IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 4, AUGUST 1997 475

Adaptive Rate-Controlled Scheduling
for Multimedia Applications

David K. Y. Yau and Simon S. Lanfellow, IEEE

Abstract—We present a framework for integrated scheduling of packets. Therefore, they need to process external events such
continuous media (CM) and other applications. The framework, as device interrupts or network interrupts in a timely manner.
called ARC scheduling consists of a rate-controlled on-line CPU As an example, consider a video application that sends

scheduler, an admission control interface, a monitoring module, . t t ; K at te of 30/s. A vid t board
and a rate adaptation interface. ARC scheduling allows threads pictures to a network at a rate o S. A video capture boar

to reserve CPU time for guaranteed progress. It provides firewall IS connected to the computer on which the video application
protection between threads such that the progress guarantee to runs. Every 33.3 ms, the video capture board digitizes and
a thread is independent of howother threads actually make compresses a picture, and buffers the compressed picture in
scheduling requests. Rate adaptation allows a CM application 10 4 haarq memory for reading by the video application. The
adapt its rate to changes in its execution environment. We have id licati ds th ict f the vid t
implemented the framework as an extension to Solaris 2.3. We VIdeo app 'Ca_'on reads the picture irom the video capture
present experimental results which show that ARC scheduling Poard, packetizes the data, and sends packets to the network.
is highly effective for integrated scheduling of CM and other The execution profile of the application is shown in Fig. 1.
applications in a general purpose workstation environment. ARC The vertical lines mark the times at which new pictures
scheduling is a key component of an end system architecture 5. nroguced by the video capture board. The computation
we have designed and implemented to support networking with - . o .
required by the video application to process each picture

quality of service guarantees. In particular, it enables protocol L - . . :
threads to make guaranteed progress. (which includes reading, packetizing and sending the picture

. . . data) is shown as a shaded box. For minimal delay and
Index Terms—Adaptive rate control, continuous media, CPU) y

scheduling, end system support, protocol processing, QoS guar-b_Uﬂering inside the video capture board,. procgssing of a
antee, rate reservation. picture should complete before the next picture is produced

by the board.
Thread schedulingin traditional Unix operating systems
| INTRODUCTION cannot satisfy the real-time constraints of CM applications as
DVANCES in digital and networking technologies havelescribed above. We illustrate by describing thread scheduling
enabled the integration of “continuous” media (CM) datan Solaris 2.3, where threads run in one of themtheduling
such as video and audio, with traditional “discrete” data typeslasses RT (real-time), SYS(system), andl'S (timesharing).
such as graphics and text, in packet-switching networks aRdorities in a scheduling class are mapped to a sefiafal
general-purpose workstations. At the network level, it has bepriorities. RT priorities are mapped to higher global priorities
shown that quality of service (QoS) guarantees can be providednSY Spriorities, which are in turn mapped to higher global
to traffic flows through appropriate packet scheduling amatiorities thanTS priorities. At any time, the system executes
admission control. In addition, Internet standardization efforésrunnable thread with the highest global priority.
[2], [5], [19] are under way to avail user applications of accessIn Solaris 2.3, threads in a user process run in T&
to network level resource reservations. Our goal is to extenthss by default. There is a time quantum associated with
QoS guarantees between network endpoints to the ultimateery TS priority. Whenever aTS thread uses up a time
endpoints of an end-to-end communication, namely, apptjuantum, the system lowers the priority of the thread. On
cations running in user space of general-purpose operatthg other hand, if a thread has been blocked for a long time,
systems. the priority of the thread is raised. This approach provides
CM applications require certain real-time constraints. Thdgst response time to interactive applications without starving
may interface with a media device (such as an audio codeccompute-bound applications. MoreoverT& thread is given
a video capture board) or with a network that transports media'kernel” priority whenever it blocks inside the kernel. The
priority given depends on the condition on which the thread

" _ ed October 2. 1996 revised Aoril 17 1997 is blocked. Hence, the priority of &S thread is dynamically
anuscript received October 2, ; revised April 17, ; approvi ; ;
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor G. Parulkar. This ‘?f’nanged by the system in al hocmanner, and it cannot be

work was supported in part by the National Science Foundation under Gratfied to specify an application’s progress requirements. Fig. 2

NCR-9506048, an equipment grant from the AT&T Foundation, and an IBMlustrates how applications ifi'S class can fail to meet real-

graduate fellowship awarded to D. K. Y. Yau for the 1996-1997 academic

year. An earlier version of this paper was presented at ACM Multimedia'96.
The authors are with the Department of Computer Sciences Univer-lm most operating systems, including Solaris, threads are the schedulable

sity of Texas at Austin, Austin, TX 78712-1188, USA (e-mail: {yau,entities within a process.

lam}@cs.utexas.edu). 2The SYSclass is, however, not available to user processes, and will not
Publisher Item Identifier S 1063-6692(97)05778-6. be considered further in this paper.

1063-6692/97$10.001 1997 IEEE

476 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 4, AUGUST 1997

1
| |
‘ Picture ‘ |
processing

! computation ‘ ’
|)
! l

_

33.3 ms

Fig. 1. Execution profile of a periodic video application.

400 : , : . : , : A. Our Contributions
350 - For integrated CPU scheduling of CM and other appli-
cations, we propose the use of a family aflaptive rate-
— 300 . . .
3 controlled (ARC) schedulers with the following properties:
e 250 F 1) reserved rates can be negotiated; 2) QoS guarantees are
% 200 - conditional upon thread behavior; and 3) firewall protection
§ 1 between threads is provided. In this paper, we present and
b 150 | il . .
B A w\l study a particular scheduler called RC together with two rate
= 100 I adaptation strategigsRC allows applicatiorfsto specify a
50 |- (111 | reservedate (between 0 and 1) and a time interval known as
. 1 \ * - / MGAL period (in pS). It provides the following progress guarantee:
%6 100 200 300 200 500 600 700 soo @ “punctual” (a notion to be made precise in Section V-C)
application with rater and periodp is guaranteed at least
Frame krp CPU time over time intervakp, for £k = 1,2, -,
Fig. 2. Times between pictures sent by a video application run as a UWbere each interval is measured from when th? appl_lcatlon
TS process. first becomes runnable. Although our framework is motivated

by the requirements of CM applications, it is appropriate for

time constraints. In the figure, we show the times betweéﬁhedu"ng other applications as well. This is desirable since,

pictures sent by a video application similar to the one describty? _general-purpose workstation environment, CM and other
above. At first, pictures were mostly sent every 33.3 ms. Aﬁgpphcatlons run _toge_ther. AN .

several compute-bound applications were started, howevelrOur main contr|but|ops are. D mple_mentaﬂon of th? sched-
interference from these other applications caused the via‘ég1 g framewor.k and its |n_tegrat|on mtlo a worl_<stat|on op-
application to receive insufficient CPU time to keep up witfrating system; .2) an oq-lme schedglmg alggnthm that,' n
the picture rate. Many pictures were skipped, and interfrarﬁgntraSt to classical real-time scheduling algorithms, provides

times of 100 ms or more were common. (We will revisit thié progress guarantee to each thread independently of the

example in Section VIl for the scheduler proposed in th ehavior Of. other thr_eads; 3) empirical evglua_\tion. of our
paper.) ramework in schedullng CM and other appllcau.ons, and 4)
The RT scheduling class is intended to give users tightglupport forrate adf”‘pt"?‘“"”Where'F’y the workstation kernel
control over how threads in a user process are schedul Sl_p_s a u_ser_apphcatlon Qdapt 'tS. current reserved rate by
RT priorities are never modified by the system, andRih providing it with feedback information.
thread always has priority over threads in the other scheduling
classes. Th&®T class thus allows a user to run “performanceB. End System Support for Networking with QoS Guarantees
critical” applications without interference by other system ARC scheduling is a key component of an end system
activities. However, likeTS priorities, RT priorities lack QoS architecture we have designed and implemented to support
interpretation. A user must translate the progress requiremefiésworking with QoS guarantees. Other components in the
of applications toRT priorities in anad hocmanner. More architecture include: 1) thMigrating Socketframework for
importantly, the lack of QoS interpretation f&T priorities yser level protocol implementation [17], 2) rate-based flow

means that the system cannot do effective admission contidntrol for reserved rate connections in future integrated

