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Summary
A sequentially outcome-adaptive Bayesian design is proposed for choosing the dose of an
experimental therapy based on elicited utilities of a bivariate ordinal (toxicity, efficacy) outcome.
Subject to posterior acceptability criteria to control the risk of severe toxicity and exclude
unpromising doses, patients are randomized adaptively among the doses having posterior mean
utilities near the maximum. The utility increment used to define near-optimality is non-increasing
with sample size. The adaptive randomization uses each dose’s posterior probability of a set of
good outcomes, defined by a lower utility cut-off. Saturated parametric models are assumed for
the marginal dose-toxicity and dose-efficacy distributions, allowing the possible requirement of
monotonicity in dose, and a copula is used to obtain a joint distribution. Prior means are computed
by simulation using elicited outcome probabilities, and prior variances are calibrated to control
prior effective sample size and obtain a design with good operating characteristics. The method is
illustrated by a phase I/II trial of radiation therapy for children with brain stem gliomas.
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1. Introduction
We propose a Bayesian phase I/II procedure for sequentially adaptive dose selection based
on a bivariate ordinal (toxicity, efficacy) outcome. The method is based on elicited utilities
of the possible outcome pairs (cf. Berger, 1985). Rather than choosing the dose that
maximizes the posterior mean utility, we deal with the well-known “exploration versus
exploitation” dilemma (cf. Sutton and Barto, 1998) by adaptively randomizing patients
among the doses having posterior mean utilities that differ from the maximum by less than a
specified increment. We require this increment to be non-increasing with sample size,
similarly to an “epsilon decreasing” version of an “epsilon greedy” algorithm. The adaptive
randomization (AR) uses each dose’s posterior probability of a set of good outcomes,
defined by an elicited lower utility cut-off. We obtain a bivariate model by first constructing
marginals and using a copula (Nelsen, 1999) to induce association. Aside from link
functions, we do not assume functional forms for dose-toxicity or dose-efficacy curves, but
rather use marginals with saturated parameterizations. We establish a prior by using elicited
outcome probabilities to simulate many very large pseudo samples, with the mean parameter

Correspondence to: Peter F. Thall, rex@mdanderson.org.

NIH Public Access
Author Manuscript
J Biopharm Stat. Author manuscript; available in PMC 2013 July 01.

Published in final edited form as:
J Biopharm Stat. 2012 July ; 22(4): 785–801. doi:10.1080/10543406.2012.676586.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



vector of the pseudo posteriors used as the prior mean parameter vector, and the prior
variances calibrated to control prior effective sample size.

Because we consider bivariate ordinal outcomes, our methodology differs substantively
from phase I/II designs based on trinary or bivariate binary outcomes (cf. Thall and Russell,
1998; O’Quigley, Hughes, and Fenton, 2001; Braun, 2002; Thall and Cook, 2004; Bekele
and Shen, 2005; Zhang, Sargent and Mandrekar, 2005; Dragalin and Fedorov, 2006; Thall,
Nguyen and Estey, 2008). Our design may be considered a phase I/II, utility-based
generalization of several Bayesian phase I methods. Bekele and Thall (2004) use a continual
reassessment method (CRM, O’Quigley et al., 1990) type criterion based on posterior means
of summed severity scores of multivariate ordinal toxicities; however, their methodology
does not incorporate efficacy, maximize a utility, or use AR. For the case of one ordinal
toxicity, a method similar to that of Bekele and Thall, but using quasi-likelihood, is
proposed by Yuan, Chappell and Bailey (2007), while Van Meter et al. (2011) assume a
proportional odds model (McCullagh, 1980) and extend the CRM. Our methodology is
similar to the phase I/II design of Houede et al. (2010) for choosing dose pairs of two agents,
with the differences that we incorporate AR, require more complex dose admissibility
criteria, and use a model with much weaker assumptions.

In Section 2, we describe the motivating trial. The probability model is presented in Section
3. Section 4 gives definitions of the utility function, dose admissibility criteria, AR
probabilities, and the design. Application to the RT trial is described in Section 5, including
simulation studies of the method’s sensitivity to dose admissibility requirements, the use of
AR, maximum sample size, prior variability, and number of doses studied. We close with a
discussion in Section 6.

