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Abstract In this paper, a novel approach to the problem of

impulsive noise removal in color digital images is presented.

The described switching filter is based on the rank weighted,

cumulated pixel dissimilarity measures, which are used for

the detection of image samples contaminated by impulsive

noise process. The introduced adaptive design enables the

filter to tune its parameters to the amount of impulsive noise

corrupting the image. The comparison with existing deno-

ising schemes shows that the new technique more efficiently

removes the impulses introduced by the noise process, while

better preserving image details. An important feature of the

new filter is its low computational complexity, which allows

for its application in real-time applications.

Keywords Color image processing �
Image enhancement � Impulsive noise � Image quality

1 Introduction

The increase in use of color images in multimedia technol-

ogies and telecommunication has accelerated significantly in

recent years. This development has been accompanied by the

proliferation of color image capturing devices and looks set

for continued expansion in the future. As a result, the interest

in color image processing is rapidly growing.

Very often the quality of color images is degraded by

various types of noise, whose suppression is indispensable

to facilitate subsequent image processing steps. Therefore,

noise reduction is regarded as one of the most frequently

performed operations [1–7].

In this work, we focus on a special kind of image

deterioration, called impulsive noise, which can be caused

by malfunctioning camera photosensors, optic imperfec-

tions, electronic instability of the image signal, aging of the

storage material, faulty memory locations in hardware or

transmission errors due to natural or man-made processes

[8–11]. Common sources of impulsive noise include also

lightnings, strong electromagnetic interferences caused by

faulty or dusty insulations of high-voltage powerlines, car

starters, and unprotected electric switches. These noise

sources generate short time duration, high-energy pulses

which disturb the regular signal, resulting in the acquisition

of color image samples differing significantly from their

local neighborhood in the image domain.

In this paper, the color image is defined as a two-

dimensional matrix consisting of N pixels xi ¼ ðx1i ; x2i ; x3i Þ;
where the index i ¼ 1; . . .;N indicates the pixel location on

the image domain. The vector components xi
q, for

q = 1, 2, 3 represent the RGB color channels values

quantified into the integer domain.

Generally, filtering operators work on the assumption

that the local image features can be extracted from a small

image region centered at pixel xi, called a sliding filtering

window Wi. Thus, the output of the filtering operation will

depend only on the n samples contained within the window

centered at xi; which will be also denoted for convenience

as x1; ðW ¼ fx1; x2; . . .; xng).
The most widely used filtering approaches are based on

the reduced vector ordering, which assigns a dissimilarity

measure to each color pixel from the filtering window [1, 4,

6, 12–14]. The aggregated dissimilarity measure assigned

to pixel xj is defined as
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Dj ¼
X

n

k¼1

dðxj; xkÞ; xj; xk 2 W ; ð1Þ

where dð�Þ is the chosen dissimilarity measure. The scalar

accumulated dissimilarity measures are then sorted and the

vectors x1; x2; . . .; xn are correspondingly ordered

Dð1Þ �Dð2Þ � � � � �DðnÞ ! xð1Þ � xð2Þ � � � � � xðnÞ; ð2Þ

where � denotes the order relation between vectors and

D(r) denotes the rth smallest value of D [15–18]. The

choice of the dissimilarity measure strongly influences the

properties of the resulting filter. Usually the angle and

distance between vectors is utilized; however, various

combinations of the magnitude and directional processing

can also be applied [19–28].

Many filtering solutions define the vector xð1Þ in (2) as

their output, since vectors that diverge significantly from

the samples of W appear in the higher indexed locations in

their ordered sequence. Using the Euclidean distance as a

dissimilarity measure, the vector median filter (VMF) is

obtained [29]. The VMF output xð1Þ is one of the pixels

from the filtering window, for which the sum of distances

to all other vectors from W is minimized

xð1Þ ¼ argmin
xj2W

X

n

k¼1

kxj � xkk ¼ argmin
xj2W

X

n

k¼1

djk; ð3Þ

where k�k denotes the Euclidean norm and djk denotes the

distance between xj and xk:

If the image contamination intensity is high, the output

of the filters which are based on the reduced ordering can

also be corrupted by noise, as the vector median belongs to

the set of noisy pixels contained in the processing window.

This effect can be alleviated applying the so-called mar-

ginal median filter (MMF), which outputs the pixel, whose

components are the medians of the scalar values of the

corresponding channels. However, such an approach leads

to the generation of color artifacts, especially at image

edges, as the information on the correlation between the

color image channels is neglected. Therefore, various

techniques are applied to circumvent situations in which

the filter output contains noisy components [4, 6, 22, 30,

31].

Instead of choosing the vector median x(1) as the filter

output, the average of the a first ordered vectors

xð1Þ; . . .; xðaÞ can be utilized to replace the central pixel of

W. The so-called a-trimmed mean can be used for reducing

mixed impulsive and Gaussian noise, as it combines the

properties of the median and averaging operators.