Without admission control, long-term system overload cannot

be prevented. Finally, since &1 thread cannot be preempted 3we are interested in the RC algorithm because of its simplicity and effi-

by system threads, aRT thread that does not voluntarily giveciency. Many other rate-based algorithms with the three specified properties, as
' . Il iffi i i in the AR heduli

up the CPU can block out all other system activities. Wh%vi/fmzjvglrkferent rate adaptation strategies, can be used in the ARC scheduling

that happens, the Only way fora system administrator to regaiagy, simplicity, we refer to “application thread” as “application” in the rest

control of the workstation is to reboot the system. of this paper.

YAU AND LAM: RATE-CONTROLLED SCHEDULING FOR MULTIMEDIA APPLICATIONS 477

services networks [15], and 3) a constant overhead packete of the previous work executed by the thread is used
demultiplexing mechanism suitable for wide area interneiistead of the expected finishing time of the work to be
working [17]. scheduled.

With Migrating Sockets, the state and management rightMany other packet scheduling algorithms have been de-
of a network endpoint can move between a server and us&ned to achieve various notions of fairness, such as those
processes. Performance critical protocol services such as siendl], [3]. These algorithms can also be used for ARC
and receive are accessed as a user level library linked wéitheduling, with fairness achieved at the expense of more
applications. Send side protocol code is accessed in applicatimplementation overhead. However, our experimental results
threads of control. In addition, user processes have protosbbow that real-time video and audio applications are not
threads for network receive and timer processing. “greedy,” and the notions of fairness as defined in [1], [3]

From a QoS perspective, Migrating Sockets has the aake not an important concern for these applications.
vantage of minimizing “hidden” schedulirfgWith hidden Finally, areal-time upcallmechanism has been proposed in
scheduling at a minimum, user applications can more ead], [7] to implement communication protocols in user space
determine and negotiate an appropriate rate of progress witlth QoS guarantees. While the approach is an interesting
the operating system, such that their real-time constraints cternative to real-time threads, it is specifically designed for
be met [17]. An ARC CPU scheduler, with knowledge of therotocol processing, and appears to be less general than our
progress requirements of all threads in the system, can perfapproach.
admission control and provide progress guarantees to threads.

D. Organization of this Paper

C. Related Work In Section II, we discuss the classical rate-monotonic and

The case for an integrated scheduling policy for divergarliest deadline first scheduling algorithms, and illustrate how
applications has been advocated by other researchers, ostraightforward implementation of these algorithms in a
example, [11]. However, not enough details of the algorith@eneral purpose workstation may lead to unsatisfactory results.
are given in [11] for comparison with our approach. RathdR Section IlI, we relate the CPU scheduling work described
than integrated scheduling, a three level hierarchical scheduferthis paper to a new operating system architecture we
for a video-on-demand service has been proposed in [4]. Proposed for supporting distributed multimedia applications.

The implementation of our scheduling framework is baseg€ction IV introduces a rate-based reservation model for CPU
on extending an existing operating system to support real-tifi@e. The proposed scheduling framework, which consists
scheduling. This is similar to the work of Real-Time Mact®f a priority-based on-line scheduler, an admission control
[13], which is an extension of the Mach operating system. Olitterface, a monitoring module, and a rate adaptation interface,
requirement that a thread’s progress guarantee be protedfedescribed in Section V. Section VI reports our experience in
from the execution behavior of other threads is similar ifinplementing the CPU scheduler in Solaris 2.3. Experimental
objective to theprocessor capacity reservedstraction in [10]. results reported in Section VII show the effectiveness of our
There is, however, a key difference between processor capadifplementation for many test cases.
reserves and our solution, i.e., only scheduling algorithms with
the firewall property are considered in our approach, thereby II. CLASSICAL REAL-TIME SCHEDULING

eliminating the need for an explicit monitoring mechanism : : . .

. : . Many classical real-time scheduling techniques have been
to enforce firewall protection from interference. On the other lied in multimedia operating systems [12). Two algorithms
hand, in Real-Time Mach's implementation of processor Cihpppt are generall belie[\)/ed togbeysuitable fo.r schedglin CM
pacity reserves, a reserve must be periodically replenish are g y i ! Y

agbllcatlons are the rate-monotonic (RM) algorithm and the

and an overrun timer must be set to expire at the time a'. - . . .
thread is supposed to voluntarily give up the CPU. Shouﬁf\rllest deadl|r_1e first (EDF) algorithm. We briefly review each
of these algorithms [9].

the overrun timer expire, the reserved prioritydispressedo Analysis of RM and EDF scheduling has made use of the

an unreserved priority. In comparison, our system does rlo . - o .
require such a mechanism for monitoring and policing, n ?howmg periodic specificatiorfor the execution of a thread,

does it distinguish between reserved and unreserved prioriti ay . The specification has two parameters: a pedodin

ARC scheduling in our system is based upon a uniform cla conds), and a computation time requirement per pefod

of dynamically computed priority values, one for each threa n seconds). Aneyent which reqwresCi seconds Of. CPU
Ime to process, is assumed to arrive at the beginning of

Several rate-based algorithms with the firewall proper X) o .
have been proposed for scheduling packets in a netwég: ch period. Theleadlineof an event, which is the time by

switch. Our algorithm is conceptually similar to the V which procgss_ing of the event must complete, is assumeq to
algorithm [14], [18] but with two differences needed for CP e'the begmmng .Of the next period. This model of execution
scheduling: 1) a period parameter is introduced and 2) s lllustrated in Fig. 3.

. L .. . The RM algorithm assigns the peridd as a static priority
computing the priority value of a thread, the expected ﬂmsm%lue of thread. This priority value is interpreted such that the

lower the value, the higher is the RM priority of the thread.
SHidden scheduling occurs when protocol processing is done in the cont 9 P Y

xt B 1
of interrupt handling or “background” threads of control that do not belonEIu and Layland [9] ShOW that 'Eici/Pi S ”(2 /m— 1)1
to a user process. where the summation is over all threads in the system, then

478 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 4, AUGUST 1997

Deadline |

event

|
|
|

time Ci

|
[Computation‘
| for event |
| |
| |

~J

'Period P,
i

Fig. 3. Periodic specification in classical real-time scheduling.

each thread gets the followingrogress guaranteeror all 4,
the thread will be scheduled to run far; within period P;. ThreadQ
This implies that the processing of each event will complete | | |
by its deadline. The conditiol;C; /P, < n(2Y/" — 1) is the
admission control criterion. When is large, the right-hand
side is about 0.69. Hence, RM scheduling is, in general, not

able to achieve 100% processor utilization. However, if thé®M. EDF
thread periods are harmonic, then it can be shown that 100%
processor utilization is indeed achievable. RC

In contrast to RM, the EDF algorithm is a dynamic priority

algorithm. At any time, the priority of a thread is not fixed, Time (ms)
but is determined by the deadline of its next event. A thre
with an earlier deadline value has a higher EDF priority. For
EDF scheduling, it is proved that E;C;/F, < 1, then each
thread gets the same progress guarantee as RM sched