2. A Radiation Therapy Trial
Diffuse intrinsic pontine gliomas (DIPGs) are aggressive brain tumors for which no
treatment with substantive anti-disease effect currently exists. DIPGs account for about 75%
of brain stem gliomas in children, and the median age of DIPG patients is 5 years. Radiation
therapy (RT) is the standard treatment, but nearly all patients experience disease progression
within eight months after RT and median survival is less than one year. However, the dose-
toxicity and dose-efficacy profiles of RT for this disease are not well understood.

This paper was motivated by the desire to design a phase I/II trial of RT for DIPG patients.
The trial, which uses the dose-finding design described here and is ongoing at this writing,
includes children with DIPGs who previously received RT with or without chemotherapy
and currently have progressive disease. RT is administered by separating a total dose of
absorbed radiation (in gray units, Gy) into fractions that are given serially. The biologically
equivalent dose is BED = (total dose)*(1 + d/κ), where d = dose/fraction and κ is a constant
corresponding to the type of tissue being irradiated. This model is based on the empirical
observation in animal models that the empirical proportion of cells surviving radiation can
be fit closely by a linear-quadratic function of per fraction dose (Fowler, 1989), with the
assumption that cell killing of successive fractions is independent. For brain tissue, κ = 3,
and the three combinations of (total dose, d) to be studied in the DIPG trial are (24,2.0),
(26.4, 2.2), and (30.8,2.2), so the corresponding BEDs are 40.00, 45.76, and 53.39. Toxicity
is defined on a 4-level ordinal scale as Low, Moderate, High, or Severe, with each level
defined in terms of fatigue, nausea/vomiting, headache, skin inflammation or desquamation,
blindness, and brain edema or necrosis, each evaluated during 42 days from the start of
therapy. Efficacy is scored at day 42, and is defined as the sum of three indicators of any
improvement, compared to baseline, in (i) clinical symptoms, (ii) radiographic appearance,
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or (iii) quality of life. Thus, an efficacy score of 0 corresponds to no improvement, 1 to
improvement in one of the three categories, and so on.

For our general regime, index the outcomes by k = 1 for toxicity and k = 2 for efficacy, with
Yk = 0, 1, ⋯, mk identifying the observed ordinal levels. For toxicity, Y1 = 0 denotes the
least severe and m1 the most severe level, while Y2 = 0 denotes the worst and m2 the best
level of efficacy. In the RT trial, m1 = m2 = 3. Our proposed dose-finding method requires
elicited utilities of all possible values y = (y1, y2) of the outcome pairs Y = (Y1, Y2). The
elicited utilities U (y1, y2) for all 16 possible outcomes in the RT trial are given in Table 1.
The RT trial utility has the required property that U(y1, y2) must increase as either toxicity
severity level decreases or efficacy increases. While it may seem counterintuitive that
outcomes with efficacy score Y2 = 0 should be given positive utilities, because the prognosis
of the patients in this trial is very poor and treatment is in large part palliative, the
oncologists who organized the trial consider achieving a lower level of toxicity to be more
desirable for any level of efficacy. When we questioned the oncologists about this critical
point during the utility elicitation process, they explained that, even when the efficacy
outcome score equals 0, there still is some palliative effect, that is, the treatment still is
useful. Consequently, when the efficacy score is 0, lower toxicity severity levels are far
more desirable, as the first row of Table 1 shows.

3. Probability Models
Index doses by χ = {1, ⋯, J}. We will construct a model for Y = (Y1, Y2) as a function of x
∈ χ by formulating marginals for [Y1 ∣ x] and [Y2 ∣ x] and using a copula (Nelsen, 1999) to
obtain a joint distribution. Let θ denote the model parameter vector, with θk the subvector
characterizing the marginal of [Yk ∣ x]. Denote

for y = 1, ⋯, mk and k=1,2. Given a monotone increasing link function g, our marginal
model assumption is simply

(1)

with all θk,y,x real-valued. Thus, θk = (θk,1, ⋯, θk,mk), denoting θk,y (θk,y,1, ⋯, θk,y,J). The
marginal model (1) is saturated since it has mk parameters for each x, with dim(θk) = Jmk,
which is the number of πk,y,x’s needed to specify the J marginals of Yk for all x.