The output of the VMF can also be examined whether it

contains noisy components by analyzing the color channels

of the samples in W in a marginal way. In [32], the robust

VMF (RVMF) has been proposed, in which the

components of the color pixels are arranged separately into

ordered sequences, utilizing the absolute values of the

differences between the scalar components as a distance

measure. If the q-th component of a pixel xi is denoted as

xi
q, (q = 1, 2, 3), then the sum of distances in (1) reduces

to Di
q
=

P

j=1
n |xi

q
- xj

q| and the ordered sequence

D
q

ð1Þ; . . .;D
q

ðnÞ implies the marginal ordering of the vector

components x
q

ð1Þ; . . .; x
q

ðnÞ: In this way, the corrupted VMF

output components can be detected on the basis of their

high marginal ranks.

The elements of W can be additionally ordered using the

values of the fuzzy similarity measures between a given

pixel and the VMF output. Thus, a set of vectors similar to

the vector median can be determined, whose components

can be used for the replacement of the detected corrupted

channels of the vector median [32]. Another possibility is

to apply the marginal median operation to the set of vectors

closest to the vector median, in order to create a noise-free

filter output [33]. As a result, an adaptive MMF (AMMF)

filter has been developed.

Various designs based on the concepts derived from the

fuzzy sets theory combined with the order statistics have

been also described [34–49]. Another family of techniques

aimed at the improvement of the detail preservation of the

filters based on reduced ordering is utilizing the concept of

vector weighting, which privileges the central pixel of the

processing window [50–56].

The VMF and other methods based on the reduced

ordering of vectors process every image pixel, regardless

whether it is noisy or not, which leads to the removal of

image details, causing image blurring and generation of

color artifacts. In order to alleviate the problem of exces-

sive image smoothing various switching filters, that replace

only the corrupted pixels, have been proposed.

The structure of a switching filter is presented in Fig. 1.

The filter output depends on the impulsive noise detector,

which decides whether a given pixel will be processed by

an appropriate denoising filter or left unchanged, (identity

filter). Thus, the efficiency of a switching filter depends

both on the quality of the impulse detection scheme and on

the applied restoration framework, which replaces the

detected impulses with estimates derived from the samples

belonging to a local processing window.

In [57–59], the concept of the Vector Sigma Filter has

been proposed. The switching filtering scheme is utilizing

the cumulated Euclidean distance defined in (1) as a

measure of the dispersion of vectors in the processing

window, which is used for the detection of outliers intro-

duced by the impulsive noise.

In [60], the distance between the central pixel of the

window and the a-trimmed mean calculated using the

sequence in (2) was chosen as a dissimilarity measure. If
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the value of the distance exceeds a predefined threshold,

then the central pixel is declared as corrupted and is

replaced by VMF; otherwise, it is kept unchanged. A fil-

tering scheme, utilizing the angular distance between

vectors was presented in [61].

The sum of the a smallest distances between the central

pixel of the filtering window and the remaining pixels was

used as a measure of pixel distortion in [49, 62]. This

concept is an extension of the statistics introduced in [63].

In [64, 65] the cumulated similarity measures, defined as

decreasing functions of the Euclidean distance between

pixels were assigned to the color samples from the filtering

window. The filter was made adaptive by adjusting its

parameter using a simple noise intensity level estimator, in

which a pixel is considered as not disturbed by the noise

process, if there exist at least two pixels whose distance to

the central pixel does not exceed a predefined threshold.

The concept has been further extended in [66–70].

In order to alleviate the problems caused by the blurring

properties of the VMF and other filters utilizing the ordering

scheme, a filtering method using the concept of a peer group

was introduced in [71, 72] and extensively used in various

filtering designs [49, 57, 66, 73–78]. The peer group associ-

ated with the central pixel xi of a filtering windowWi denotes

the set of close pixels, whose distance to xi is not exceeding a

given threshold. In thisway, thepixels are classified as similar

to the central pixel or declared as outliers, which should be

replaced by a suitable robust filter.

Another group of impulsive noise reduction techniques

is based on the methods derived from the mathematical

morphology. The main difficulty of the application of

morphological methods into color image processing lies in

the required vector ordering scheme [3, 79, 80]. The defi-

nitions of the basic mathematical morphology operations

were generalized in various ways, so that they can work on

color images and can be applied for impulsive noise sup-

pression [81–86].

The rank of a pixel in a sequence induced by a reduced

ordering carries a useful information on the pixel’s similarity

to other samples from the filtering window. In [87], for each

pixel of W the distances to all other pixels were calculated,

which enables to assign each pixel the ranks with respect to

each of the remaining samples. The filter output is the pixel

with lowest mean rank, which is most similar to a given

dataset from the filtering window. The ranks of the pixels

were also used for the detection of impulses in [88, 89].

