replacement (SVR) and constant replacement (CR)

Prog Input Domain Error Type Total Failure
Name D From To AOR ROR SVR CR Errors Rate
airy 1 (−5000.0) (5000.0) 1 4 0.000716
bessj 2 (2.0, −1000.0) (300.0, 15000.0) 2 1 1 4 0.001298
bessj0 1 (−300000.0) (300000.0) 2 1 1 1 5 0.001373
cel 4 (0.001, 0.001, (1.0, 300.0, 1 1 1 3 0.000332

0.001, 0.001) 10000.0, 1000.0)
el2 4 (0.0, 0.0, (250.0, 250.0, 1 3 2 3 9 0.000690

0.0, 0.0) 250.0, 250.0)
erfcc 1 (−30000.0) (30000.0) 1 1 1 1 4 0.000574
gammq 2 (0.0, 0.0) (1700.0, 40.0) 3 1 4 0.000830
golden 3 (−100.0, (60.0, 3 1 1 5 0.000550

−100.0, 60.0,
−100.0) 60.0)

plgndr 3 (10.0, 0.0, (500.0, 11.0, 1 2 2 5 0.000368
0.0) 1.0)

probks 1 (−50000.0) (50000.0) 1 1 1 1 4 0.000387
sncndn 2 (−5000.0, (5000.0, 4 1 5 0.001623

−5000.0) 5000.0)
tanh 1 (−500.0) (500.0) 1 1 1 1 4 0.001817

of the adaptive random testing in comparison with the ordinary random testing
with respect to the F-measure. Therefore, we conduct an empirical study in this
paper.

4 An Empirical Study on Adaptive Random Testing

In this section, an empirical investigation was conducted to compare the perfor-
mance between adaptive random testing and ordinary random testing, using the
F-measure as the effectiveness metric, which is defined as the expected number
of test cases required to detect the first failure. In this paper, Fa and Fr are used
to denote the F-measures for the adaptive random testing and ordinary random
testing, respectively. Unless otherwise specified, ordinary random testing would
be abbreviated as random testing or RT.

In this empirical study, we use a set of 12 error-seeded programs. They are
all published programs ([6, 7]), which are written in Fortran, Pascal or C with
program sizes ranging from 30 to 200 statements. All of them involve numerical
computations and have been converted into C++ programs. Table 1 lists details
of the failure rate, type and number of seeded errors for each program.

The candidate set is of constant size and a new candidate set is constructed
each time a test case is selected. Let us refer it as the Fixed Size Candidate Set
Version of the Adaptive Random Testing (abbreviated as the FSCS). Algorithm
1 describes how to generate a candidate set and select a test case for this version
of adaptive random testing.
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Firstly, we conducted a preliminary study to see how the size of the candi-
date set would affect the performance of the adaptive random testing for our
sample of 12 programs. The range of the size of the candidate set, k, was set
to vary from 2 to 10 with an increment of 2 and then from 10 to 100 with an
increment of 10. We have observed that in general, the larger the k, the smaller
the number of test cases required to detect the first failure. Furthermore, for
k ≥ 10, there not much difference in the number of test cases required to de-
tect the first failure in our sample of programs. Hence, we set k = 10 in our
experiment.

Algorithm 1:
/*
selected set := { test data already selected };
candidate set := {};
total number of candidates := 10;
*/
function Select The Best Test Data(selected set, candidate set,

total number of candidates);
best distance := −1.0;
for i := 1 to total number of candidates do

candidate := randomly generate one test data from the program
input domain, the test data cannot be in
candidate set nor in selected set;

candidate set := candidate set + { candidate };
min candidate distance := Max Integer;
foreach j in selected set do

min candidate distance := Minimum(min candidate distance,
Euclidean Distance(j, candidate));

end foreach
if (best distance < min candidate distance) then

best data := candidate;
best distance := min candidate distance;

end if
end for
return best data;

end function

For each program, we applied both FSCS and RT with the same first ran-
domly selected test case. We obtained a pair of numbers (ua, ur), where ua

and ur were the numbers of test cases required to detect the first failure, using
FSCS (Algorithm 2) and RT, respectively. We called such a pair of numbers
a sample. Obviously, (ua, ur) depends on the first test case. Hence, the pro-
cess was repeated with various randomly selected inputs as the first test case.
The central limit theorem [8] was used to determine the size of the sample
set S = {(ua

