
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 4, AUGUST 1997 475

Adaptive Rate-Controlled Scheduling
for Multimedia Applications

David K. Y. Yau and Simon S. Lam,Fellow, IEEE

Abstract—We present a framework for integrated scheduling of
continuous media (CM) and other applications. The framework,
called ARC scheduling, consists of a rate-controlled on-line CPU
scheduler, an admission control interface, a monitoring module,
and a rate adaptation interface. ARC scheduling allows threads
to reserve CPU time for guaranteed progress. It provides firewall
protection between threads such that the progress guarantee to
a thread is independent of how other threads actually make
scheduling requests. Rate adaptation allows a CM application to
adapt its rate to changes in its execution environment. We have
implemented the framework as an extension to Solaris 2.3. We
present experimental results which show that ARC scheduling
is highly effective for integrated scheduling of CM and other
applications in a general purpose workstation environment. ARC
scheduling is a key component of an end system architecture
we have designed and implemented to support networking with
quality of service guarantees. In particular, it enables protocol
threads to make guaranteed progress.

Index Terms—Adaptive rate control, continuous media, CPU
scheduling, end system support, protocol processing, QoS guar-
antee, rate reservation.

I. INTRODUCTION

A DVANCES in digital and networking technologies have
enabled the integration of “continuous” media (CM) data,

such as video and audio, with traditional “discrete” data types,
such as graphics and text, in packet-switching networks and
general-purpose workstations. At the network level, it has been
shown that quality of service (QoS) guarantees can be provided
to traffic flows through appropriate packet scheduling and
admission control. In addition, Internet standardization efforts
[2], [5], [19] are under way to avail user applications of access
to network level resource reservations. Our goal is to extend
QoS guarantees between network endpoints to the ultimate
endpoints of an end-to-end communication, namely, appli-
cations running in user space of general-purpose operating
systems.

CM applications require certain real-time constraints. They
may interface with a media device (such as an audio codec or
a video capture board) or with a network that transports media

Manuscript received October 2, 1996; revised April 17, 1997; approved
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor G. Parulkar. This
work was supported in part by the National Science Foundation under Grant
NCR-9506048, an equipment grant from the AT&T Foundation, and an IBM
graduate fellowship awarded to D. K. Y. Yau for the 1996–1997 academic
year. An earlier version of this paper was presented at ACM Multimedia’96.

The authors are with the Department of Computer Sciences, Univer-
sity of Texas at Austin, Austin, TX 78712-1188, USA (e-mail: {yau,
lam}@cs.utexas.edu).

Publisher Item Identifier S 1063-6692(97)05778-6.

packets. Therefore, they need to process external events such
as device interrupts or network interrupts in a timely manner.

As an example, consider a video application that sends
pictures to a network at a rate of 30/s. A video capture board
is connected to the computer on which the video application
runs. Every 33.3 ms, the video capture board digitizes and
compresses a picture, and buffers the compressed picture in
on-board memory for reading by the video application. The
video application reads the picture from the video capture
board, packetizes the data, and sends packets to the network.
The execution profile of the application is shown in Fig. 1.
The vertical lines mark the times at which new pictures
are produced by the video capture board. The computation
required by the video application to process each picture
(which includes reading, packetizing and sending the picture
data) is shown as a shaded box. For minimal delay and
buffering inside the video capture board, processing of a
picture should complete before the next picture is produced
by the board.

Thread scheduling1 in traditional Unix operating systems
cannot satisfy the real-time constraints of CM applications as
described above. We illustrate by describing thread scheduling
in Solaris 2.3, where threads run in one of threescheduling
classes: RT (real-time),SYS2(system), andTS (timesharing).
Priorities in a scheduling class are mapped to a set ofglobal
priorities. RT priorities are mapped to higher global priorities
thanSYSpriorities, which are in turn mapped to higher global
priorities thanTS priorities. At any time, the system executes
a runnable thread with the highest global priority.

In Solaris 2.3, threads in a user process run in theTS
class by default. There is a time quantum associated with
every TS priority. Whenever aTS thread uses up a time
quantum, the system lowers the priority of the thread. On
the other hand, if a thread has been blocked for a long time,
the priority of the thread is raised. This approach provides
fast response time to interactive applications without starving
compute-bound applications. Moreover, aTS thread is given
a “kernel” priority whenever it blocks inside the kernel. The
priority given depends on the condition on which the thread
is blocked. Hence, the priority of aTS thread is dynamically
changed by the system in anad hocmanner, and it cannot be
used to specify an application’s progress requirements. Fig. 2
illustrates how applications inTS class can fail to meet real-

1In most operating systems, including Solaris, threads are the schedulable
entities within a process.

2The SYS class is, however, not available to user processes, and will not
be considered further in this paper.

1063–6692/97$10.00 1997 IEEE

476 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 4, AUGUST 1997

Fig. 1. Execution profile of a periodic video application.

Fig. 2. Times between pictures sent by a video application run as a Unix
TS process.

time constraints. In the figure, we show the times between
pictures sent by a video application similar to the one described
above. At first, pictures were mostly sent every 33.3 ms. After
several compute-bound applications were started, however,
interference from these other applications caused the video
application to receive insufficient CPU time to keep up with
the picture rate. Many pictures were skipped, and interframe
times of 100 ms or more were common. (We will revisit this
example in Section VII for the scheduler proposed in this
paper.)