An interesting approach to the problem if impulsive

noise removal is utilizing the quaternionic representation to

establish efficient measures of pixel corruption [90–92].

Another group of denoising techniques are based on the

concepts derived from the robust statistical procedures [18,

93–96]. These methods are capable of removing even

strong noise, while preserving fine image details.

In this paper, a new efficient switching filtering scheme

is presented. The main advantage of the novel approach is

its ability to suppress the noise component, while pre-

serving image details. The structure of the filter is based on

the reduced ordering statistics and is characterized by low

computational complexity, which enables the adoption of

the novel technique in real-time applications.

The remainder of the paper is organized as follows: In

the next Section we describe the impulsive noise models,

which will be used for the illustration of the proposed fil-

tering framework and the analysis of its efficiency. Then,

the rank weighted generalization of the VMF is presented.

Section 4 outlines the construction of an impulsive noise

detection scheme. The following Section addresses the

adaptive switching design, capable of suppressing impulses

in images contaminated by noise sources of varying

intensity. The next Section is devoted to the comparison of

the proposed filter with some effective methods known

from the rich literature. Some final conclusions are drawn

in the last Section of the paper.

2 Impulsive noise models

In order to illustrate the construction of the new switching

filter and to evaluate its effectiveness we used three models

of impulsive noise. In the first impulsive Noise Model

denoted as NM1, the noisy pixels xi ¼ fx1i ; x2i ; x3i g are

defined as [4, 12, 13]

Fig. 1 Switching filtering

structure
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x
q
i ¼

v
q
i with probability p;

o
q
i with probability 1� p;

�

ð4Þ

where oi
q denotes the q-th component of the original pixel

at position i, (q = 1,2, 3), and the contamination component

vi
q is a random variable which takes on the values 0 or 255

with equal probability, assuming 8-bit per channel color

image representation. The pixels affected by this so-called

salt & pepper impulsive noise may have corrupted 1, 2 or

all 3 channels. The probability, that none of the channels

will be distorted is (1 - p)3, and therefore the fraction of

corrupted pixels is equal to p = 1 - (1 - p)3.

The structure of the second noise model, denoted as

NM2, is similar. It differs only in the definition of the

variable vi
q, which can take on any value from the range

[0,255]. This kind of noise is usually called uniform or

random-valued impulsive noise.

The third kind of noise, denoted as NM3, is defined as

xi ¼
vi with probability p;

oi with probability 1� p;

�

ð5Þ

where vi ¼ fv1i ; v2i ; v3i g and v
q
i 2 ½0; 255�: In this impulsive

noise model, the affected pixels have corrupted all three

channels, which take on random values from the interval

[0, 255]. Figure 2 shows the noisy color test image PEP-

PERS contaminated by the three noise models with inten-

sity p = 0.1.

For the measurement of the restoration quality, the

commonly used root mean squared error (RMSE) expres-

sed through the peak signal to noise ratio (PSNR) and the

mean absolute error (MAE) was employed, as the RMSE is

a satisfactory measure of the efficiency of impulsive noise

suppression and MAE describes well the filter’s efficiency

of detail preservation [4].

The PSNR is defined as

PSNR ¼ 20 log10
255
ffiffiffiffiffiffiffiffiffiffi

MSE
p

� �

;

MSE ¼ 1

3N

X

N

i¼1

X

3

q¼1

x
q
i � o

q
ið Þ2; ð6Þ

where N is the total number of image pixels, xi
q and oi

q

denote the q-th component of the noisy image pixel

channel and its original, undisturbed value at a pixel

position i, respectively. The MAE measure is given by

MAE ¼ 1

3N

X

N

i¼1

X

3

q¼1

x
q
i � o

q
ij j: ð7Þ

(a) (b)

(c) (d)

Fig. 2 Color test image PEPPERS (a) contaminated by the noise model NM1 (b), NM2 (c) and NM3 (d) with intensity p = 0.1
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3 Rank weighted vector median filter

The reduced ordering schemes are based on the sum of the

dissimilarity measures between a given pixel and all other

samples from the filtering window W. In this way, the

output of the VMF is the pixel whose average distance to

other pixels is minimized.

The distances dij ¼ kxi � xjk between the pixel xi and

all other pixels xj belonging to W, ðj ¼ 1; . . .; nÞ can be

ordered

(a) (b) (c)

(f)(e)(d)

(g) (h) (i)

(l)(k)(j)

Fig. 3 Efficiency of the RWVMF as compared with other denoising methods, (first iteration): a test image, b image corrupted by NM1 noise,

p = 0.4, c output of MMF, d VMF, e DDF, f HDF, g AMMF, h RVMF, i FVMF, j FOVMF, k and l outputs of RWVMF1 and RWVMF2
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di1; di2; . . .; din ! dið1Þ � dið2Þ � � � � � diðnÞ; ð8Þ

and the ranks of the ordered distances can be used for

building the cumulated distances in (1).