Equation (1) ensures that the distribution {πk,y,x, y = 0, 1, ⋯, mk} is well defined for each k
and x. This follows from the fact that, denoting π̄k,y,x = Pr(Yk ≥ y ∣ x, θk), the unconditional
and conditional probabilities are related by the recursive formula

(2)

Consequently, π̄k,y,x is decreasing in y for each x, Jmk-dimensional real-valued θk, and
monotone link g. The marginal probabilities are given by
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(3)

Given the marginals, we obtain a joint distribution of [Y1, Y2 ∣ x] by using a bivariate
Gaussian copula, Cρ (υ1, υ2) = Φρ {Φ−1 (υ1), Φ−1 (υ2)} for 0 ≤ υ1, υ2 ≤ 1, where Φρ is the
bivariate standard normal cdf with correlation ρ, and Φ is the univariate standard normal cdf.
This is used to define the joint distribution as

where uk,1 = Pr(Yk ≤ yk ∣ x, θk) and uk,2 = Pr(Yk ≤ yk − 1 ∣ x, θk). We chose the Gaussian
copula for its tractability. Other copulas, such as the Gumbel or Clayton, may be used
(Nelsen, 1999). Denoting the data from the first n patients in the trial, by Dn = {(Y1, x[1]),
⋯, (Yn, x[n])} n = 1, ⋯, Nmax, the likelihood is the product

and the posterior is p(θ ∣ Dn) ∝ L(Dn ∣ θ)prior(θ).

The model parameter vector θ = (θ1, θ2, ρ) has dimension p = J(m1 + m2) + 1, and
characterizes a total of J(m1+m2+m1m2) bivariate probabilities. This parameterization is
feasible for many cases arising in practice, with (J, m1, m2) = (3,2,2), (3,3,3), (4,3,2), (4,3,3),
(5,2,2), (5,3,2), (5,3,3) giving corresponding p = 13, 19, 21, 25, 21, 26, 31. For m1 = m2 = 1,
which is the bivariate binary outcome case, p = 2J + 1 and θk = (θk,1, ⋯, θk,J), for k = 1, 2.

How π̄1,y,x and π̄2,y,x may vary with x depends on both the therapeutic modality and the
definitions of toxicity and efficacy. An important case is that where it is necessary to assume
that π̄k,y,x is increasing in x for one or both outcomes. This assumption is appropriate both
for cytotoxic agents and for RT, but it may not be realistic for cytostatic or biologic agents.
Imposing the constraints θk,y,1 ≤ θk,y,2 ≤ ⋯ θk,y,J implies that π̄k,y,x increases in x, for each
y = 1, ⋯, mk due to the monotonicity of g, by equation (2). Rather than fitting the model (1)
with real-valued θk,y,x’s subject to these constraints, to reduce computation we obtain
monotonicity of π̄k,y,x in x by re-parameterizing the model as

(4)

with real-valued μk,y ≡ θk,y,1 and γk,y,x ≥ 0 for all k, y, and x = 2, ⋯, J. Thus, θk,y = (μk,y,
γk,y,2, ⋯, γk,y,J), and collecting terms we denote θ = (μ, γ). The parameterization (4)
borrows strength between doses quite strongly because, for distinct doses x and z, θk,y,x and
θk,y,z share many parameters.

The model π(y∣ x, θ) must do a good job of reflecting the way that the posterior mean
utility, defined below in Section 4.1, changes as a function of dose. Intuitively, it may seem
that the number of parameters p in the range 13 to 31 is impractically large for dose-finding
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trials with small sample sizes. This is not the case, essentially because the information in a
bivariate ordinal outcome Y is much greater than that provided by a single ordinal Y or a
binary outcome, which is used conventionally in phase I trials. Since our goal is to find a
dose with high mean utility, if the model is tractable then the value of p is not critical. For
example, in the case (J, m1, m2) = (5,3,3) where p = 31, the algorithm (Section 4.3, below)
for computing a prior from elicited values works quite well, implementing the MCMC
algorithm for computing posteriors is not problematic, and the design performs well across a
large set of different dose-outcome scenarios.