[9]. Hence, unlike RM, full processor utilization is in genera] nd R goes on to run until 80 ms. The result is thatis not

achievable with EDF. scheduled at all during the first 80 ms. Henégs progress

~ Clearly, the progress guarantee by RM and EDF is usefiflarantee is violated even though its execution conforms to its
in scheduling CM applications. For example, it can be used 19, qic specification. EDF suffers from the same interference

schedule the video application described in Section | such t%blem if the actual processing time of an event is longer
each picture is processed before the next picture is produgfdy the processing timeé); assumed in admission control.
by the video capture board. However, a straightforward implgo example, if the event that arrives f& at time 0 takes
mentation of either algorithm in a general-purpose workstatigfty ms to complete, EDF performs the same as RM in the
environment may not yield satisfactory results. This is becaug@ample in Fig. 4.

the execution profile of a real application may not conform to The above example shows how a “greedy” thread, such
the periodic specification. To illustrate, consider two threadgs g, that runs ahead of its periodic specification can affect
say(and R, scheduled by the RM algorithm. Thregthas a the progress guarantees to other threads. However, scheduling
period of 80 ms, and a per-period computation requirement @quests that are late with respect to the periodic specification
40 ms. ThreadR has a period of 40 ms, and a per periodan also cause problem. Consider the scenario shown in Fig. 5.
computation requirement of 20 ms. Since the periods ar@ere are three threadsg, R, andS, each having period 90 ms
harmonic, the achievable processor utilization is 100% aa@d computation time requirement per period 30 ms. They are
is not exceeded in this example. Becaugehas a smaller scheduled according to the RM algorithm (see the row labeled
period than?, it has higher RM priority thad). Now consider “RM” in Fig. 5). Because the threads all have the same period
the execution profiles of the two threads shown in the tagmd hence RM priority, the system has arbitrarily decided to
two rows in Fig. 4. Note that) conforms to its periodic schedule ahead ofR, and R ahead ofS. According to the
specification, wherea®l does not. The row labeled “RM” periodic specification, botlf) and R should request to run
shows how the threads are scheduled by RM. At the beginniftg 30 ms at the beginning of the second period (90 ms).

\ \ \
Thread R [z i i i)
\ \ \

. 4. A “greedy” scheduling example.

f the first period (time 0)R is scheduled to run. RM does
LE' requireR to give up the CPU after running for 20 ms,

YAU AND LAM: RATE-CONTROLLED SCHEDULING FOR MULTIMEDIA APPLICATIONS 479

| [8] to prevent unbounded priority inversion. However, we have

Thread Q \ NN ‘ not yet |mplerr_1ented the protocol, and thus cannot evaluate

| \ \ the cost of doing so.)
\

Third, in our prototype system, a lightweight kernel thread
Thread R

‘ can be used to multiplex a shared network connection among
| | \ | multiple user processes [15]. Specifically, a user process
Thread S = = = \ with packets to send enqueues the packets to a send control
! | gueue. A kernel thread is then responsible for moving packets
from the send control queue to a network interface queue
at a reserved bit rate (see Fig. 6). The kernel thread also
performs rate-based flow control of shared access to a network
connection.
There are several timing constraints in thread scheduling:
Time (ms) threads in a user process must be scheduled such that they
Fig. 5. A “late” scheduling example. can enqueue packets to the send control queue “in time,” and
the kernel thread must be scheduled such that it can move the
ackets to the network interface queue “in time.” As described
However, and X are late, and they do not become runnablgy [15] the timeliness condition for a kernel thread means
until 150 ms. The result is that, even thoughbecomes .t the kernel thread will be periodically scheduled with a
runnable at 180 ms, it cannot be scheduled until 270 Mgayimum CPU time per period. Fig. 6 shows the relationship

The progress guarantee Sfis violated from 180 to 270 ms, peqyeen CPU scheduling and send side packet scheduling by
despite the fact that the execution®tonforms to its periodic 5 lightweight kernel thread.

specification. EDF suffers from the same interference problem

if event arrivals can be late. In our example, if the second

events for@Q and R arrive at 150 ms instead of 90 ms, then IV. RATE-BASED RESERVATION

EDF performs the same as RM. Our system allows threads to reserve CPU time based on
The scheduling framework proposed in this paper allowsrate® of progress,/(0 < r < 1), and a time intervap

threads to reserve CPU time based on rates of progréssus known asperiod The rate can then be viewed as a

Moreover, we believe that it is desirable to provifiewall guaranteed fraction of CPU time that a “punctual” (this notion

protection between threads, i.e., our system guarantees thall be made precise in Section V-C) thread will be allocated

each “punctual” (see Section V-C) thread makes progressogkr time. Specifically, the thread will be allowed to run for

its reserved ratendependently of the behavior of other threadsat leastkrp time over time intervalkp for £ = 1,2, .-,

Firewall protection is achieved by a form ddte controlthat measured from when the thread first becomes runnable. For

RM, EDF

RC

will be made clear in Section V. example, if the rate is 0.5 and the period is 100 ms, then the
thread will be allowed to run for at least 50 ms over the first
1. OS ARCHITECTURE OVERVIEW 100 ms since the thread first becomes runnable, for at least

We previously proposed an operating system architecture goqghms ct>vebr thedﬁrst 200t.ms, etg' Lis similar to th iodi
supporting distributed multimedia [15]. The architecture makes € rale-based reservation modet Is similar to the periodic

use ofl/O efficient bufferand afast _write() system call specification in Section Il, by considering;/F to be the

to reduce the end-to-end latency of network data transfetF%Fe of Fh(rfad' I the E{e_xem{gon (t)r: a thtrez;d dodes C(()jnflorm to
It also makes use dfernel threadsfor reduced system calls € periodic specitication, then the rate-based model ensures

and rate-based flow control. The system was prototyped astt::\ﬁﬁI same progress guarantee to the thread as RM and EDF

extension to Solaris 2.3, and the CPU scheduling framewor eduling. However,' therg are two |m.portant differences.
ist, our system provides firewall protection between threads

reported in this paper has since been integrated into tlr:1 .
P pap ¢ ch that the progress guarantee to a thread is independent of

prototype system. In this section, we describe features of g .
prototype system that are relevant to CPU scheduling. the behavior of other threads. Second, the rate-based model

First, in contrast to a traditional Unix kernel, the Solaris 2_§1a_kes epr|C|F the _notlon of a guaranteed .ratt_e of progress,
kernel is fully preemptible except for a few short protecteWh'CP we .beI’|,eve IS natgral even for gppllcatlons that are
intervals. This is important for us to obtain good real-timg°! _real-tlme a‘?d not mh_erently p?r'OdIC' For example,
application performance since it allows a high-priority threa((‘jm?s'(]ler a numerlcal analy5|§ application that solves_a systgm
to preempt a lower priority thread, even though the Iatté)rr Im_ear equations. Forapar_ﬂcular p_ro_blem,the application is
may happen to be in the middle of a long-duration Systeﬁ;?ntmuously enabled (meaning that it is always ready to run)

call. Second, the Solaris kernel implements priority inheritan@@d take; 5,3 of QPU time to complete. Suppqse the user runs
t'filg application with a rate of 0.01 and a period of 0.5 s. In

for most synchronization primitives such as semaphores a) :
mutex locks. This improves the situation in which, becau e absence of competing threads, the system will allow the

of lock contention, a high-priority thread is blocked by |owepppl|cat|on to run continuously for 5 s and terminate. On the
priority threads. (Note that priority inheritance can be used inspjess otherwise specified, we shall use the teate to meanreserved
conjunction with a dynamic priority ceiling protocol such asate.