The RT scheduling class is intended to give users tighter
control over how threads in a user process are scheduled.
RT priorities are never modified by the system, and anRT
thread always has priority over threads in the other scheduling
classes. TheRT class thus allows a user to run “performance-
critical” applications without interference by other system
activities. However, likeTS priorities, RT priorities lack QoS
interpretation. A user must translate the progress requirements
of applications toRT priorities in anad hoc manner. More
importantly, the lack of QoS interpretation forRT priorities
means that the system cannot do effective admission control.
Without admission control, long-term system overload cannot
be prevented. Finally, since anRT thread cannot be preempted
by system threads, anRT thread that does not voluntarily give
up the CPU can block out all other system activities. When
that happens, the only way for a system administrator to regain
control of the workstation is to reboot the system.

A. Our Contributions

For integrated CPU scheduling of CM and other appli-
cations, we propose the use of a family ofadaptive rate-
controlled (ARC) schedulers with the following properties:
1) reserved rates can be negotiated; 2) QoS guarantees are
conditional upon thread behavior; and 3) firewall protection
between threads is provided. In this paper, we present and
study a particular scheduler called RC together with two rate
adaptation strategies.3 RC allows applications4 to specify a
reservedrate (between 0 and 1) and a time interval known as
period (in s). It provides the following progress guarantee:
a “punctual” (a notion to be made precise in Section V-C)
application with rate and period is guaranteed at least

CPU time over time interval , for ,
where each interval is measured from when the application
first becomes runnable. Although our framework is motivated
by the requirements of CM applications, it is appropriate for
scheduling other applications as well. This is desirable since,
in a general-purpose workstation environment, CM and other
applications run together.

Our main contributions are: 1) implementation of the sched-
uling framework and its integration into a workstation op-
erating system; 2) an on-line scheduling algorithm that, in
contrast to classical real-time scheduling algorithms, provides
a progress guarantee to each thread independently of the
behavior of other threads; 3) empirical evaluation of our
framework in scheduling CM and other applications; and 4)
support for rate adaptationwhereby the workstation kernel
helps a user application adapt its current reserved rate by
providing it with feedback information.

B. End System Support for Networking with QoS Guarantees

ARC scheduling is a key component of an end system
architecture we have designed and implemented to support
networking with QoS guarantees. Other components in the
architecture include: 1) theMigrating Socketsframework for
user level protocol implementation [17], 2) rate-based flow
control for reserved rate connections in future integrated

3We are interested in the RC algorithm because of its simplicity and effi-
ciency. Many other rate-based algorithms with the three specified properties, as
well as different rate adaptation strategies, can be used in the ARC scheduling
framework.

4For simplicity, we refer to “application thread” as “application” in the rest
of this paper.

YAU AND LAM: RATE-CONTROLLED SCHEDULING FOR MULTIMEDIA APPLICATIONS 477

services networks [15], and 3) a constant overhead packet
demultiplexing mechanism suitable for wide area internet-
working [17].

With Migrating Sockets, the state and management right
of a network endpoint can move between a server and user
processes. Performance critical protocol services such as send
and receive are accessed as a user level library linked with
applications. Send side protocol code is accessed in application
threads of control. In addition, user processes have protocol
threads for network receive and timer processing.

From a QoS perspective, Migrating Sockets has the ad-
vantage of minimizing “hidden” scheduling.5 With hidden
scheduling at a minimum, user applications can more easily
determine and negotiate an appropriate rate of progress with
the operating system, such that their real-time constraints can
be met [17]. An ARC CPU scheduler, with knowledge of the
progress requirements of all threads in the system, can perform
admission control and provide progress guarantees to threads.

C. Related Work

The case for an integrated scheduling policy for diverse
applications has been advocated by other researchers, for
example, [11]. However, not enough details of the algorithm
are given in [11] for comparison with our approach. Rather
than integrated scheduling, a three level hierarchical scheduler
for a video-on-demand service has been proposed in [4].

The implementation of our scheduling framework is based
on extending an existing operating system to support real-time
scheduling. This is similar to the work of Real-Time Mach
[13], which is an extension of the Mach operating system. Our
requirement that a thread’s progress guarantee be protected
from the execution behavior of other threads is similar in
objective to theprocessor capacity reservesabstraction in [10].
There is, however, a key difference between processor capacity
reserves and our solution, i.e., only scheduling algorithms with
the firewall property are considered in our approach, thereby
eliminating the need for an explicit monitoring mechanism
to enforce firewall protection from interference. On the other
hand, in Real-Time Mach’s implementation of processor ca-
pacity reserves, a reserve must be periodically replenished,
and an overrun timer must be set to expire at the time a
thread is supposed to voluntarily give up the CPU. Should
the overrun timer expire, the reserved priority isdepressedto
an unreserved priority. In comparison, our system does not
require such a mechanism for monitoring and policing, nor
does it distinguish between reserved and unreserved priorities.
ARC scheduling in our system is based upon a uniform class
of dynamically computed priority values, one for each thread.