1 , ur
1), (u

a
2 , ur

2), · · ·}, that is, to determine when the process could
be stopped so that we have enough samples in S to provide reliable statistic
estimates.
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Algorithm 2:
initial test data := randomly generate a test data from the input domain;
selected set := { initial test data };
counter := 1;
total number of candidates := 10;
use initial test data to test the program;
if (program output is incorrect) then

reveal failure := true;
else

reveal failure := false;
end if
while (not reveal failure) do

candidate set := {};
test data := Select The Best Test Data(selected set, candidate set,

total number of candidates);
use test data to test the program;
if (program output is incorrect) then

reveal failure := true;
else

selected set := selected set + { test data };
counter := counter + 1;

end if
end while
output counter;

Suppose we want to estimate the mean of the number of test cases required
to reveal the first failure, that is, the F-measure, for FSCS with an accuracy of
±r% and a confidence level of (1 − α) × 100%, where 1 − α is the confidence
coefficient. According to the central limit theorem, the size of S required to
achieve this goal should be at least as

|S| =
(

100 · z · σa

r · µa

)2

(1)

where z is the normal variate of the desired confidence level, µa is the population
mean and σa is the population standard deviation. Similarly, for RT,

|S| =
(

100 · z · σr

r · µr

)2

(2)

where µr and σr are the population mean and standard deviation, respectively.
To ensure the size of S satisfying both FSCS and RT, we take the maximum
value of equations (1) and (2), that is

|S| = max

[(
100 · z · σa

r · µa

)2

,

(
100 · z · σr

r · µr

)2
]

(3)

Obviously, the larger the sample size |S|, the higher the associated confidence
z, or the smaller the accuracy range r. However, larger samples mean more effort
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and resources. In our experiment, the confidence level was set to 95% and r was
set to 5%. In other words, we collect samples until the sample mean is accurate
within 5% of its value at 95% confidence. From the statistical tables, we know
that for 95% confidence, z = 1.96. Moreover, since µa, µr, σa and σr are un-
known, their estimators ūa, ūr, sa and sr were used instead, respectively, where

ūa =
∑n

i=1 ua
i

n
, ūr =

∑n
i=1 ur

i

n
, sa is the standard deviation of {ua

1 , ua
2 , · · · , ua

n},

sr is the standard deviation of {ur
1, u

r
2, · · · , ur

n} and n is the current size of S.
Thus, equation (3) becomes

|S| = max

[(
100 · 1.96 · sa

5 · ūa

)2

,

(
100 · 1.96 · sr

5 · ūr

)2
]

(4)

The above equation was used to decide when the process of collecting (ua
i , ur

i )
could be stopped.

As shown in Table 2, the sizes of S vary with programs, but less than 3000.
In this experiment, we have chosen 3000 as the sample size for all programs to
calculate the means and standard deviations for both FSCS and RT.

Table 2. Mean Comparison Summary

Pg ID k |S| Fa 95% CI of Fa Fr 95% CI of Fr

AIRY 10 1506 799.29 (779.43, 819.15) 1381.44 (1332.51, 1430.37)
BESSJ 10 1598 466.66 (451.95, 481.38) 802.17 (722.90, 831.44)
BESSJ0 10 1567 423.93 (412.55, 435.30) 733.96 (707.44, 760.48)
CEL 10 1550 1607.80 (1552.49, 1663.11) 3065.25 (2955.10, 3175.40)
EL2 10 1650 686.48 (661.78, 711.17) 1430.76 (1377.71, 1483.81)
ERFCC 10 1543 1004.68 (980.34, 1029.02) 1803.62 (1738.94, 1868.30)
GAMMQ 10 1557 1081.43 (1044.35, 1118.51) 1220.28 (1176.32, 1264.24)
GOLDEN 10 1569 1829.74 (1765.68, 1893.80) 1860.81 (1793.52, 1928.10)
PLGNDR 10 1438 1806.94 (1754.47, 1859.41) 2741.66 (2646.75, 2836.57)
PROBKS 10 1480 1442.50 (1407.24, 1477.76) 2634.86 (2542.32, 2727.40)
SNCNDN 10 1617 628.68 (606.16, 651.20) 636.19 (612.83, 659.54)
TANH 10 1469 306.86 (299.21, 314.51) 557.96 (538.43, 577.48)