If r denotes the rank of a given distance, then di(r) will

stand for the corresponding distance value and instead of

the aggregated distances in (1) we can build a weighted

sum of distances, utilizing the distance ranks

Di ¼
X

n

r¼1

f ðrÞ � diðrÞ; ð9Þ

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 4 Efficiency of the RWVMF as compared with other denoising methods, (second iteration): a test image, b image corrupted by NM1 noise,

p = 0.4, c output of MMF, d VMF, e DDF, f HDF, g AMMF, h RVMF, i FVMF, j FOVMF, k and l outputs of RWVMF1 and RWVMF2
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where f(r) is a decreasing weighting function of the dis-

tance rank r.

Then, the rank weighted sum of distances calculated for

each pixel belonging to W can be sorted and a new

sequence of vectors obtained

Dð1Þ �Dð2Þ � � � � �DðnÞ ! x�ð1Þ � x�ð2Þ � � � � � x�ðnÞ; ð10Þ

where the vector x�ð1Þ is the output of the rank weighted

vector median filter (RWVMF).

Similarly to (3) the RWVMF output x�ð1Þ an be defined as

(a) (b)

(c) (d)

Fig. 5 Illustration of the impulsive noise detection method using the

PEPPERS color image corrupted by NM1 noise of p = 0.1 and a

weighting function f(r) = 1/r

(a) (b)

(c) (d)

Fig. 6 Illustration of the impulsive noise detection method shown

using the PEPPERS color image corrupted by NM1 noise of p = 0.3

and a weighting function f(r) = 1/r

(a) (b)

(c) (d)

Fig. 7 Comparison of the real noise contamination map (a) with the

maps of detected noise using different weighting schemes (b–d), (part

of the color image PEPPERS corrupted by NM1 noise of p = 0.1

shown in Fig. 5)

(a) (b)

(c) (d)

Fig. 8 Comparison of the real noise contamination map (a) with the

maps of detected noise using different weighting schemes (b–d), (part

of the color image PEPPERS corrupted by NM1 noise of p = 0.3

shown in Fig. 6)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 9 Illustration of the correlation between the real noise intensity (x axis) and the output of the proposed noise detector (y axis) for

contamination ratio p = 0.1 of the used noise models. The correlation coefficient q is provided for each scatter plot
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x�ð1Þ ¼ argmin
xj2W

X

n

r¼1

f ðrÞ � djðrÞ: ð11Þ

Applying the constant function f ðrÞ ¼ 1; r ¼ 1; 2; . . .; n;

we obtain Di ¼ Di and x�ð1Þ ¼ xð1Þ: For a step-like function

f ðrÞ ¼ 1; for r� a; a� n;

0; otherwise;

�

ð12Þ

the sharpening vector median filter (SVMF) presented in

[97] is obtained.

Extensive experiments revealed that very good denoising

results are achieved using monotonously decreasing func-

tions, like f(r) = 1/r and f(r) = 1/r2, [98–100]. The weight-

ing function decreases the influence of large distances

introducedby the outliers injected by thenoise process,which

enables to efficiently remove the impulsive noise while

enhancing the image edges.

The efficiency of the rank weighted generalization of the

VMF is shown in Figs. 3 and 4, in which the color test

image PEPPERS is corrupted by impulsive noise NM1 and

restored with

– marginal median filter (MMF),

– vector median filter (VMF),

– directional-distance filter (DDF) [21, 20],

– hybrid directional filter (HDF) [28],

– adaptive marginal median filter (AMMF) [33],

– robust vector median filter (RVMF) [32],

– FVMF (fuzzy vector median filter) [22, 46],

– FOVMF (fuzzy ordered vector median filter) [22, 46],

and with the

– rank weighted VMF with the 1/r weighting (RWVMF1)

and 1/r2 (RWVMF2).

As can be observed the rank-based denoising scheme

copes very efficiently with the impulsive noise degradation

and produces images with very sharp edges.

4 Impulsive noise detection

The efficiency of a switching filtering design is dependent

mainly on the impulse detection module. If the detector

fails to identify corrupted pixels, they will be left

unchanged, leading to poor image restoration results. If

however, the detector classifies correctly the impulses, but

also declares the undisturbed pixels as noisy, much of the

image details will be lost.

In this paper, we propose an impulsive noise

detection scheme which efficiently detects the corrupted

pixels, while keeping the samples not affected by the

noise process unchanged. In order to decide whether a

pixel of a color image is corrupted by impulsive noise,

the difference between the cumulated weighted distance

D1 assigned to the central pixel of the filtering window

and the value of Dð1Þ corresponding to the rank

weighted vector median filter output is used [98–100].