Several rate-based algorithms with the firewall property
have been proposed for scheduling packets in a network
switch. Our algorithm is conceptually similar to the VC
algorithm [14], [18] but with two differences needed for CPU
scheduling: 1) a period parameter is introduced and 2) in
computing the priority value of a thread, the expected finishing

5Hidden scheduling occurs when protocol processing is done in the context
of interrupt handling or “background” threads of control that do not belong
to a user process.

time of the previous work executed by the thread is used
instead of the expected finishing time of the work to be
scheduled.

Many other packet scheduling algorithms have been de-
signed to achieve various notions of fairness, such as those
in [1], [3]. These algorithms can also be used for ARC
scheduling, with fairness achieved at the expense of more
implementation overhead. However, our experimental results
show that real-time video and audio applications are not
“greedy,” and the notions of fairness as defined in [1], [3]
are not an important concern for these applications.

Finally, a real-time upcallmechanism has been proposed in
[6], [7] to implement communication protocols in user space
with QoS guarantees. While the approach is an interesting
alternative to real-time threads, it is specifically designed for
protocol processing, and appears to be less general than our
approach.

D. Organization of this Paper

In Section II, we discuss the classical rate-monotonic and
earliest deadline first scheduling algorithms, and illustrate how
a straightforward implementation of these algorithms in a
general purpose workstation may lead to unsatisfactory results.
In Section III, we relate the CPU scheduling work described
in this paper to a new operating system architecture we
proposed for supporting distributed multimedia applications.
Section IV introduces a rate-based reservation model for CPU
time. The proposed scheduling framework, which consists
of a priority-based on-line scheduler, an admission control
interface, a monitoring module, and a rate adaptation interface,
is described in Section V. Section VI reports our experience in
implementing the CPU scheduler in Solaris 2.3. Experimental
results reported in Section VII show the effectiveness of our
implementation for many test cases.

II. CLASSICAL REAL-TIME SCHEDULING

Many classical real-time scheduling techniques have been
applied in multimedia operating systems [12]. Two algorithms
that are generally believed to be suitable for scheduling CM
applications are the rate-monotonic (RM) algorithm and the
earliest deadline first (EDF) algorithm. We briefly review each
of these algorithms [9].

Analysis of RM and EDF scheduling has made use of the
following periodic specificationfor the execution of a thread,
say . The specification has two parameters: a period(in
seconds), and a computation time requirement per period
(in seconds). Anevent, which requires seconds of CPU
time to process, is assumed to arrive at the beginning of
each period. Thedeadlineof an event, which is the time by
which processing of the event must complete, is assumed to
be the beginning of the next period. This model of execution
is illustrated in Fig. 3.

The RM algorithm assigns the period as a static priority
value of thread. This priority value is interpreted such that the
lower the value, the higher is the RM priority of the thread.
Liu and Layland [9] show that if ,
where the summation is over all threads in the system, then

478 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 4, AUGUST 1997

Fig. 3. Periodic specification in classical real-time scheduling.

each thread gets the followingprogress guarantee: For all ,
the thread will be scheduled to run for within period .
This implies that the processing of each event will complete
by its deadline. The condition is the
admission control criterion. When is large, the right-hand
side is about 0.69. Hence, RM scheduling is, in general, not
able to achieve 100% processor utilization. However, if the
thread periods are harmonic, then it can be shown that 100%
processor utilization is indeed achievable.

In contrast to RM, the EDF algorithm is a dynamic priority
algorithm. At any time, the priority of a thread is not fixed,
but is determined by the deadline of its next event. A thread
with an earlier deadline value has a higher EDF priority. For
EDF scheduling, it is proved that if , then each
thread gets the same progress guarantee as RM scheduling
[9]. Hence, unlike RM, full processor utilization is in general
achievable with EDF.

Clearly, the progress guarantee by RM and EDF is useful
in scheduling CM applications. For example, it can be used to
schedule the video application described in Section I such that
each picture is processed before the next picture is produced
by the video capture board. However, a straightforward imple-
mentation of either algorithm in a general-purpose workstation
environment may not yield satisfactory results. This is because
the execution profile of a real application may not conform to
the periodic specification. To illustrate, consider two threads,
say and , scheduled by the RM algorithm. Threadhas a
period of 80 ms, and a per-period computation requirement of
40 ms. Thread has a period of 40 ms, and a per period
computation requirement of 20 ms. Since the periods are
harmonic, the achievable processor utilization is 100% and
is not exceeded in this example. Becausehas a smaller
period than , it has higher RM priority than . Now consider
the execution profiles of the two threads shown in the top
two rows in Fig. 4. Note that conforms to its periodic
specification, whereas does not. The row labeled “RM”
shows how the threads are scheduled by RM. At the beginning

Fig. 4. A “greedy” scheduling example.

of the first period (time 0), is scheduled to run. RM does
not require to give up the CPU after running for 20 ms,
and goes on to run until 80 ms. The result is thatis not
scheduled at all during the first 80 ms. Hence,’s progress
guarantee is violated even though its execution conforms to its
periodic specification. EDF suffers from the same interference
problem if the actual processing time of an event is longer
than the processing time assumed in admission control.
For example, if the event that arrives for at time 0 takes
80 ms to complete, EDF performs the same as RM in the
example in Fig. 4.