480 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 4, AUGUST 1997

User Kernel
processes thread

Process
scheduler

CcPU

Send
control
queues

Rate—based access
\l/ to network connection

Network
interface
queue

Il

Fig. 6. Relation of CPU scheduling to our OS architecture.

other hand, if the system is highly loaded, the system will sti
ensure that the application will run at least ms for every .
0.5k s after the application first becomes runnable, and the =~ 3japtation
application will terminate in at most 500 s. — b

H
'usER

V. SCHEDULING FRAMEWORK

An overview of our scheduling framework is shown in / ’ -
Fig. 7. The framework consists of the following componentg—

. Reject
A

'Rate VU1) Admission |
First, there is an on-line scheduler that schedules threads adaptation 1, || * control

according to dynamic rate-controlled priority values (hereatfter, P V1
called RC values) to be defined in Section V-A. Second, there

is an admission control interface that admits or rejects new \ “,‘f’ Scheduler

threads based on the rate-based reservation model in Section [

IV. Admission control limits system overload so that rate l

guarantees to threads can be met. Third, a monitoring module / "“\ SMOmOm s
and a rate adaptation interface allow threads to adjust their [cew | ! g e
reserved rates based on feedback information from the kernel. MORIESEing \\ /,f’ {

/1 User process

A. On-line Scheduler

KERNEL

Having chara(_:terlzgd CP_U reservation with a raté) < Fig. 7. Scheduling framework.
r < 1) and a period (in 1S) in Section 1V, we next present a

rate-controlled (RC) on-line thread scheduler. RC schedulgs |n addition, two per-thread state variables are maintained:
threads according to a per-thread RC value computed By,,+(Q) (in ;s and initialized to the time at whicty first
algorithm RC specified in Fig. 8. In the specificatio) is pecomes runnable) anfinish(Q) (in s and initialized to
the thread for which the algorithm is executegytime (in 0). start(Q) is immutable, and so always gives the time at
ps) is the time at which the algorithm begins execufionyhich first becomes runnabléfinish(Q) keeps track of the
p(Q) and r(Q) denote, respectively, the period and rate Qfxpected finishing timef the previous computation performed
@'s CPU reservation, andal(?) denotes the RC value ofpy (.

"More preciselycurtime is the time of the rescheduling event (explained Intuitively, the expected finishing time is the time when the
below) that causes the algorithm to be executed. previous computation would complete had the computation

YAU AND LAM: RATE-CONTROLLED SCHEDULING FOR MULTIMEDIA APPLICATIONS 481

Algorithm RC(Q) TABLE |
ILLUSTRATION OF ALGORITHM RCFOR “GREEDY” SCHEDULING EXAMPLE IN FIG. 4

1. if (Q changes from blocked to runnable)

2. finish(Q) := max(finish(Q), curtime); Time | Thread @ Thread R
else (ms) | finish | val | finish | val | Scheduled
3. runtime:= total time thread () has run since 0 0] 80 0! 40 R
RC was last executed for Q; 20 01l 80 40 | 80 R
4. . finish(Q) := finish(Q) + runtime/r(Q); 40 0l g0 80 | 120 Q
5. if (@ is not blocked) 80 80]E?U ?0 120 R
6. k= |(finish(Q) — start(Q))/p(Q) +1; 1007 801160 120 1 160 R
7. wval(Q) = start(Q) + k x p(Q); 120 80 | 160 160 | 200 Q
ﬁ.

)

Fig. 8. Specification of AlgorithmRC TABLE Il

ILLUSTRATION OF ALGORITHM RCFOR “L ATE” SCHEDULING EXAMPLE IN FIG. 5

proceeded at ratg Q). For example, if some computation took Time | Thread O Thread R Thread S
1 s of CPU time and the rate is 0.1, then the expected finishing (ms) | finisk | val | finish | val | finish | val | Sched
time is1/0.1 = 10 s from the start of the computation. Notice, 0 0] 90 0] 90 0] 90 Q
however, that wher) becomes runnable, if the current real 30 90 | 180 0 90 0 90 R
time (curtime) is later thanfinish(Q), finish(Q) will be 60 90 | 180 90 | 180 0] 90 S
updated taurtime. Because of this, a thread that has not run 90 90| 180 90 | 180 30 | 180 S
for a long time and has not been using its reserved rate would 2 | N B R s
. 150 150 | 180 150 | 180 - - Q
not get a very low RC value when it becomes runnable. 160 180 | 270 150 | 180 R R
To understand howal(()) is computed, think of the lifetime 170 180 | 270 180 | 270)) R
of @ as starting atstart(()) and subsequently divided into 180 180 | 270 210 | 270 180 | 270 R
periods ofp(@}) each. Then, if the expected finishing time of 200 180 | 270 270 | 360 180 | 270 g
the previous computation performed 8yfalls within the kth 230 180 | 270 270 | 360 - - Q
period, val(Q) is set to the end of théth period (hence, an 260 270 | 360 270 | 360 - - Q
RC value is an expected time value). 280 -1 - 270 | 360 - - R

To describe when algorithiRCexecutes, definer@schedul-
ing point to be the time when one of the following events o
occurs: 1) the currently running thread becomes blocked, 23a EXamples Revisited
system event occurs that causes one or more threads to beconde effects of rate control can be illustrated by revisiting
runnable, or 3) a periodic clock tiBloccurs. At a rescheduling the scheduling examples in Figs. 4 and 5. For these examples,
point, the RC value ofomeof the threads may change, andve assume a clock period of 10 ms, and that a clock tick
algorithm RC needs to be executed for only these threadsccurs at0, 10, 20, --- ms. In Fig. 4, thread? has rate 0.5

Specifically, we have the following: and period 80 ms, while threall has rate 0.5 and period 40
+ when the currently running thread becomes blocke@, ms. The row labeled “RC” shows ho@ and R are scheduled
is executed for it; by RC. At time 0, both threads first become runnable. Hence,

« when a system event occurs that causes one or metert(Q) = start(R) = 0. Table | shows the values (in ms) of
threads to become runnablRC is executed for each the scheduling variables at various times when the RC value
thread that becomes runnable; of either thread changes. From Fig. 4, it can be seen that both

« when a periodic clock tick occurs in the systeRCis ¢ and R get their progress guarantees.
executed for the currently running thread if one exists. Now consider the scheduling example in Fig. 5. All of

After RC values have been recomputed for these affectdt¢ threads, R, and S have rate 0.33 and period 90 ms.
threads at a rescheduling point, a runnable thread with tHegrt(Q) = start(R) = start(S) = 0. Table Il shows the
smallest RC value is chosen for execution; ties are brokenViglues (in ms) of the scheduling variables at various times
favor of the currently running thread, and otherwise arbitrarifvhen the RC value of any thread changes. In the table, “—"

Note that RC is a dynamic priority scheduling algorithmMeans that the value of the variable does not matter since
We view RC value recomputation as a formrate control the corresponding thread is blocked. The tie-breaking rule of
First, the priority of a thread that tries to run ahead of irarbitrarily selecting a runnable thread with the lowest RC value
reserved rate will be lowered at a clock tick, and the thred@r execution is invoked at times 0, 30, 150, and 200 ms.
may be forced to yield the CPU. Second, as we mentiond¥otice from Fig. 5 thatS gets its progress guarantee with
a thread that has not been using its reserved rate will not §& scheduling. Howevex) and R do not get their progress
a very low RC value (hence, a very high priority) when ifuarantees because they are late.

becomes runnable. In other words, unused “credit” cannot beNote that there is an inherent tradeoff between a more pre-
saved by a thread. dictable performance and a smaller overhead for rate control.