When using a utility U(Y) to quantify the desirability of a bivariate ordinal patient outcome
Y, conventional generalized linear models (GLMs, McCullagh and Nelder, 1972) for the
marginals may not be sufficiently refined to distinguish reliably between doses. This is
especially problematic when a middle dose has the highest utility, which can easily be the
case when both π̄1,y,x and π̄2,y,x increase with x. The family of GLMs for ordinal Yk given
by g(π̄k,y,x) = αk,y + βkx with αk,y decreasing in y, which is the proportional odds model if
g is the logit link, may not be sufficiently flexible for dose-finding because a single dose
effect βk is assumed for all levels of Yk. The more general form g(λk,y,x) = αk,y + βk,yx,
subject to appropriate monotonicity constraints, may provide more flexibility. An alternative
model might replace λk,y,x in (1) by the unconditional probability π̄k,y,x, so that

, which requires that  must increase in y for k = 1, 2 and all x. In the case
where π̄k,y,x must increase in x, however, one must impose two sets of monotonicity
constraints, one in x and the other in y, which limits tractability for adaptive dose-finding.
Sensitivity analyses using different marginal distributions showed that, in terms of
performance of the dose-finding method, no one model among those described above is
uniformly better than the others. However, our simulations (Table 6) showed that, in terms
of both dose selection and choosing desirable doses for patients during the trial, the worst
performance of the model with saturated marginals was better than the worst performance of
the model with proportional odds marginals.

4. Decision Criteria and Trial Design
4.1 Utilities

Denote the elicited utility of outcome y by U(y). The mean utility of dose x given θ is

The posterior mean utility is

(5)

Note that (5) reflects the physicians’ utilities and the observed data by averaging over the

posterior. We denote the dose that maximizes ϕ(x, Dn) by . Because U(y) is a patient
utility, maximizing ϕ(x, Dn) is very different from the more common Bayesian approach of
choosing x to optimize some posterior function of the Fisher information matrix (cf. Haines,
Perevozshaya and Rosenberger, 2003; Dragalin and Federov, 2006). In the context of phase
I trials, Bartorff and Lai (2010) address the problem of “individual versus collective ethics”
by considering an objective function including components for both current and future
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patients. In our setting, always choosing based on  based on ϕ(x, Dn) alone is an example
of a “greedy algorithm,” which in general is a sequentially adaptive decision rule that always
takes the locally optimal action at each stage. Motivated by both ethical and practical
considerations, we next introduce additional dose acceptability criteria, and an AR
procedure, to improve this greedy algorithm.

4.2 Dose Acceptability and Adaptive Randomization
Simply maximizing ϕ(x, Dn) ignores the undesirable but important possibility that all doses
are too toxic. To control the risk of toxicity, we elicit the level y* of toxicity considered to

be unacceptable by the physicians, and an accompanying fixed limit  on the probability
π̄1,y*,x of toxicity at or above y*. We say that a dose x is unacceptably toxic if

(6)

where pU is an upper probability cut-off, usually in the range .80 to .95. In the simplest case
where Y1 is a binary indicator of toxicity at or above some specified severity level, so that y
= 0 or 1 denote the absence or presence of toxicity defined in this way, y* = 1 by default.
The inequality (6) says that x has a high posterior probability of producing an unacceptably
high level of toxicity. We will limit all dose assignments to the set of acceptably safe doses,

, defined to be all x ∈ χ for which (6) is not the case. This is similar in spirit to the
safety requirements used by Thall and Cook (2004) and Braun et al. (2007), and “escalation
with overdose control” proposed by Babb, Rogatko and Zacks (1998) for phase I trials.

A very important practical problem when using ϕ(x, Dn) to select doses adaptively is that, in
some cases, little or no information may be obtained for the dose that actually has the
highest true mean utility, u(x, θtrue). This occurs when the algorithm that chooses x by
maximizing ϕ(x, Dn) repeatedly assigns a dose that actually is suboptimal, and does not
escalate to higher levels that include the true optimal dose. The general phenomenon of a
greedy sequential decision procedure becoming stuck at a suboptimal treatment is well-
known. A common solution for this problem is to randomly assign some patients to
suboptimal treatments. This distributes patients more evenly among treatments and
consequently more is learned about the design space, often with a resulting improvement in
the method’s reliability. To do this in an ethical way for adaptive dose-finding, we use the
following constrained AR procedure.