where

Pg ID Program ID
k Size of the candidate set
|S| Size of the sample set
Fa Mean of {ua

1 , ua
2 , · · · , ua

|S|}
95% CI of Fa 95% Confidence Interval of FSCS mean
Fr Mean of {ur

1, u
r
2, · · · , ur

|S|}
95% CI of Fr 95% Confidence Interval of RT mean

Table 2 lists the sample means within an accuracy of 5% and a confidence level
of 95%, for all 12 programs. Also included are their 95% confidence interval (CI).
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Table 2 shows that in all 12 programs the Fa’s are smaller than the corre-
sponding Fr’s, that is, on the average, FSCS required fewer test cases than RT
to reveal the first failure. Furthermore, in 10 programs (AIRY, BESSJ, BESSJ0,
CEL, EL2, ERFCC, GAMMQ, PLGNDR, PROBKS and TANH), the corre-
sponding FSCS’s and RT’s 95% confidence intervals do not overlap each other.
This implies that Fa is smaller than Fr with a probability of (0.95)2 at least.
For the remaining 2 programs (GOLDEN and SNCNDN), the 95% confidence
intervals of Fa and Fr overlap each other.

To calculate the performance improvement, we use the following formula:
Fr − Fa

Fr
× 100 (5)

Table 3 shows that the performance improvement for FSCS over RT ranges
from the best end of 52.02% to the worst end of 1.18%. Nine programs (AIRY,
BESSJ, BESSJ0, CEL, EL2, ERFCC, PLGNDR, PROBKS and TANH) show
a very significant improvement; one program (GAMMQ) shows a moderate im-
provement; two programs (GOLDEN and SNCNDN) show small improvement.

In summary, FSCS has a considerably smaller F-measure than RT. The ex-
perimental results show that FSCS has a good chance at outperforming RT by a
very significant margin, which can be as high as 50%. On the other hand, FSCS
needs more resources to select the next test case from the candidate set than RT
does. Let n be the value of the F-measure and k be the size of the candidate set
in FSCS. The selection overheads is of the order kn2.

5 Conclusion

Random testing is simple in concept and is easy to be implemented. Besides, it
can infer reliability and statistical estimates. Hence, it has been used by many
testers. Since random testing does not make use of any information to generate
test cases, it may not be a powerful testing method and its performance is solely
dependent on the magnitude of failure rates.

Table 3. Improvement of the F-measure of FSCS over RT

Pg ID Improvement in %
AIRY 42.14
BESSJ 41.83
BESSJ0 42.24
CEL 47.55
EL2 52.02
ERFCC 44.30
GAMMQ 11.38
GOLDEN 1.67
PLGNDR 34.09
PROBKS 45.25
SNCNDN 1.18
TANH 45.00
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A recent study has shown that failure patterns may be classified as point, strip
or block failure patterns. Intuitively speaking, when the failure pattern is not a
point pattern, more evenly spread test cases have a better chance of hitting the
failure patterns. Based on this intuition, we propose a modified version of random
testing called adaptive random testing. An empirical analysis of 12 published
programs has shown that adaptive random testing outperforms random testing
significantly for most of the cases.

Our experimental results have been very encouraging, providing evidences
that our intuition of spreading test cases more evenly within the input space is
potentially very useful. Nevertheless, there are a number of issues of adaptive ran-
dom testing that need to be considered, such as various criteria of evenly spread-
ing of test cases, ways of defining the candidate sets. We anticipate that analysis
of these issues would further improve the effectiveness of adaptive random test-
ing. In fact, we have already obtained some very interesting results [9, 10].
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