In our system, rate control occurs at each clock tick. For
8The period of this clock tick is a system wide parameter (1 ms in oJfreWall prqtectlon and pr.edlctable performance, a small ‘FIOCk
prototype), and is not to be confused with the period of a thread. tick is desired, but the higher the clock frequency, the higher

482 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 4, AUGUST 1997

the rate of RC value recomputation. However, notice that: pijocess determine its rate by providing feedback information
RC value recomputation is very simple and only needs to ba the thread’'s execution. Rate adaptation enables a thread
done for the currently executing thread at a clock tick, and &) react to medium- to long-term changes in the thread’'s
most of the time, the RC value of the currently executingxecution rate (such as on the order of tens of seconds or
thread will not change, and hence threads do not needldnger). It consists of a monitoring module that monitors thread
be rescheduled. For example, both RM and RC require eightecution, and a rate-adaptation interface between the kernel

context switches to schedule the threads in Fig. 5. and user processes.
To enable rate adaptation, a thread has to register with
C. Admission Control the system. A monitoring thread running with a periodnof

To satisfy th i . s of C%?j:ondsm = 2 in our current system) monitors the execution
_losa isty the real-time requirements ot User processes, registered threads. We are interested in two quantities. The
time cannot be oversubscribed. Hence, admission controlfi

. ; Kt one, called thdag (in us), measures how far ahead a
an essential component of our scheduling framework. Wh?rﬂead is running of its reserved rate at timeNote that if

a new threa}d Is greated, th'e system checks whether eno'e{gtrﬂread, sayy, is running ahead of its ratginish(Q) will
CPU capacity exists to satisly the rate request of the n t farther and farther ahead of real time. Hence, the lag of

thread, without violating the guarantees to threads that &hread at timet is defined to bemax [finish(Q) — t —

already admitted. The admission control criterion we use | - ;
.) 0]. The second quantity, called thex (in %), measures
Yiri < 1, wherer; is the rate of thread. We motivate p?Q)’ | g y (in %)

; S o L) the percentage of reserved CPU time unused by the thread
this admission control criterion by considering atealized P g y

. . . . X _~~Y during the last monitoring intervdl’ (i.e., the time interval
execution environmerinh which the period of clock tick is g ¢ (

infinitesimall I d th head of rat ol between the current and the last monitoring). It is defined as
inninitesimatly smatl, an € overnead ot rate contro Ilsnax{l()()[l — runtime/(rT)], 0}, whereruntime (in us) is
zero. There aren threads,y, ---, Q,, in the system. For

))) . the total time the thread has run during the time interval. We
i =1,---,n, Q; runs with rater; and periodp;. Consider

th E implicity of i the ti texpect the rate adaptation mechanism to be used only by CM
some thready;. For simplicity of exposition, the time a gplications that have a fairly constant rate of progress over

X X L . a
which @Q; first becomes runnable is time 0 in the statemenf; monitoring interval
of é)ifmg'onll_ and_ Theor(:ml;f. i ‘ 0l The system informs a thread of “significant” mismatches
e efinition d ij IS pEnc ua tl ! getnera eska e;as(tllj J_r between the reserved rate and the current execution rate. For
0)71“)1' seconds of work over time intervi, kp;], for k = this purpose, a thread specifies two parameters to the system
o _ . . when registering for rate adaptation:lag tolerance(in ys)
Theorem L:If @; is punctual ands;r; < 1 then Qj. 'S and alax tolerance(in %). When monitored, if the thread
scheduled by RC to run for at leagt-+1)r;p; time over time pao o ayimum lag over the last monitoring interval that

mtirval [2’ (fk_l_:]r Lpj]. Io_r k=0, 1’H"A dixc. In th fis greater than the lag tolerance, a signal to increase rate is
proof of Theorem 1 Is given in the Appendix. In the proo 5ent to the thread. Also, if the lax of the thread over the last

"L’ refers to the line of code labeledin Fig. 8. Clearly, the monitoring interval isx and higher than the lax tolerance, a

|deaI|sz Sxecunon gnv:rc()jnrlrj'ent IS nottLeahzablg n pIalcnce. fgnal to slow down by:% is sent to the thread. The signals
can only be approximated. However, the expenmental res speed up and slow down are know emse adaptation

in Section VIl show that the RC scheduler performs aﬁgnals The application installs a signal handler to react to rate

intended in a real workstation environment. adaptation signals in an application-specific manner (Section

VII describes two strategies an application might use).
D. Rate Adaptation

The reservation model introduced so far assumes a rate that
is fixed for the lifetime of a thread. This assumption may
be overly restrictive for a dynamic execution environment. Our scheduling framework has been implemented in Solaris
Indeed, when an application is started, a user may not kn@®. For the on-line scheduler described in Section V-A, we
the appropriate rate to use. First, the user may have insufficiadded a new scheduling clag®C Most of the RC class
knowledge of the application. Second, the application mapecific code is implemented as a loadable module that can
not have a constant rate of execution due to, for examphe dynamically linked with the rest of the kernel. The class-
the application’s inherent characteristics (scene changes niradependent scheduling code in Solaris already has hooks that
cause a video playback application to run with different ratesedll the RC code at certain strategic points. However, we
different times) or the application’s need to adapt to changeshiave found it necessary to modify the original kernel in three
the environment (e.g., to cooperate with network flow controljespects. First, we added a hook, which we €AllRESUME
When a thread runs far behind its reserved rate, any unugedclass-specific code to run when a thread is “resumed” (i.e.,
CPU time will not be available for reservation, and CPWL_RESUMEHs inserted before each call tesume() , the
utilization decreases. On the other hand, if a thread runs farnel call to switch the CPU to a new threa@). RESUME
ahead of its rate, its priority will be lowered by RC rate controbllows the system to know when a thread is allocated the
which may later adversely affect its real-time performance. CPU, and hence to monitor how long the thread has run.

In view of the above, our system providesade adaptation Second, thread priority in Solaris has typg _t, which is
mechanism whereby the kernel helps a thread in a usemply defined ashort . pri _t is, however, not consistently

VI. |MPLEMENTATION

YAU AND LAM: RATE-CONTROLLED SCHEDULING FOR MULTIMEDIA APPLICATIONS 483

used throughout the kernel. Certain code uses variables of TABLE Il
typelong interchangeably with variables of typei _t . We TEST SUITE OF APPLICATIONS
have found it necessary to define a npw _t type with
type-specific methods for, say, initializations and comparisons.
.] . . . greedy n Repeats rounds of following computation: y = sin(z). After the
We also removed the Interm|X|ng qul -t variables with nth round, the time taken for the first n rounds is printed. This
variables of other types. Third, threads that share the same Tepresents a compute-bound application.
diSpatCh quel?e'n Solaris ha.Ve the same diSpatCh pl‘iOl’ity, and video [-d] A video server that repeatedly reads a Cell-B compressed picture

from the SunVideo rtve device and sends each picture (encapsu-

Prog Param Description

are mostly served in a round-robin manner. In the modified lated by an application level protocol) to a UDP connection. If
H : -d is specified, each picture is additionally Cell-B decompressed
kernel’ a” threads in th&c ClaSS Share a gIObal dlSpatCh in software and displayed in an X window. A frame rate of 30
gueue, and threads have to be queued in RC value order. fps is achievable on our workstation.
In addltlon, we made two S|gn|flcant Changes to our System audio - An audio server that does radio broa.dcast in a local area net-
. . . A . work. It captures PCM encoded audio at 64 kbps from a local
configuration. First, we shortened the clock interrupt interval audio device, encapsulates each audio sample by an application
from 10 to 1 ms. This gives a finer granularity of control jovel protocol, and sends the sample 10 2 UDP comnection. We
; ave configured the audio device to return samples every 20 ms.
with a Sma" performance penalty Second, We_ run a" SyStem X An X window system server that handles display in an X win-
threads (except threads for interrupt processing) in R dow.
; H : sema - Repeats rounds of following execution: enters a semaphore pro-
ClaSS SyStem threads In SOIarIS 2.3 are used for a Varlety tected critical section, does some computation, exits the critical
of purposes such as starting asynchronous read-aheads in file section, and does some more computation.
systems, processing callouts, reaping freed system resourcesste!l - A tesh shell command interpreter.