The above example shows how a “greedy” thread, such
as , that runs ahead of its periodic specification can affect
the progress guarantees to other threads. However, scheduling
requests that are late with respect to the periodic specification
can also cause problem. Consider the scenario shown in Fig. 5.
There are three threads,, , and , each having period 90 ms
and computation time requirement per period 30 ms. They are
scheduled according to the RM algorithm (see the row labeled
“RM” in Fig. 5). Because the threads all have the same period
and hence RM priority, the system has arbitrarily decided to
schedule ahead of , and ahead of . According to the
periodic specification, both and should request to run
for 30 ms at the beginning of the second period (90 ms).

YAU AND LAM: RATE-CONTROLLED SCHEDULING FOR MULTIMEDIA APPLICATIONS 479

Fig. 5. A “late” scheduling example.

However, and are late, and they do not become runnable
until 150 ms. The result is that, even though becomes
runnable at 180 ms, it cannot be scheduled until 270 ms.
The progress guarantee ofis violated from 180 to 270 ms,
despite the fact that the execution ofconforms to its periodic
specification. EDF suffers from the same interference problem
if event arrivals can be late. In our example, if the second
events for and arrive at 150 ms instead of 90 ms, then
EDF performs the same as RM.

The scheduling framework proposed in this paper allows
threads to reserve CPU time based on rates of progress.
Moreover, we believe that it is desirable to providefirewall
protection between threads, i.e., our system guarantees that
each “punctual” (see Section V-C) thread makes progress at
its reserved rateindependently of the behavior of other threads.
Firewall protection is achieved by a form ofrate control that
will be made clear in Section V.

III. OS ARCHITECTURE OVERVIEW

We previously proposed an operating system architecture for
supporting distributed multimedia [15]. The architecture makes
use ofI/O efficient buffersand afast write() system call
to reduce the end-to-end latency of network data transfers.
It also makes use ofkernel threadsfor reduced system calls
and rate-based flow control. The system was prototyped as an
extension to Solaris 2.3, and the CPU scheduling framework
reported in this paper has since been integrated into the
prototype system. In this section, we describe features of the
prototype system that are relevant to CPU scheduling.

First, in contrast to a traditional Unix kernel, the Solaris 2.3
kernel is fully preemptible except for a few short protected
intervals. This is important for us to obtain good real-time
application performance since it allows a high-priority thread
to preempt a lower priority thread, even though the latter
may happen to be in the middle of a long-duration system
call. Second, the Solaris kernel implements priority inheritance
for most synchronization primitives such as semaphores and
mutex locks. This improves the situation in which, because
of lock contention, a high-priority thread is blocked by lower
priority threads. (Note that priority inheritance can be used in
conjunction with a dynamic priority ceiling protocol such as

[8] to prevent unbounded priority inversion. However, we have
not yet implemented the protocol, and thus cannot evaluate
the cost of doing so.)

Third, in our prototype system, a lightweight kernel thread
can be used to multiplex a shared network connection among
multiple user processes [15]. Specifically, a user process
with packets to send enqueues the packets to a send control
queue. A kernel thread is then responsible for moving packets
from the send control queue to a network interface queue
at a reserved bit rate (see Fig. 6). The kernel thread also
performs rate-based flow control of shared access to a network
connection.

There are several timing constraints in thread scheduling:
threads in a user process must be scheduled such that they
can enqueue packets to the send control queue “in time,” and
the kernel thread must be scheduled such that it can move the
packets to the network interface queue “in time.” As described
in [15], the timeliness condition for a kernel thread means
that the kernel thread will be periodically scheduled with a
maximum CPU time per period. Fig. 6 shows the relationship
between CPU scheduling and send side packet scheduling by
a lightweight kernel thread.

IV. RATE-BASED RESERVATION

Our system allows threads to reserve CPU time based on
a rate6 of progress, , and a time interval
in s known asperiod. The rate can then be viewed as a
guaranteed fraction of CPU time that a “punctual” (this notion
will be made precise in Section V-C) thread will be allocated
over time. Specifically, the thread will be allowed to run for
at least time over time interval for ,
measured from when the thread first becomes runnable. For
example, if the rate is 0.5 and the period is 100 ms, then the
thread will be allowed to run for at least 50 ms over the first
100 ms since the thread first becomes runnable, for at least
100 ms over the first 200 ms, etc.

The rate-based reservation model is similar to the periodic
specification in Section II, by considering to be the
rate of thread . If the execution of a thread does conform to
the periodic specification, then the rate-based model ensures
the same progress guarantee to the thread as RM and EDF
scheduling. However, there are two important differences.
First, our system provides firewall protection between threads
such that the progress guarantee to a thread is independent of
the behavior of other threads. Second, the rate-based model
makes explicit the notion of a guaranteed rate of progress,
which we believe is natural even for applications that are
not “real-time” and not inherently periodic. For example,
consider a numerical analysis application that solves a system
of linear equations. For a particular problem, the application is
continuously enabled (meaning that it is always ready to run)
and takes 5 s of CPU time to complete. Suppose the user runs
the application with a rate of 0.01 and a period of 0.5 s. In
the absence of competing threads, the system will allow the
application to run continuously for 5 s and terminate. On the

6Unless otherwise specified, we shall use the termrate to meanreserved
rate.