In this way, the strength of the impulsive contamina-

tion can be estimated as the difference between D1 and

Dð1Þ:

Figures 5 and 6 depict the noisy test image contami-

nated by impulses originating from NM1 with intensity

p = 0.1 and p = 0.3 (a), values of the aggregated, rank

weighted distances assigned to the central pixel x1 of the

filtering window D1 (b) and the smallest values Dð1Þ (c).

The differences d ¼ D1 � Dð1Þ depicted in (d) serve as

measures of impulsive noise contamination. It can be

observed that the map of the impulsiveness correlates well

with the real contamination.

A direct comparison between the real noise strength

expressed as a Euclidean distance between the original and

noisy pixels in the RGB color space and the noise maps

obtained using the weighting schemes is provided in

Figs. 7 and 8, which show the impulse detection results for

two contamination levels. As can be observed, the

(a) (b) (c) (d)

Fig. 10 Color test images used for the evaluation of the restoration results
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(a) (b)

(c) (d)

(e) (f)

Fig. 11 Dependence of PSNR on the threshold parameter Th for two test color images depicted in Fig. 12 for the 1/r weighting scheme and

different noise models
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weighting of the distances introduced in the RWVMF

improves the impulse detection results.

Figure 9 depicts the scatter plots showing the correlation

between the real noise strength and the detected impul-

siveness of the image pixels. The results evaluated using a

set of color test images depicted in Fig. 10 reveal a high

correlation between the real and detected noise. The plots

also show a lack of significant influence of the noise

models and image structures on the impulse detection

efficiency.

5 Adaptive switching filter

The structure of the proposed switching filter is quite

simple. If the difference d ¼ D1 � Dð1Þ exceeds a threshold

value Th, then a pixel is declared as corrupted by a noise

process; otherwise, it is treated as not disturbed [101]

y1 ¼
xAMF; if D1 � Dð1Þ[ Th;

x1; otherwise;

�

ð13Þ

where y1 is the switching filter output, x1 is the central

pixel of the filtering window and xAMF is the Arithmetic

Mean Filter (AMF) output computed using only the pixels

declared by the detector as not corrupted by the noise

process [62, 66].

If all neighbors of the central pixel x1 of the filtering

window are found to be corrupted, then the RWVMF

applied to all pixels from W is taken as the filter output.

However, the need for substituting the central pixel by the

RWVMF output occurs only for very high image con-

tamination levels.

Of course, the efficiency of the switching scheme depends

heavily on the value of the thresholding parameter. If the

thresholdTh is too low, thefilterwill be replacing uncorrupted

pixels. On the other hand, if it is too high, many corrupted

pixels will pass the filter without being rectified.

As could be expected, the optimal setting of Th depends

on the contamination intensity. Figure 11 depicts the

dependence of the best possible PSNR restoration quality

measure values on the threshold Th for two images chosen

from the set of ten images shown in Fig. 12. Clearly, the

optimal threshold Topt yielding the best PSNR value is

decreasing with increasing noise contamination level, and

does not depend significantly on the image structure and

the applied noise model.

Another important issue is the application of the

weighting scheme needed for the estimation of the measure

of impulsiveness d described in the previous Section.

Figure 13 exhibits the optimal PSNR values obtained for

the four images depicted in Fig. 10 using the two weighting

schemes 1/r and 1/r2. It can be observed that the incorpo-

ration of the weights significantly improves the restoration

quality when compared with the unweighted scheme in

which f(r) = 1. Of course, various other weighting func-

tions could be applied; however, extensive experiments

showed that the simple weights guarantee good denoising

efficiency, without the need of introducing additional

parameters, which would be required to tune the shape of

the more sophisticated rank weighted function.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 12 Color test images used for the construction of an adaptive filtering scheme
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The choice of the weighting scheme is a difficult issue

as the filter behavior is influenced by the image structure

and also depends on the applied noise model. However,

taking into account that the weighting function 1/r2 tends to

preserve small clusters of impulses of similar color, which

does not compensate a slight increase in PSNR in some

cases, we decided to use the 1/r weights in the construction

of the adaptive switching filter.

As it became clear that the thresholding parameter Th
needs to be adjusted to the noise intensity level, the

dependence between the estimated noise intensity and the

optimal threshold was to be established. The experiments

performed using the images from the collection of test

images depicted in Fig. 12 and applying the described

noise models indicate an approximately linear dependence

between the contamination ratio p and the mean value of

Fig. 13 Dependence of the PSNR restoration quality measure on the noise intensity p for different noise models and weighting functions using

the GOLDHILL, LENA, PARROTS and PEPPERS test images
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the impulsiveness measure d computed for all image pixels

and denoted as �d: The dependence between the average

impulsiveness measure �d and noise intensity level p is

shown in Fig. 14.