Let {δn, n = 1, ⋯, Nmax} be a non-increasing sequence of differences in the utility domain.
We define the set of δn -optimal doses to be

(7)

This is the set of doses having posterior mean utility within δn of the maximum value. The
sequence {δn} quantifies what is meant by posterior mean utilities being “close” in
expression (7); and we require it to be non-increasing with n to accommodate the decreasing
variability in the posteriors of the u(x, θ)’s as n increases. Restriction of the AR to doses in

 is motivated by both ethical considerations and the practical fact that the posteriors of the

utilities  may be quite disperse, especially for the small values of n in a
dose-finding trial. Moreover, ϕ(x, Dn) may be nearly flat around its maximum, with the

numerical superiority of  over ϕ(x, Dn) for one or more  quite small. Our
simulations, summarized below in Section 5, show that it sometimes is more ethical to treat

some patients at suboptimal doses having ϕ(x, Dn) near  because on average, in
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many scenarios, this leads to more patients in the trial being treated at doses having higher
utilities.

A third acceptability criterion that may be used is to require that a dose should not be
unlikely to have the highest utility. We say that a dose x is unlikely to be best if

(8)

for a small lower probability cut-off pL. We denote the set of doses that do not have this

property by . A dose in  is admissible in the sense that it satisfies the minimality
requirement that it has at least a non-trivial probability of having the highest utility.
Combining the three criteria (6), (7), and (8), we define the set of acceptable doses to be

(9)

Thus, a dose is acceptable if it (i) has acceptable toxicity, (ii) has posterior mean utility that
is δn-close to the maximum, and (iii) is not unlikely to have the highest posterior utility.

Our design randomizes patients adaptively among the doses in An. This may be done using
many different criteria. An ethically attractive approach is to define AR probabilities in
terms of a set of “good” outcomes, defined as G = {y : U(y) ≥ U̲}, where the lower limit U̲ is
elicited from the physicians who provided the utilities. Given G, the probability of a good
outcome for a patient treated with dose x is Pr(Y ∈ G ∣ x, θ). Denoting the posterior means
μG(x, Dn) = E{Pr(Y ∈ G ∣ x, θ) ∣ Dn}, we randomize a patient to dose x ∈ An with
probability

(10)

Thus, the dose-finding method includes the requirements that it only assigns doses that are
safe and δn-optimal, as defined by (6) and (7), and that satisfy the minimality requirement
(8), and it uses the good outcome set G to determine the AR probabilities (10).

4.3 Establishing a Prior
Denote the normal distribution with mean μ and variance σ2 by N(μ, σ2), and denote the
normal distribution truncated below at 0 by N0 (μ, σ2). For the prior p(θ ∣ θ̃), we assume

 and . The numerical values of the hyperparameters

 may be established from elicited probabilities using the following algorithm,
similar to that given in Thall, et al. (2011).

Step 1. Assume a non-informative pseudo-prior on θ with all entries  for large

.

Step 2. Use the elicited prior probabilities to simulate a large pseudo-sample of size N
balanced equally among the doses.

Step 3. Compute the pseudo-posterior from the pseudo-prior and pseudo-sample, and
record the pseudo-posterior mean.

Step 4. Repeat steps 2 and 3 M times, and set the prior mean (μ̃, γ̃) of θ equal to the
mean of the M pseudo-posterior means.
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Step 5. Using the effective sample size (ESS) as a criterion, calibrate the values of ( ,

) to obtain ESS values of the θk,y,x’s in the range 0.20 to 1.0.

As a practical guideline, this algorithm may be applied effectively with N = 100J, i.e. 100

observations per dose, M = 1000 pseudo-samples, and pseudo-prior variances  in the

range 102 to 1002, with the particular value of  chosen to ensure that the pseudo-posteriors
are insensitive to the pseudo-prior. In practice, one or two numerical values may be used for

the entries of ( , ). If desired, an elaboration of Step 5 is to simulate the trial for each of
several values of the hyper variances to ensure that the trial will have good operating
characteristics, as well as the prior being non-informative in terms of ESS. One overall ESS
of p(θ ∣ θ̃) may be computed using the formal method of Morita, Thall, and Mueller (2008)
or, alternatively, one may approximate the prior of each πk,y,x as a beta(a, b), set its ESS
equal to a + b, and average these values to obtain a single summary ESS. For the association
parameter ρ in the Gaussian copula, a uniform prior on (-1, +1) may be assumed.

4.4 Trial Conduct
The trial is conducted as follows. An initial cohort is treated at a starting dose chosen by the
physicians. For all subsequent cohorts, once the posterior is updated based on the observed
outcomes of previous patients, if An is empty then the trial is stopped and no dose is chosen;
otherwise, patients are randomized among the doses in An using the updated AR
probabilities given by (10). A rule superseding the above is that no untried dose may be

skipped when escalating. At the end of the trial, if An is not empty,  is selected.