480 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 4, AUGUST 1997

Fig. 6. Relation of CPU scheduling to our OS architecture.

other hand, if the system is highly loaded, the system will still
ensure that the application will run at least ms for every

s after the application first becomes runnable, and the
application will terminate in at most 500 s.

V. SCHEDULING FRAMEWORK

An overview of our scheduling framework is shown in
Fig. 7. The framework consists of the following components.
First, there is an on-line scheduler that schedules threads
according to dynamic rate-controlled priority values (hereafter,
called RC values) to be defined in Section V-A. Second, there
is an admission control interface that admits or rejects new
threads based on the rate-based reservation model in Section
IV. Admission control limits system overload so that rate
guarantees to threads can be met. Third, a monitoring module
and a rate adaptation interface allow threads to adjust their
reserved rates based on feedback information from the kernel.

A. On-line Scheduler

Having characterized CPU reservation with a rate(
) and a period (in s) in Section IV, we next present a

rate-controlled (RC) on-line thread scheduler. RC schedules
threads according to a per-thread RC value computed by
algorithm RC specified in Fig. 8. In the specification, is
the thread for which the algorithm is executed, (in

s) is the time at which the algorithm begins execution,7

and denote, respectively, the period and rate of
’s CPU reservation, and denotes the RC value of

7More precisely,curtime is the time of the rescheduling event (explained
below) that causes the algorithm to be executed.

Fig. 7. Scheduling framework.

. In addition, two per-thread state variables are maintained:
(in s and initialized to the time at which first

becomes runnable) and (in s and initialized to
0). is immutable, and so always gives the time at
which first becomes runnable. keeps track of the
expected finishing timeof the previous computation performed
by .

Intuitively, the expected finishing time is the time when the
previous computation would complete had the computation

YAU AND LAM: RATE-CONTROLLED SCHEDULING FOR MULTIMEDIA APPLICATIONS 481

Fig. 8. Specification of AlgorithmRC.

proceeded at rate . For example, if some computation took
1 s of CPU time and the rate is 0.1, then the expected finishing
time is s from the start of the computation. Notice,
however, that when becomes runnable, if the current real
time () is later than , will be
updated to . Because of this, a thread that has not run
for a long time and has not been using its reserved rate would
not get a very low RC value when it becomes runnable.

To understand how is computed, think of the lifetime
of as starting at and subsequently divided into
periods of each. Then, if the expected finishing time of
the previous computation performed byfalls within the th
period, is set to the end of theth period (hence, an
RC value is an expected time value).

To describe when algorithmRCexecutes, define areschedul-
ing point to be the time when one of the following events
occurs: 1) the currently running thread becomes blocked, 2) a
system event occurs that causes one or more threads to become
runnable, or 3) a periodic clock tick8 occurs. At a rescheduling
point, the RC value ofsomeof the threads may change, and
algorithm RC needs to be executed for only these threads.
Specifically, we have the following:

• when the currently running thread becomes blocked,RC
is executed for it;

• when a system event occurs that causes one or more
threads to become runnable,RC is executed for each
thread that becomes runnable;

• when a periodic clock tick occurs in the system,RC is
executed for the currently running thread if one exists.

After RC values have been recomputed for these affected
threads at a rescheduling point, a runnable thread with the
smallest RC value is chosen for execution; ties are broken in
favor of the currently running thread, and otherwise arbitrarily.

Note that RC is a dynamic priority scheduling algorithm.
We view RC value recomputation as a form ofrate control.
First, the priority of a thread that tries to run ahead of its
reserved rate will be lowered at a clock tick, and the thread
may be forced to yield the CPU. Second, as we mentioned,
a thread that has not been using its reserved rate will not get
a very low RC value (hence, a very high priority) when it
becomes runnable. In other words, unused “credit” cannot be
saved by a thread.

8The period of this clock tick is a system wide parameter (1 ms in our
prototype), and is not to be confused with the period of a thread.

TABLE I
ILLUSTRATION OF ALGORITHM RCFOR“GREEDY” SCHEDULING EXAMPLE IN FIG. 4

TABLE II
ILLUSTRATION OF ALGORITHM RCFOR “L ATE” SCHEDULING EXAMPLE IN FIG. 5

B. Examples Revisited

The effects of rate control can be illustrated by revisiting
the scheduling examples in Figs. 4 and 5. For these examples,
we assume a clock period of 10 ms, and that a clock tick
occurs at ms. In Fig. 4, thread has rate 0.5
and period 80 ms, while thread has rate 0.5 and period 40
ms. The row labeled “RC” shows how and are scheduled
by RC. At time 0, both threads first become runnable. Hence,

. Table I shows the values (in ms) of
the scheduling variables at various times when the RC value
of either thread changes. From Fig. 4, it can be seen that both

and get their progress guarantees.
Now consider the scheduling example in Fig. 5. All of

the threads , and have rate 0.33 and period 90 ms.
. Table II shows the

values (in ms) of the scheduling variables at various times
when the RC value of any thread changes. In the table, “—”
means that the value of the variable does not matter since
the corresponding thread is blocked. The tie-breaking rule of
arbitrarily selecting a runnable thread with the lowest RC value
for execution is invoked at times 0, 30, 150, and 200 ms.
Notice from Fig. 5 that gets its progress guarantee with
RC scheduling. However, and do not get their progress
guarantees because they are late.