The dependence between the optimal threshold Topt
yielding the best possible PSNR value on the noise inten-

sity p is presented in Fig. 15. Combining these plots for the

three noise models, we obtain the scatter plot depicted in

Fig. 16, which reveals a roughly linear dependence with

correlation coefficient q = 0.79

TADP ¼ �2:7 � �dþ 69:6; ð14Þ

between the adaptive threshold TADP and �d: As the mean

value of the difference d can be easily computed, the

adaptive threshold value TADP is adjusted to the estimated

intensity of image corruption.

The comparison of the PSNR results obtained using the

proposed Rank Weighted Adaptive Switching Filter

(RWASF) with the best possible results achieved with

the switching filter with varying threshold Th and

(a) (b) (c)

Fig. 14 Dependence of �d on the contamination level p for color images depicted in Fig. 12 corrupted with different noise models

(a) (b) (c)

Fig. 15 Dependence of Topt on the contamination level p for the color images depicted in Fig. 12 corrupted with different noise models
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1/r weighting, presented in Table 1, reveals satisfactory

results, which are very close to the optimal values. This is

due to the rather slowly varying dependence of PSNR on

the threshold Th shown in Fig. 11.

6 Comparison with existing techniques

The proposed RWASF was compared with a set of

switching filters intended for the suppression of impulsive

noise in color images. The filters chosen for comparison are

listed in Table 2. Their parameters were set according to

the recommendations provided in the appropriate

references.

The four images depicted in Fig. 10 were contaminated

by the three types of impulsive noise with intensities

ranging from 0.05 to 0.3. It is worth noticing that these

images were not included in the set of images used to

establish the dependence expressed by Eq. (14). The results

Fig. 16 Dependence between the optimal thresholding parameters

Topt and the measure of impulsiveness �d for the images shown in

Fig. 12 contaminated by the three noise models

Table 1 Comparison of the PSNR values achieved applying the proposed RWASF adaptive method with the best possible results obtained using

different weighting functions

Image p NM1 NM2 NM3

RWASF 1/r 1/r2 1 RWASF 1/r 1/r2 1 RWASF 1/r 1/r2 1

GOLDHILL 0.1 36.71 36.90 36.42 36.31 35.78 36.38 36.89 35.14 37.02 37.03 37.49 35.85

0.2 33.25 33.43 32.58 33.46 33.11 33.60 33.86 32.67 33.72 34.02 34.34 32.71

0.3 30.54 30.56 29.39 31.08 31.24 31.83 31.88 31.08 31.03 31.25 31.70 29.86

LENA 0.1 38.89 39.53 38.90 38.88 37.14 38.90 39.08 37.79 39.73 39.99 40.11 39.03

0.2 35.58 35.86 34.83 35.68 34.98 36.21 36.18 35.31 36.70 36.71 36.87 35.26

0.3 32.76 32.77 31.39 33.34 33.59 34.38 34.21 33.33 33.31 33.51 33.85 31.72

PARROTS 0.1 38.22 38.43 37.73 37.17 37.24 38.02 38.59 36.22 38.57 39.07 39.65 36.87

0.2 35.03 35.42 34.38 34.67 35.07 35.72 36.05 33.98 35.42 35.45 36.06 33.29

0.3 32.35 32.36 31.38 32.55 33.10 33.89 34.00 32.29 32.35 32.36 33.17 29.98

PEPPERS 0.1 39.69 42.06 41.32 41.20 37.85 41.43 41.49 40.32 41.59 42.09 42.57 40.65

0.2 36.76 38.09 36.94 38.09 35.69 38.75 38.55 37.53 38.18 38.58 38.88 36.49

0.3 33.48 34.30 32.75 35.20 33.93 36.50 36.27 35.30 34.14 34.46 34.92 31.69

Table 2 Filters used for comparisons [6, 22]

Notation FILTER Refs.

PGF Peer Group Filter [72]

ACWVMF Adaptive Center-Weighted Vector Median Filter [53]

RODSVMF Rank-Ordered Differences Statistic Based Switching Vector Median Filter [62]

ACWDDF Adaptive Center-Weighted Directional-Distance Filter [51, 58]

SDDF Sigma Directional Distance Filter [59, 57]

AVMF Adaptive Vector Median Filter [60]

ABVDF Adaptive Basic Vector Directional Filter [61]

SVMF Sigma Vector Median Filter [57, 59]

FMVMF Fast Modified Vector Median Filter [64, 65]
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Table 3 Comparison of the PSNR values obtained when restoring the color test images contaminated with NM1 impulsive noise using the

proposed RWASF technique and state-of-the-art methods

Image p METHOD (NM1)