To summarize, the design requires the following quantities to be elicited from the
physicians: the prior means of all πk,y,x’s, the utilities, the cut-off U̲ that determines G, the

safety parameters y* and , a starting dose, and the number of patients treated at the starting
dose. Given this information, prior parameters must be determined from the elicited values,
e.g. by using the simulation-based approach described earlier, and the additional design
parameters pU, pL, {δn}, Nmax, and cohort size must be specified. These parameters, along
with prior variances, should be calibrated by simulating the trial to obtain good operating
characteristics.

5. Application to the Radiation Therapy Trial
5.1 Trial Design

For the RT trial, since m1 = m2 = 3, the distribution {πk(y ∣ x, θ), y1, y2 = 0, 1, 2, 3} is
determined by 15 probabilities for each x. Since J = 3, there are J(m1m2 + m1 + m2) = 45
bivariate probabilities. For each k and x, the marginals (3) are given by

We assume a logit link, so λk,y,x = eθk,y,x/(1+eθk,y,x). For each k = 1, 2 and y = 1, 2, 3, θk,y
= (μk,y, γk,y,2, γk,y,3), so dim(θk) = 9 and p = dim(θ) = 19.

The prior was obtained from the elicited prior mean probabilities in Table 1 using the
algorithm described in Section 4.3. We simulated 1000 pseudo samples, each of size 300
with 100 patients in each pseudo sample assigned to each dose. For each simulated data set,
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a pseudo posterior was computed starting with a pseudo-prior on θ with each θk,y,x ~ N(0,
602), and the mean of the 1000 pseudo posterior means was used as the prior means μ̃k,y and
γ̃k,y,x. The standard deviations of the θk,y,x’s were calibrated by approximating the prior of
each πk,x,y with a beta(a, b) and using ESS = a + b. Setting all σ̃μ,k,y = σ̃γ,k,y,x = σ̃ = 6 gave
ESS values ranging from 0.31 to 0.70, with mean ESS = 0.42.

For the safety criterion, , the physicians specified y* = 3 (severe toxicity) and .
Using the conservative upper cut-off pU = 0.80, a dose x is unacceptably toxic if Pr(π1,x,3 ≥ .

10 ∣ Dn) > .80. The lower cut-off pL = 0.10 was used to define , after studying effects of
the values pL = 0.05, 0.10, 0.15 in preliminary simulations. An initial cohort of 3 patients
will be treated at x = 1 (BED = 40.00), with subsequent cohorts of size 1 and the AR started
at the 4th patient. A maximum of Nmax = 30 patients will be treated, chosen in part because
an accrual rate of 6 to 10 patients per year is anticipated, so it will require 3 to 5 years to
complete the trial. The physicians specified the lower utility U̲ = 25 to determine the good
outcome set, which is used to define the AR probabilities. The nine outcomes considered to
be good by this criterion are shown by the gray shaded values in Table 3. After a
preliminary sensitivity analysis examining the design’s behavior by simulation for various
sequences {δn}, including 10 ≤ δn ≤ 30 and several non-decreasing functions, it was decided

to use the step function δn = 20 for 4 ≤ n ≤ 15 and δn = 15 for 16 ≤ n ≤ 30 to define . All
posterior quantities were computed using MCMC with Gibbs sampling (Robert and
Cassella, 1999). All simulations are based on 5000 iterations of each case studied.

5.2. Simulation Results
Using this design, we simulated the trial under eight scenarios, each determined by a set of

assumed true probabilities, , given in Figure 1. Scenario 1 is based on the elicited prior
means, which give equal utility 64.6 to x = 1 and 2 and utility 57.0 to x = 3. Scenario 2 has
steeply increasing utility with x = 3 best. Scenario 3 has steeply decreasing utility with x = 1
best, the middle dose x = 2 is best in Scenario 4, and the utility is V-shaped in Scenario 5
with x = 3 best. No dose is acceptably safe in Scenario 6. Scenario 7 is similar to Scenario 4
in terms of utilities, but has slightly higher toxicity and efficacy probabilities. The utility is
V-shaped in Scenario 8 with x = 1 best. In each simulation scenario, the true marginal

probabilities  do not depend on the assumed model, although we use the copula to
determine correlations. The Gaussian copula correlation parameter ρtrue = 0.10 was used

throughout. The true utilities utrue(x) are determined by the assumed , ρtrue, and the
elicited utilities U(y) in Table 1.