Note that there is an inherent tradeoff between a more pre-
dictable performance and a smaller overhead for rate control.
In our system, rate control occurs at each clock tick. For
firewall protection and predictable performance, a small clock
tick is desired, but the higher the clock frequency, the higher

482 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 4, AUGUST 1997

the rate of RC value recomputation. However, notice that: 1)
RC value recomputation is very simple and only needs to be
done for the currently executing thread at a clock tick, and 2)
most of the time, the RC value of the currently executing
thread will not change, and hence threads do not need to
be rescheduled. For example, both RM and RC require eight
context switches to schedule the threads in Fig. 5.

C. Admission Control

To satisfy the real-time requirements of user processes, CPU
time cannot be oversubscribed. Hence, admission control is
an essential component of our scheduling framework. When
a new thread is created, the system checks whether enough
CPU capacity exists to satisfy the rate request of the new
thread, without violating the guarantees to threads that are
already admitted. The admission control criterion we use is

, where is the rate of thread. We motivate
this admission control criterion by considering anidealized
execution environmentin which the period of clock tick is
infinitesimally small, and the overhead of rate control is
zero. There are threads, , in the system. For

, runs with rate and period . Consider
some thread . For simplicity of exposition, the time at
which first becomes runnable is time 0 in the statements
of Definition 1 and Theorem 1.

Definition 1: is punctual if it generates at least
seconds of work over time interval , for
.

Theorem 1: If is punctual and , then is
scheduled by RC to run for at least time over time
interval , for .

A proof of Theorem 1 is given in the Appendix. In the proof,
“L ” refers to the line of code labeledin Fig. 8. Clearly, the
idealized execution environment is not realizable in practice. It
can only be approximated. However, the experimental results
in Section VII show that the RC scheduler performs as
intended in a real workstation environment.

D. Rate Adaptation

The reservation model introduced so far assumes a rate that
is fixed for the lifetime of a thread. This assumption may
be overly restrictive for a dynamic execution environment.
Indeed, when an application is started, a user may not know
the appropriate rate to use. First, the user may have insufficient
knowledge of the application. Second, the application may
not have a constant rate of execution due to, for example,
the application’s inherent characteristics (scene changes may
cause a video playback application to run with different rates at
different times) or the application’s need to adapt to changes in
the environment (e.g., to cooperate with network flow control).
When a thread runs far behind its reserved rate, any unused
CPU time will not be available for reservation, and CPU
utilization decreases. On the other hand, if a thread runs far
ahead of its rate, its priority will be lowered by RC rate control,
which may later adversely affect its real-time performance.

In view of the above, our system provides arate adaptation
mechanism whereby the kernel helps a thread in a user

process determine its rate by providing feedback information
on the thread’s execution. Rate adaptation enables a thread
to react to medium- to long-term changes in the thread’s
execution rate (such as on the order of tens of seconds or
longer). It consists of a monitoring module that monitors thread
execution, and a rate-adaptation interface between the kernel
and user processes.

To enable rate adaptation, a thread has to register with
the system. A monitoring thread running with a period of
seconds (in our current system) monitors the execution
of registered threads. We are interested in two quantities. The
first one, called thelag (in s), measures how far ahead a
thread is running of its reserved rate at time. Note that if
a thread, say , is running ahead of its rate, will
get farther and farther ahead of real time. Hence, the lag of
a thread at time is defined to be

. The second quantity, called thelax (in %), measures
the percentage of reserved CPU time unused by the thread
during the last monitoring interval (i.e., the time interval
between the current and the last monitoring). It is defined as

, where (in s) is
the total time the thread has run during the time interval. We
expect the rate adaptation mechanism to be used only by CM
applications that have a fairly constant rate of progress over
a monitoring interval.

The system informs a thread of “significant” mismatches
between the reserved rate and the current execution rate. For
this purpose, a thread specifies two parameters to the system
when registering for rate adaptation: alag tolerance(in s)
and a lax tolerance(in %). When monitored, if the thread
has a maximum lag over the last monitoring interval that
is greater than the lag tolerance, a signal to increase rate is
sent to the thread. Also, if the lax of the thread over the last
monitoring interval is and higher than the lax tolerance, a
signal to slow down by % is sent to the thread. The signals
to speed up and slow down are know asrate adaptation
signals. The application installs a signal handler to react to rate
adaptation signals in an application-specific manner (Section
VII describes two strategies an application might use).