RWASF PGF ACWVMF RODSVM ACWDDF SDDFr AVMF ABVDF SVMFr FMVMF

GOLDHILL 0.1 36.71 36.15 36.10 35.55 35.35 36.02 34.51 33.36 34.54 32.66

0.2 33.25 31.70 32.35 32.62 32.50 31.52 32.00 30.11 30.92 31.22

0.3 30.54 28.33 28.64 30.32 29.17 26.50 29.78 27.15 26.40 29.88

LENA 0.1 38.89 37.89 38.47 37.96 36.92 37.15 36.94 35.36 36.91 35.93

0.2 35.58 33.22 34.05 34.72 33.69 31.93 33.97 31.93 32.28 34.09

0.3 32.76 29.04 29.45 32.01 29.69 26.50 31.26 28.67 26.89 32.14

PARROTS 0.1 38.22 37.46 37.90 36.66 37.91 38.18 35.66 31.97 37.09 35.77

0.2 35.03 32.41 33.69 33.94 34.05 32.74 33.07 28.50 32.19 34.15

0.3 32.52 28.80 29.50 31.69 30.08 27.23 30.74 26.15 27.17 32.35

PEPPERS 0.1 39.69 37.10 37.37 36.68 33.29 34.66 35.53 31.36 35.70 35.25

0.2 36.76 32.34 33.04 33.70 30.05 30.18 32.65 27.97 31.40 33.39

0.3 33.48 28.38 28.73 31.08 26.94 25.42 30.11 25.31 26.60 31.47

The bold values indicate best restoration quality

Table 4 Comparison of the PSNR values obtained when restoring the color test images contaminated with NM2 impulsive noise using the

proposed RWASF technique and state-of-the-art methods

Image p METHOD (NM2)

RWASF PGF ACWVMF RODSVM ACWDDF SDDFr AVMF ABVDF SVMFr FMVMF

GOLDHILL 0.1 35.78 36.22 35.17 35.00 35.20 35.93 33.44 34.40 34.14 33.13

0.2 33.11 32.95 31.82 32.32 32.64 33.12 30.92 31.41 31.93 31.74

0.3 31.24 30.59 29.04 30.42 30.41 29.79 29.14 29.33 28.97 30.50

LENA 0.1 37.14 38.02 37.04 36.66 36.40 37.15 34.83 35.46 36.77 36.30

0.2 34.98 34.52 33.18 33.69 33.54 33.80 31.97 32.37 33.54 34.45

0.3 33.59 31.69 29.94 31.56 30.85 29.86 29.93 30.09 29.82 32.69

PARROTS 0.1 37.24 37.80 36.94 35.96 37.77 38.69 34.30 34.51 37.38 35.97

0.2 35.07 34.40 33.30 33.26 34.49 34.64 31.65 31.29 33.63 34.36

0.3 33.10 31.70 30.22 31.35 31.69 30.64 29.79 29.32 29.95 32.76

PEPPERS 0.1 37.85 37.17 36.68 36.16 34.3 35.59 34.76 32.87 35.99 35.68

0.2 35.69 33.82 32.47 33.2 31.33 31.95 31.79 29.86 32.41 33.69

0.3 33.93 31.13 29.37 31.05 28.86 28.27 29.75 27.58 28.92 31.84

The bold values indicate best restoration quality

Table 5 Comparison of the PSNR values obtained when restoring the color test images contaminated with NM3 impulsive noise using the

proposed RWASF technique and state-of-the-art methods

Image p METHOD (NM3)

RWASF PGF ACWVMF RODSVM ACWDDF SDDFr AVMF ABVDF SVMFr FMVMF

GOLDHILL 0.1 37.08 36.19 35.47 35.54 33.94 34.94 34.74 28.39 33.87 32.39

0.2 33.72 32.66 31.07 32.26 30.53 29.57 31.86 25.23 29.37 30.42

0.3 31.03 29.14 26.29 28.52 26.84 24.13 28.39 22.63 24.24 27.67

LENA 0.1 39.73 38.56 37.87 38.12 36.34 36.07 37.28 33.17 36.18 35.50

0.2 36.70 34.54 31.93 33.98 31.69 29.46 33.46 29.01 29.85 32.66

0.3 33.31 30.29 26.62 29.65 27.03 23.75 29.50 25.11 24.18 29.10

PARROTS 0.1 38.57 37.32 36.73 36.29 36.78 36.70 35.79 29.11 35.73 34.82

0.2 35.42 33.98 31.37 33.09 31.83 29.82 32.66 25.76 29.39 32.27

0.3 32.35 29.43 26.03 28.59 26.73 23.81 28.39 22.84 23.77 28.25

PEPPERS 0.1 41.59 37.56 36.71 37.07 35.09 34.36 36.75 32.54 34.75 34.71

0.2 38.18 33.42 30.79 32.75 30.27 27.59 32.53 27.72 28.58 31.54

0.3 34.14 28.58 25.10 27.80 24.89 21.98 27.82 22.82 22.79 27.30

The bold values indicate best restoration quality
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(l)(k)(j)