The results of simulating the RT trial design under Scenarios 1 – 8 are summarized in Table
3. In Scenario 6, where no dose is acceptably safe and the true severe toxicity probabilities
are 0.25, 0.28, 0.30 at the three doses, the method correctly stops early and chooses no dose
91% of the time, and treats on average 14.6 patients. Modifying Scenario 6 so that the true
severe toxicity probabilities at the three doses are the slightly higher values .30, .35, .40, the
stopping probability is 98% and the mean sample size drops to 11.6 patients. In all of the
other 7 scenarios, the selection probabilities reflect the utilities quite closely. The
algorithm’s selection reliability is quite striking in Scenarios 5 and 8, which have V-shaped
utilities with the middle dose x = 2 least desirable. The sample size distributions are biased
toward lower doses in all scenarios, reflecting the initial cohort of 3 patients at x = 1, the do-
not-skip rule, and the fact that the prior was biased toward the lower doses, which favors AR
to these doses early in the trial.

While Table 3 shows that our method has very desirable properties for the RT trial design,
since it relies on three particular admissibility criteria and AR, it is important to assess each
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design component’s effect on the method’s performance. We thus simulated four alternative
versions of the procedure. Method 1 is our proposed procedure with An given by (9).

Method 2 drops the minimality requirement  from An. Method 3 drops both the

minimality requirement  and the requirement  in the AR that a dose must have
ϕ(x,Dn) that is δn–close to the optimum. Thus, Methods 1, 2, and 3 all use AR based on the
posterior probabilities r(x, Dn) of a good outcome, but with different definitions of an
acceptable dose. Method 4 drops the AR entirely, and uses the greedy algorithm that simply
chooses x to maximize ϕ(x, Dn), subject only to the safety constraint on toxicity. Thus,

 for both Methods 3 and 4, but Method 4 does not use AR. The results of this
additional comparative simulation are given in in Table 4. To present the results in a more
compact way than giving four versions of Table 2, one for each version of the method,
instead we use the following two summary statistics to quantify each method’s performance.
For each scenario, let utrue(xselect) denote the true utility of the final selected dose, and umax
and umin the largest and smallest possible true utilities among all x ∈ χ. A statistic that
quantifies how well the method selects a final dose for future patients is

the proportion of the difference between the utilities of the best and worst possible choices
that is achieved by xselect. A similar statistic that quantifies how well the method assigns
doses to patients throughout the trial is

where utrue (x[i]) is the true utility of the dose given to the ith patient, and N is the achieved
final sample size. Both statistics have range [0, 1], with a larger value corresponding to
better overall performance. Thus, Rselect quantifies future patient benefit while Rtreat
quantifies the benefit to the patients in the trial.

To interpret the results in Table 4, we first note that all four methods are safe in that they
stop and select no dose between 90% and 93% of the time in the toxic Scenario 6. This is as
expected, since all of the methods include the safety requirement (6). For the other seven
scenarios, Table 4 shows that Method 4, the greedy algorithm with the safety requirement
but no AR, may perform either extremely well (in Scenarios 1, 3, and 8), moderately well
(in Scenarios 4 and 5), or extremely poorly (in Scenarios 2 and 7). That is, Method 4 is
inconsistent and sometimes yields disastrous results. In particular, Method 4 gives the
extremely small values Rtreat = 0.10 in Scenario 2 and Rtreat = 0.20 in Scenario 7, compared
to much larger values for Methods 1 – 3. Thus, depending on the actual state of nature, the
greedy algorithm without AR may perform either very well or very poorly in terms of
benefit to the patients in the trial. In contrast, across all scenarios considered Methods 1 – 3
are all much more reliable, with no scenarios where any of these methods have extremely
poor performance. Thus, the addition of AR acts like an insurance policy against disaster,
but with the price being reduced performance in terms of Rselect and Rtreat in some cases.
Comparing Methods 1, 2, and 3, the greatest effect of adding the admissibility constraints

 and  is that they both increase Rtreat substantially in almost all scenarios. Thus, these
two dose admissibility constraints have the effect of making the dose-finding algorithm
more ethically attractive for the patients in the trial. In contrast, in terms of future patient
benefit, Table 4 shows that most of the advantage over Method 4 in Scenarios 2, 4, 5, and 7
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is due to including AR, since the Rselect values for Methods 1,2, and 3 about the same in
these scenarios.