VI. I MPLEMENTATION

Our scheduling framework has been implemented in Solaris
2.3. For the on-line scheduler described in Section V-A, we
added a new scheduling classRC. Most of the RC class
specific code is implemented as a loadable module that can
be dynamically linked with the rest of the kernel. The class-
independent scheduling code in Solaris already has hooks that
call the RC code at certain strategic points. However, we
have found it necessary to modify the original kernel in three
respects. First, we added a hook, which we callCL RESUME,
for class-specific code to run when a thread is “resumed” (i.e.,
CL RESUMEis inserted before each call toresume() , the
kernel call to switch the CPU to a new thread).CL RESUME
allows the system to know when a thread is allocated the
CPU, and hence to monitor how long the thread has run.
Second, thread priority in Solaris has typepri t , which is
simply defined asshort . pri t is, however, not consistently

YAU AND LAM: RATE-CONTROLLED SCHEDULING FOR MULTIMEDIA APPLICATIONS 483

used throughout the kernel. Certain code uses variables of
type long interchangeably with variables of typepri t . We
have found it necessary to define a newpri t type with
type-specific methods for, say, initializations and comparisons.
We also removed the intermixing ofpri t variables with
variables of other types. Third, threads that share the same
dispatch queue9 in Solaris have the same dispatch priority, and
are mostly served in a round-robin manner. In the modified
kernel, all threads in theRC class share a global dispatch
queue, and threads have to be queued in RC value order.

In addition, we made two significant changes to our system
configuration. First, we shortened the clock interrupt interval
from 10 to 1 ms. This gives a finer granularity of control
with a small performance penalty. Second, we run all system
threads (except threads for interrupt processing) in theRC
class. System threads in Solaris 2.3 are used for a variety
of purposes such as starting asynchronous read-aheads in file
systems, processing callouts, reaping freed system resources,
and background processing of stream service routines. To al-
low all system activities to continue to make nonzero progress
despite the demand of user applications, we have assigned each
system thread a rate of 0.002 and a period of 200 ms. Such an
assignment is admittedlyad hoc, and user applications cannot
rely on it for performance guarantees. Of particular concern are
system threads used in the stream subsystem since networking
access is an integral part of any distributed CM application.
In the system architecture proposed in [16], [17], however, we
assume that network protocols are implemented in user space,
rather than as stream modules, and the kernel thread used
for flow control has well-defined scheduling parameters (i.e.,
period of execution and computation requirement per period).

VII. EXPERIMENTAL RESULTS

We have performed a large number of experiments to
evaluate the effectiveness of our scheduling framework. Before
we discuss individual experiments, we make the overall,
qualitative observation that user applications running inRC
never caused control over the system to be lost. In particular,
shell commands could still be started and processes could be
killed (we used atcsh shell with a rate of 0.002). This is
in contrast to theRT class in Unix SVR4, where a “greedy”
RT thread that never gives up the CPU can effectively “take
over” the entire workstation and force a system reboot.

A. Test Suite

In our experiments, we used the test suite of applications
shown in Table III. We chose the applications to have charac-
teristics representative of common applications for a general-
purpose workstation. For example,video andaudio are CM
applications,shell is a traditional interactive application,
andgreedy is a batch-like, compute-bound application.X is
an X window system server. It communicates with its clients
through Unix domain sockets. Priority handoff from clients to
X can be implemented as part of a new IPC mechanism, but
is not currently implemented. Hence, processing done byX on

9A dispatch queue is a queue of runnable threads, or threads eligible for
dispatch.

TABLE III
TEST SUITE OF APPLICATIONS

TABLE IV
CASES OF EXPERIMENTAL RUNS

behalf of a client cannot yet be charged explicitly to the client.
This limitation, however, does not affect our experimental
results sinceX has a single client, namelyvideo , in each
of the experiments. Table IV summarizes the experiments that
were performed.

B. Test Cases

Simple: This simple experiment shows that our scheduling
algorithm, in fact, allows applications to make progress at
their reserved rates of execution. When run by itself (i.e., with
minimal competition from other threads),greedy took 19.99

484 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 4, AUGUST 1997

Fig. 9. Profile of interpacket times whenaudio started while three threads
executinggreedy 3 000 000 were running.

Fig. 10. Profile of interpacket times foraudio whengreedy 3 000 000
started about 1 min afteraudio (trace started several seconds beforegreedy
started).

s to complete 3 000 000 rounds of computation. Insimple ,
the two threads with relative rates 0.7:0.3 took 28.64 and 67.20
s, respectively. It is straightforward to show that the higher rate
thread got roughly 69.76% (19.99/28.64) of CPU, whereas the
lower rate thread got 29.73%.

lock-[ab]: The experimentslock-a and lock-b tested
the effects of lock contention, as each thread has a critical
section guarded by the same semaphore. We measured the time
taken for each thread runningsema in Table III to complete
19 rounds of execution. Inlock-a , the threads with relative
rates 0.7:0.2:0.1 took, respectively, 17.48, 60.62, and 121.06
s. The measured ratios of execution times are thus 1:3.47:6.93
and are close to the expected ratios of 1:3.39:7.00. Inlock-
b, the threads with relative rates 0.5:0.3:0.2 took 24.03, 39.99,
and 60.35 s, respectively. The measured ratios of execution
times are thus 1:1.66:2.51, and are comparable to the expected
ratios of 1:1.67:2.50.

aud-g3: Set up to send an audio packet every 20 ms,
audio has arguably the most stringent timeliness requirement
among applications in our test suite. We are therefore inter-
ested in knowing how well we can scheduleaudio to meet

Fig. 11. Profile of interframe times forvideo when video was started
while three threads executinggreedy 3 000 000 were running.

its timing constraints when we have concurrently running CPU
intensive applications. In particular, we would likeaudio to
be able to send each 20 ms sample of audio data before the
next sample has been produced by the audio device. In our
experiment, we first started three RC threads, each running
greedy 3 000 000 with a rate of 0.1. Then we started
audio with rate 0.15. To quantify the “timeliness” ofaudio ,
we recorded a 41 s trace of theinterpacket times(i.e., the
times between sends of consecutive audio packets). The trace
is shown in Fig. 9. The maximum interpacket gap is 21.59 ms,
remarkably close to the ideal value of 20 ms.