and background processing of stream service routines. To al-
low all system activities to continue to make nonzero progress
despite the demand of user applications, we have assigned each
system thread a rate of 0.002 and a period of 200 ms. Such an

TABLE IV
CASES OF EXPERIMENTAL RuUNS

assignment is admittedigd hog and user applications cannot ase | Program Rate PEE"";
. . ms
rely on |tr:or pderformcz;\r_wcehguarantees. (b)f partlcul_ar concern all(r_e sTmple | gresdy 3000000 07 50
system threads used in the stream subsystem since networking greedy 3000000 0.63 %0
access is an mteglral part of any d|§tr|buted CM application. lock-a | sema 0.09 R0
In the system architecture proposed in [16], [17], however, we sema 0.18 80
assume that network protocols are implemented in user space, sema 0.63 80
rather than as stream modules, and the kernel thread used 1lock-b | sema 0.18 80
for flow control has well-defined scheduling parameters (i.e., sema 0.27 30
period of execution and computation requirement per period). sena 0.45 80
aud-g3 | audio 0.15 20
3xgreedy 3000000 0.09 10
VII. EXPERIMENTAL RESULTS vid-g3 | video —d 0.65 34
We have performed a large number of experiments to X 0.05 34
evaluate the effectiveness of our scheduling framework. Before 3xgreedy 3000000 0.1 10
we discuss individual experiments, we make the overall, vid-gx | video -d varied 34
qualitative observation that user applications runningRia X 0;0(51 34
never caused control over the system to be lost. In particular, greedy 1000000 vane 30
. av-g3 | audio 0.15 20

shell commands could still be started and processes could be :

. . e video -d 0.6 34
killed (we used acsh shell with a rate of 0.002). This is X 0.05 3
in contrast to theRT cla_ss in Unix SVR4, where a ‘.‘greedy“ 3xgreedy 3000000 0.04 10
RT thread that never gives up the CPU can effectively “take ra-vg | video -d adaptive 34
over” the entire workstation and force a system reboot. X 0.05 34

greedy 1000000 ? 30

A. Test Suite

In our experiments, we used the test suite of applicatioggpf of 4 client cannot yet be charged explicitly to the client.

shown in Table Ill. We chose the applications to have charagpig jimitation, however, does not affect our experimental
teristics representative of common applications for a genergl;

) X ; sults sinceX has a single client, namelyideo , in each
purpose workstation. For exampledeo andaudio are CM ¢ e experiments. Table IV summarizes the experiments that
applications,shell is a traditional interactive apphca‘uon,Were performed.
andgreedy is a batch-like, compute-bound applicatiotis
an X window system server. It communicates with its clients
through Unix domain sockets. Priority handoff from clients t®. Test Cases
X can be implemented as part of a new IPC mechanism, butsimple: This simple experiment shows that our scheduling
is not currently implemented. Hence, processing don&by aigorithm, in fact, allows applications to make progress at

9A dispatch queue is a queue of runnable threads, or threads eligible ?Ble“- reserved rates of execution. When run by itself (i.e., with
dispatch minimal competition from other threadg)reedy took 19.99

484 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 4, AUGUST 1997

25 T T T T 80 T T T T
20 -BHHHIHHMHMIN- B
E 2
g 15F . 2
3 E
5 3
E S
5 .
10 | .
O 1 1 1 1 0 1 1] 1
0 500 1000 1500 2000 [0} 500 1000 1500 2000 2500
Packet Frame

Fig. 9. Profile of interpacket times whewdio started while three threads Fig. 11. Profile of interframe times forideo whenvideo was started
executinggreedy 3000000 were running. while three threads executirgreedy 3000000 were running.

its timing constraints when we have concurrently running CPU

24 ' ' intensive applications. In particular, we would likedio to
23 - be able to send each 20 ms sample of audio data before the
oo) next sample has been produced by the audio device. In our

experiment, we first started three RC threads, each running

21 T greedy 3000000 with a rate of 0.1. Then we started
20 WWW audio with rate 0.15. To quantify the “timeliness” afudio ,
19 1) we recorded a 41 s trace of theterpacket timeqgi.e., the

times between sends of consecutive audio packets). The trace
is shown in Fig. 9. The maximum interpacket gap is 21.59 ms,
. remarkably close to the ideal value of 20 ms.
We also performed a variant experiment afid-g3 , in
0 500 1000 1500 2000 which we examined whether the timelinessaoidio will be
adversely affected if we stagreedy after audio has been
Packet running steadily. In our experimergreedy 3000000 was
Fig. 10. Profile of interpacket times faudio whengreedy 3000 000 started about 1 min afteudio . The 1 min lead time gives the
S:a':eg about 1 min aftaudio (trace started several seconds befgieedy 5091 execution rate @fudio to stabilize after a significantly
started). more CPU intensive phase of program startup. The trace
of interpacket times is shown in Fig. 10 (we started the
trace several seconds befameeedy started). The maximum

Inter-packet time (ms)

18

17

16

s to complete 3000000 rounds of computationsimple , | ket ti is 2316
the two threads with relative rates 0.7:0.3 took 28.64 and 67.%3:?&%_6': Irmevilj f-r mmr&t £ 30 fpeid is expected
s, respectively. It is straightforward to show that the higher rate “go: roravideo frame rate o Pideo 1S expecte

o 0 run and send the packets of each picture every 33.33 ms.
thread got roughly 69.76% (19.99/28.64) of CPU, whereas t ?though this delay requirement is somewhat less stringent
lower rate thread got 29.73%.

lock-[ab]: The experimentdock-a andlock-b tested than audio,video is significantly more CPU intensive. In

) ... this experiment, we examined whethéteo is able to meet
the effects of lock contention, as each thread has a cnhq@i .

section guarded by the same semaphore. We measured the §ipeqje RC threads. We first started three threads, each run-
taken for each thread runnirgema in Table Il to complete ning greedy 3000000 with a rate of 0.09. Then we started
19 rounds of execution. Itock-a , the threads with relative \jqeo -d ~ with rate 0.65.video communicates with the
rates 0.7:0.2:0.1 took, respectively, 17.48, 60.62, and 12188, x window system server through a Unix domain socket.
s. The measured ratios of execution times are thus 1:3.47:6y83,as run with rate 0.05. We traced thieterframe times
and are close to the expected ratios of 1:3.39:7.0bdk- (i e, the times between sends foft packets of consecutive
b, the threads with relative rates 0.5:0.3:0.2 took 24.03, 39.98¢e0 frames) for 2499 frames in Fig. 11. There were three
and 60.35 s, respectively. The measured ratios of executi@adline misses (a deadline miss occurs when a frame is
times are thus 1:1.66:2.51, and are comparable to the expe@mbped becausdédeo fails to process it in time). The misses
ratios of 1:1.67:2.50. occurred after frames 922, 999, and 2384, respectively, in the
aud-g3: Set up to send an audio packet every 20 m#ace. However, these few misses do not suggest the existence
audio has arguably the most stringent timeliness requirementt any weakness in our scheduling algorithm. We report that
among applications in our test suite. We are therefore intém- another experiment in which we randeo -d just by
ested in knowing how well we can schedaadio to meet itself, we still observed four deadline misses.