Our motivating application is somewhat atypical in that most phase I/II trials have more than
3 dose levels. To more fully illustrate the methodology, we also include a simulation study
with J = 5 doses. The model, which now has p = 31 parameters, and the design used for this
simulation are very similar to those of the RT trial, but we assume Nmax = 40. With regard
to choice of Nmax in practice, it should be kept in mind that a phase I/II trial replaces the
more conventional approach of conducting phase I based on toxicity only and phase II based
on efficacy only. Thus, Nmax = 40 is quite reasonable for a phase I/II trial. All numerical
values in the prior and model corresponding to the new doses x′ ∈ {1, 2, 3, 4, 5} were
obtained by matching values for x′ = 1, 3, 5 to x = 1, 2, 3, respectively, and interpolating to
obtain values for x′ = 2 and x′ = 4. This simulation is summarized in Table 5, which shows
that the qualitative behavior of the design for J = 5 dose levels is very similar to what is
shown for J = 3 in Table 3.

A natural question is how well the method works using a more conventional model with
fewer parameters. To answer this, we also simulated the trial assuming a bivariate model
with PO marginals defined by logit(π̄k,y,x) = αk,y + βkx with αk,1 > αk,2 > αk,3 so θ = (α1,1,
α1,2, α1,3, α2,1, α2,2, α2,3, β1, β2, ρ) and p = 9. The prior for this model was obtained
similarly to that of the 19-parameter model, using the method described in Section 4.3. The
results are summarized in Table 6, which shows that the simpler model gives a design with
greatly inferior performance in Scenarios 1, 4, 6, and 7, superior performance in Scenarios 2
and 5, and the comparative results are mixed in Scenarios 3 and 8. This illustrates the point
that, in the present setting, no model is uniformly best. For the model with saturated
marginals, excluding Scenario 6 where no doses are acceptable, Rselect has range [0.64,
0.87] and Rtreat has range [0.45, 0.84], whereas the proportional odds model has
corresponding ranges [0.32, 0.92] and [0.30, 0.82]. Thus, the saturated model performs
much more consistently across a diverse set of scenarios, with far better worst-case results
than the simple model.

6. Discussion
In our proposed design, we have modified the approach of maximizing the posterior mean
utility by imposing several dose acceptability criteria and using AR among near-optimal
doses. As shown in Table 4, each modification improved the method’s performance, in
terms of both reliability and ethical desirability. While it may seem counterintuitive, in some
scenarios randomizing patients to interimly sub-optimal doses actually increases the average
utility of the doses assigned to patients throughout the trial. We also found that using a
model with saturated marginals gives a design with more consistent overall performance
compared to a model with conventional proportional odds marginals.

Several questions remain, and are areas for future investigation. In principle, the utility
function might be generalized to include information, monetary costs, or a future patient
horizon. Since these utilities have qualitatively different ranges, combining them to actually
conduct a trial is a difficult practical and ethical problem (cf. Dragalin and Fedorov, 2006;
Bartroff and Lai, 2010). Other issues include the use of bivariate event times as outcomes
(cf. Yuan and Yin, 2009), and addressing the more general problems of optimizing a two-
agent combination or both dose and schedule (Braun, et al. 2007).
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Figure 1.
Fixed probabilities of all outcomes for each of the eight scenarios in the simulation study.
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Table 6

Comparison of the performance under the simplified 9-parameter bivariate proportional odds model (p=9)
versus the model with saturated marginals (p=31) in the 5-dose trial. The numbers in parentheses after Rselect
are the percentages of the trial being stopped with no dose selected.

Scenario

Prop. odds marginals Saturated marginals

Rselect Rtreat Rselect Rtreat

1 0.55 (3) 0.79 0.87 (1) 0.84

2 0.92 (8) 0.55 0.71 (2) 0.45

3 0.67 (8) 0.82 0.82 (3) 0.72

4 0.32 (9) 0.47 0.74 (1) 0.68

5 0.84 (4) 0.66 0.64 (1) 0.47

6 0.53 (99) 0.92 0.94 (94) 0.94

7 0.50 (11) 0.30 0.70 (2) 0.52

8 0.66 (5) 0.78 0.75 (1) 0.62

J Biopharm Stat. Author manuscript; available in PMC 2013 July 01.