Fig. 17 Comparison of the efficiency of the proposed adaptive filter with some of the state-of-the-art denoising techniques in terms of the PSNR

restoration quality measure for the three models of impulsive noise
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(l)(k)(j)

Fig. 18 Comparison of the efficiency of the proposed adaptive filter with some of the state-of-the-art denoising techniques evaluated in terms of

the MAE restoration quality measure for the three models of impulsive noise
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are summarized in Tables 3, 4 and 5. Due to the space

limitations only the PSNR measures are reported; however,

the results lead to the same conclusions when using other

quality restoration measure like MAE or Normalized Color

Distance (NCD) in the Lab color space [4] (bold values

indicate best restoration quality).

As can be observed, the proposed filtering method yields

results significantly superior to those obtained using the

state-of-the-art denoising methods. Only in few cases, for

low contamination level, the PGF and SDDFr methods

were able to deliver slightly better PSNR and MAE res-

toration quality values. More detailed comparisons of the

results achieved using the new filtering design with the five

best competitive filters are shown in the plots of Figs. 17

and 18, which depict the comparison of the filters in terms

of the PSNR and MAE restoration quality measures.

The results summarized in the Tables and Figs. 17, 18

are confirmed by the subjective analysis of the results

depicted in Figs. 19, 20 and 21 which show the restoration

quality achieved using the RWASF as compared with other

competitive filters. As can be noticed, the proposed filter

better preserves image details, when suppressing the

impulsive noise.

An important feature of the filters intended for the

impulsive noise removal is their computational complexity,

which is especially important in real-time applications. The

proposed filtering design is based on the VMF, which in its

straightforward implementation requires for each pixel in

W the computation of the n(n - 1) Euclidean distances to

other samples belonging to the same window. Observing

that the distance between two pixels is symmetric and

applying the so-called running algorithms [102, 103], the

computational load of VMF can be significantly decreased.

The Rank Weighted VMF requires for each pixel in W

additional ordering of the distances and their division by an

appropriate rank function value. Time consuming is also

the calculation of the cumulated weighted distances and

their minimum value, which is needed for the computation

of the measure of impulsiveness d. This value has to be

compared with the threshold value based on the mean value
�d: If the impulsiveness measure is not exceeding the

threshold, then the pixel is declared as undisturbed;

otherwise, the filter output is the mean value of the pixels

in W, which were found not to be corrupted by the

impulsive noise.

As the most computationally demanding step is the

calculation of the Euclidean distances, the proposed filter is

comparable in speed with the standard VMF. In this way,

the new filter is slower than the PGF [23, 72] and other

designs based on the peer group concept, in which the main

computationally demanding step is the calculation of the

distances between the central pixel and its neighbors

(a) (b) (c) (d)

(h)(g)(f)(e)

Fig. 19 Comparison of the efficiency of the proposed switching technique with other denoising methods using a part of the color test image

PEPPERS contaminated by NM1 with intensity p = 0.1
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(a) (b) (c) (d)

(h)(g)(f)(e)

Fig. 20 Comparison of the efficiency of the proposed switching technique with other denoising methods using a part of the color test image

PEPPERS contaminated by NM2 with intensity p = 0.1

(a) (b) (c) (d)

(h)(g)(f)(e)

Fig. 21 Comparison of the efficiency of the proposed switching technique with other denoising methods using a part of the color test image

PEPPERS contaminated by NM3 with intensity p = 0.1
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[22, 66, 68, 76–78], without the need for calculating the

corresponding distances for all pixels in the window.

The computational burden of the VMF-based approa-

ches can be, however, simplified adopting simpler dis-

similarity measures and applying some approximations

[23, 30, 31, 104–108], which do not decrease significantly

the noise filtering performance. Additionally, the methods

adopting the VMV concept are well suited for parallel,

hardware implementations [109–112]. Taking this into

account, the computational complexity of the proposed

filtering design allows for its application in real-time image

processing applications.

7 Conclusions

In the paper, a novel switching filter has been proposed.

The filter is based on order statistics and utilizes the

weighted cumulative distances between pixels for the

detection of samples corrupted by impulsive noise process.

The experiments performed on test images contaminated

by three noise models revealed a very high efficiency of the

proposed design. The incorporated adaptive scheme guar-

antees satisfactory denoising results without the need of

adjusting any parameters. Additionally, the novel filter is

characterized by a simple structure, which makes it very

attractive for computer vision applications.
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