YAU AND LAM: RATE-CONTROLLED SCHEDULING FOR MULTIMEDIA APPLICATIONS 485

TABLE V the “slack” CPU capacity left by the other threads. When this
ExecuTion TiME PRINTED BY greedy 1000000 AND happens, the higher the reserved ratgrekdy , the larger the
_ ACTUAL EXECUTION RATE OF greedy WITH A COMPETING fractiongreedy took up of the slack capacity. Whgneedy
video -d AT VARIOUS RESERVED RATES(EXPERIMENT Vvid-gXx)
. had reserved rate 0.2, it nevertheless got an execution rate of
video | greedy greedy greedy L.
Late rate | time(ms) | actual rate 0.3. Thisis becausei.deo with rate 0.7 did not require much
04 0.5 11857 0.57 of the slack bandwidth.
0.5 0.4 15416 0.44 As for video , it suffered minimal loss in performance
0.6 0.3 21607 0.31 when its reserved rate was 0.6 or 0.7. However, when its
0.7 0.2 22471 0.30 reserved rate was too low, such as Outleo clearly had
to skip more pictures whileggreedy was simultaneously
running. Fig. 12(a) a profiles the interframe times ¥aeo
800 - . whenvideo ran concurrently wittgreedy at a rate of 0.4.
700 - A large gap (about 0.8 s) is observed wigreedy started.
500 | This is becauseideo had been running significantly ahead
of its reserved rate, and was forced to slow down by the
competinggreedy thread (in experimenia-vg , we discuss
how a user application can make use of rate adaptation to avoid
300 - . this “punishment phenomenon”). After the initial gafideo
200 | - continued to run with a lower frame rate [see Fig. 12(b)], a
100 L i magnified view of Fig. 12(a)].
o e it L S av-g3: We ran all of audio , video , and greedy to-
0 50 100 150 200 250 300 350 400 450 500 gether in this experiment. First, three RC threads running
greedy 3000000 were started with a rate of 0.004, then
Frame video -d was started with rate 0.6, and finallgudio
@) was started with rate 0.15. Fig. 13(a) shows a 50 s profile
of the interpacket times faaudio . The jitters in scheduling
were such that processing of alternate audio samples could be
. delayed until close to the time at which the next sample was
produced. However, none of the packets missed its deadline.
The maximum interpacket gap was 37.37 ms. Wmeo |,
- the profile of interframes times is shown in Fig. 13(b). There
|l were five deadline misses during the 2485 frame trace. The
maximum interframe time was 81.35 ms.
] ra-vg: We study whether applications can benefit from rate
adaptation in this set of experiments. We experimented with
LT two strategies that applications might use.
0 50 100 150 200 250 300 350 400 450 500 In the first strategy, an application initially guesses a rate
at which it should run, and then relies on rate adaptation to
Frame adjust its current rate upward or downward. In our experiment,
(b) video used an initial rate of 0.4, a lag tolerance of 34 ms, and
Fig. 12. (a) Profile of interframe times feideo whenvideo ranwitha @ lax tolerance of 10%. It adjusted its rate as follows: Upon
low rate of 0.4. (b) Magnified view showing the reduced frame rate. receiving a signal to speed ugdeo increased its current rate
by 0.1; upon receiving a signal to slow down b%o, video
vid-gx: This set of experiments investigates the progreslecreased its rate by — 5)%. The profile of rates at which
rate of greedy as it runs againsvideo -d at various video ran is shown in Fig. 14(a). Note that after an initial
reserved rates. In each experimevijeo was started fol- adaptation phasén which video *“hunted” for a stable rate
lowed by greedy 1000000 after a few seconds. Theto use, the rate stabilized at 0.721 at frame 435. The effects of
reserved rates ofideo and greedy were varied as in rate adaptation on the interframe times are shown in Fig. 14(b).
Table V. In each case, we noted the actual execution tirBairing the adaptation phase, a frame was delayed by close
greedy printed after 1000 000 rounds of execution. Dividingo one frame time about every 2 s. This is becaviskeo
this actual execution time into 6759 ms (execution timeeeded to handle the rate adaptation signal about every 2 s.
greedy 1000000 prints out when run by itself) yields thevideo achieved full performance after its rate had stabilized.
actual execution rate. The actual execution times and rates larparticular, even though we started a thread rungiregdy
reported in Table V. Notice that the actual execution rate @D00000 shortly after frame 435¢ideo managed to send a
greedy is consistently higher than the reserved rate. This fisame about every 33.33 ms. This is in contrast to the situation
because the other threads in the system (&)gdid not make shown in Fig. 12, in which we observe a 0.8 s interframe time
full use of their reserved rates. Whgreedy had a reserved becausevideo was started with a low rate of 0.4. There are
rate of 0.3, 0.4, or 0.5, it had to compete witideo for totally seven deadline misses in the 3000 frame trace.

500 -

400 F -

Inter-frame time (ms)

Inter-frame time {ms)

486 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 4, AUGUST 1997

40 T T T T 100 T T T T T
80 -
o
£
@D
£ £ 60 4
g o
©
g C 40¢ 4
8
=
20 —
O 1 1 H 1 1
0 500 1000 1500 2000 2500 0] 500 1000 1500 2000 2500 3000
Packet Frame
(@ (@)
90 T T T T T
T T T T 80 |]
w ‘w
g g
(]
(8]
£ £
h @
L
€
& g
£ =
10 .
0 ¢ 1 1 1 [¢] 1 L L 1 L
o 500 1000 1500 2000 2500 o} 500 1000 1500 2000 2500 3000
Frame Frame

(b) (b)

Fig. 13. Profile of (a) interpacket times faudio and (b) interframe times Fig- 14. Profile of (a) rates and (b) interframe times ¥ileo with rate
for video in experimentav-g3 . adaptation from an initial rate of 0.4.

We also examined a second strategy for rate adaptationfiamework is being used as a component in an end system
which an application starts with a very high rate, and thesrchitecture we have designed and implemented to support
relies on rate adaptation to adjust its current rate downwargbtworking with QoS guarantees. In particular, it provides
In our experimentyideo was started with an initial rate of progress guarantees to protocol threads in Migrating Sockets,
0.9, a lag tolerance of 34 ms, and a lax tolerance of 10%e user level protocol implementation framework in our end
Upon receiving a signal to slow down k%, it decreased its system architecture.
rate by (z — 5)%. Using this strategyyideo had a single In this paper, we have investigated the performance of
adjustment of its rate to 0.732 at frame 137 [Fig. 15(a)pne particular scheduling algorithm and two rate adaptation
The profile of interframe times in Fig. 15(b) shows that fulktrategies. We note that the ARC scheduling framework is
performance was achieved throughout. In particular, startingpdular. The scheduling algorithm and adaptation strategy in
greedy 1000000 shortly after frame 137 and secondshe framework can be easily changed. We plan to investigate
before frame 3000 had no observable effects on the interfragteer algorithms and strategies and add them to the framework.
times. There were totally six deadline misses in the 3000 frame
trace.

APPENDIX
VIIl. CONCLUSION PROOF OF THEOREM 1

We have presented the design and implementation of aWe prove Theorem 1 by induction dn
framework for integrated scheduling of CM and various other Base Step:For k£ = 0, since@; is punctual, it generates at
applications in a general-purpose workstation. Experimentabstr;p; s of work at time 0. To prove by contradiction,
results show that the framework is highly effective. Firssuppose this amount of work did not finish by time.
it provides firewall protection between threads such that tii@r this to happen, the CPU must have been occupied with
progress guarantee given to a thread is independent of heark throughout the time intervgD, p;]. Moreover, by the
other threads actually make scheduling requests. Second, estgumption that the period of clock tick is infinitesimally small,
adaptation in the framework allows CM applications to effedhis work must have been scheduled with RC value not greater
tively adapt their reserved rates to actual execution rates. Tthanp;. There are two possible cases.

YAU AND LAM: RATE-CONTROLLED SCHEDULING FOR MULTIMEDIA APPLICATIONS

100 T T T T T
80 T‘ —
< 60 |- -
et
o
[s oy 40 | -
20 8
0 1 1 1 1 1
o) 500 1000 1500 2000 2500 3000
Frame
@
T T T T T
80 |- B
@
£
@
£
<
IS
[
5
k=
10 |- E
0 1 1 1 1 1
0 500 1000 1500 2000 2500 3000
Frame
(b)
Fig. 15. Profile of (a) rates and (b) interframe times ¥ieo with rate

adaptation from an initial rate of 0.9.

Case 1: In the busy period containing;, only work with
RC value not greater thgg was executed by timg;. In this
case, lett < 0 be the start of the busy period (i.e., the CP
was idle at timet~, but was doing work with RC value not
greater tharp; throughout¢, p;]). Because the CPU was idle
att~, if any thread, sayQ;, became runnable ift, p;], the
conditional test in L1 of Fig. 8 would be true. L2 then ensur
that @;'s initial work in [¢, p,] would not have received an
RC value less than. Because the RC value of any thread i
nondecreasing, we conclude that any work scheduléd]

e

487
CPU doing work with RC value not greater
than p, throughout this time interval
J
't | :
0 j
@
CPU doing work with RC value not greater
than (k’+2)p. throughout this time interval
]
T ! |
t (k'+1)p (k'+2)p .
3 J
(b)

Fig. 16. In (a),t is the time at which the CPU was last idle or a piece
of computation with RC value greater than last finished execution before
time p;. In (b), t is the time at which the CPU was last idle or a piece of
computation with RC value greater théh' + 2)p; last finished execution
before time(k’ + 2)p;.

infinitesimally small, the maximum amount of work that can
be scheduled fof); in [¢, p;] is [(p; — t)/pi]rips.
The two cases are summarized in Fig. 16(a). In either case,
because the work of); did not finish byp;, we have
5 {pa’ —t

4

ani >pj—t

= Xpj—tyri>p;—t
= Xr; > 1sincep; >t
= contradiction.

Inductive Step:Assume that Theorem 1 is true fér =
E >0, ie., the first(k’ 4+ 1)r;p; seconds ofp;’s work has
been scheduled over time intervid, (k' + 1)p;]. Because
Q); is punctual, it must have generated an additiongl;
seconds of work by timgk’ + 1)p;. By L4, L7, and the
assumption that the period of clock tick is infinitesimally small,

(he additional;p; seconds of);'s work receives an RC value

of (k' +2)p;. Using the same derivations as for the base case,
but substituting &’ 4+ 2)p; for p; [compare Fig. 16(a) and (b)

to see the similarity between the base case and the inductive
%ase], we can prove by contradiction that the additional
seconds of work of; will finish by time (&’ + 2)p;. Hence,
Theorem 1 also holds fat = E + 1.

REFERENCES

had RC value at leagt By L4, L7, and the assumption that

the period of clock tick is infinitesimally small, the maximum [1]

amount of work that can be scheduled @ in [t, p;] is
L(p; = t)/pil7ipi-

Case 2: In the busy period containing,;, some work with
RC value greater thap; was executed before tims. In this

case, lett < 0 be the time at which the last piece of work [4]

with RC value greater thap; finished execution in the busy
period. Consider any thread;. If ¢; was runnable at~, its
RC value att must be greater thap, since a piece of work
with RC value greater thap; finished execution at Hence,
no work was executed fof); in [¢, p;]. If Q; was blocked
att—, then, by L1 and L2, any work that might have bee
scheduled foK}; in [¢t, p;] must have RC value at leastBy
L4, L7, and the assumption that the period of clock tick i

J. Bennett and H. Zhang, “WA®: Worst-case fair weighted queueing,”
in Proc. INFOCOM'96,San Francisco, CA, Mar. 1996.

S. Bradner and A. Mankin, “The recommendation for the IP next
generation protocol,” Internet RFC 1752, Jan. 1995.

A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a
fair queuing algorithm,” inProc. ACM SIGCOMM’'89Aug. 1989, pp.
3-12.

K. K. Ramakrishnaret al., “Operating system support for a video-on-
demand service,Multimedia Systemsjol. 3, pp. 53-65, 1995.

ATM Forum, “ATM traffic management specification,” ver. 4.0, 1995.
R. Gopalakrishnan, “Efficient quality of service support within endsys-
tems for networked multimedia,” Ph.D. dissertation, Washington Univ.,
St. Louis, MO, Dec. 1996.

R. Gopalakrishnan and G. M. Parulkar, “A real-time upcall facility for
protocol processing with QoS guarantees,”listh ACM Symp. Oper.
Syst. Principles (Poster Sessio@ppper Mountain, CO, Dec. 1995.

M. I. Chen and K. J. Lin, “Dynamic priority ceilings: A concurrency
control protocol for real-time systemsReal-Time Systemsol. 2, pp.
325-346, 1990.

(2]
(3]

[5]
(6]
(7]

n
8l

S

488

(9]

[10]

[11]

[12]

[13]

[14]

(18]

(16]

[17]

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 4, AUGUST 1997

C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-[18] L. Zhang, “VirtualClock: A new traffic control algorithm for packet

ming in a hard real time environment]! Ass. Comput. Machvpl. 20, switching networks,”ACM Trans. Computer Systemal. 9, no. 2, pp.

no. 1, pp. 46-61, 1973. 101-124, May 1991.

C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity reservd9] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP:
Operating system support for multimedia applications,Pioc. IEEE A new resource ReSerVation ProtocdlFEE Network,pp. 8-18, Sept.
Int. Conf. on Multimedia Computing and SysterBsston, MA, May 1993.

1994.

J. Nieh and M. S. Lam, “Integrated processor scheduling for multime-

dia,” in Proc. 5th International Workshop on Network and Operating

System Support for Digital Audio and Videburham, NH, Apr. 1995,

pp. 215-218. David K. Y. Yau received the B.Sc. (with first class
R. Steinmetz, “Analyzing the multimedia operating systertEEE honors) degree from the Chinese University of Hong

Multimedia Mag.,1995. .) Kong, and the M.S. and Ph.D. degrees in computer
H. Tokuda, T. Nakajima, and P. Rao, “Real-time Mach: Toward sciences from the University of Texas at Austin, in

predictable real-time system,” iRroc. USENIX Mach Workshogct. 1992 and 1997, respectively.

1990. From 1989 to 1990, he worked in the distributed
G. G. Xie and S. S. Lam, “Delay guarantee of Virtual Clock server, computing group of Citibank N.A. Beginning Fall
IEEE/ACM Trans. Networkingyol. 3, no. 6, pp. 683-689, Dec. 1995. 1997, he will be an Assistant Professor of Computer
D. K. Y. Yau and S. S. Lam, “An architecture towards efficient O< Sciences at Purdue University, W. Lafayette, IN
support for distributed multimedia,” ifProc. IS&T/SPIE Multimedia = His current research interests are in end syste;'n and
Computing and Networking Conflan. 1996. L2} ; ;

, “End system support for networking with quality of service guar- networking support for QoS computing.
antees,” inProc. 4th IEEE Workshop Architecture and Implementation of
High Performance Commun. Syst. (HPCS @Malkidiki, Greece, June
1997.

, “Migrating sockets for networking with quality of service
guarantees,” University of Texas at Austin, Austin, Tech. Rep. TR-95Bimon S. Lam (M'69-SM’'80-F'85), for a photograph and biography please
05, Jan 1997. see p. 218 of the April 1997 issue of thiRANSACTIONS