We also performed a variant experiment ofaud-g3 , in
which we examined whether the timeliness ofaudio will be
adversely affected if we startgreedy after audio has been
running steadily. In our experiment,greedy 3000000 was
started about 1 min afteraudio . The 1 min lead time gives the
actual execution rate ofaudio to stabilize after a significantly
more CPU intensive phase of program startup. The trace
of interpacket times is shown in Fig. 10 (we started the
trace several seconds beforegreedy started). The maximum
interpacket time is 23.16 ms.

vid-g3: For a video frame rate of 30 fps,video is expected
to run and send the packets of each picture every 33.33 ms.
Although this delay requirement is somewhat less stringent
than audio,video is significantly more CPU intensive. In
this experiment, we examined whethervideo is able to meet
its timing constraints when run concurrently with other CPU
intensive RC threads. We first started three threads, each run-
ning greedy 3000000 with a rate of 0.09. Then we started
video -d with rate 0.65.video communicates with the
local X window system server through a Unix domain socket.
X was run with rate 0.05. We traced theinterframe times
(i.e., the times between sends offirst packets of consecutive
video frames) for 2499 frames in Fig. 11. There were three
deadline misses (a deadline miss occurs when a frame is
dropped becausevideo fails to process it in time). The misses
occurred after frames 922, 999, and 2384, respectively, in the
trace. However, these few misses do not suggest the existence
of any weakness in our scheduling algorithm. We report that
in another experiment in which we ranvideo -d just by
itself, we still observed four deadline misses.

YAU AND LAM: RATE-CONTROLLED SCHEDULING FOR MULTIMEDIA APPLICATIONS 485

TABLE V
EXECUTION TIME PRINTED BY greedy 1 000 000 AND

ACTUAL EXECUTION RATE OF greedy WITH A COMPETING

video -d AT VARIOUS RESERVED RATES(EXPERIMENT vid-gx)

(a)

(b)

Fig. 12. (a) Profile of interframe times forvideo whenvideo ran with a
low rate of 0.4. (b) Magnified view showing the reduced frame rate.

vid-gx: This set of experiments investigates the progress
rate of greedy as it runs againstvideo -d at various
reserved rates. In each experiment,video was started fol-
lowed by greedy 1 000 000 after a few seconds. The
reserved rates ofvideo and greedy were varied as in
Table V. In each case, we noted the actual execution time
greedy printed after 1 000 000 rounds of execution. Dividing
this actual execution time into 6759 ms (execution time
greedy 1000000 prints out when run by itself) yields the
actual execution rate. The actual execution times and rates are
reported in Table V. Notice that the actual execution rate of
greedy is consistently higher than the reserved rate. This is
because the other threads in the system (e.g.,X) did not make
full use of their reserved rates. Whengreedy had a reserved
rate of 0.3, 0.4, or 0.5, it had to compete withvideo for

the “slack” CPU capacity left by the other threads. When this
happens, the higher the reserved rate ofgreedy , the larger the
fractiongreedy took up of the slack capacity. Whengreedy
had reserved rate 0.2, it nevertheless got an execution rate of
0.3. This is becausevideo with rate 0.7 did not require much
of the slack bandwidth.

As for video , it suffered minimal loss in performance
when its reserved rate was 0.6 or 0.7. However, when its
reserved rate was too low, such as 0.4,video clearly had
to skip more pictures whilegreedy was simultaneously
running. Fig. 12(a) a profiles the interframe times forvideo
whenvideo ran concurrently withgreedy at a rate of 0.4.
A large gap (about 0.8 s) is observed whengreedy started.
This is becausevideo had been running significantly ahead
of its reserved rate, and was forced to slow down by the
competinggreedy thread (in experimentra-vg , we discuss
how a user application can make use of rate adaptation to avoid
this “punishment phenomenon”). After the initial gap,video
continued to run with a lower frame rate [see Fig. 12(b)], a
magnified view of Fig. 12(a)].

av-g3: We ran all of audio , video , and greedy to-
gether in this experiment. First, three RC threads running
greedy 3000000 were started with a rate of 0.004, then
video -d was started with rate 0.6, and finally,audio
was started with rate 0.15. Fig. 13(a) shows a 50 s profile
of the interpacket times foraudio . The jitters in scheduling
were such that processing of alternate audio samples could be
delayed until close to the time at which the next sample was
produced. However, none of the packets missed its deadline.
The maximum interpacket gap was 37.37 ms. Forvideo ,
the profile of interframes times is shown in Fig. 13(b). There
were five deadline misses during the 2485 frame trace. The
maximum interframe time was 81.35 ms.

ra-vg: We study whether applications can benefit from rate
adaptation in this set of experiments. We experimented with
two strategies that applications might use.

In the first strategy, an application initially guesses a rate
at which it should run, and then relies on rate adaptation to
adjust its current rate upward or downward. In our experiment,
video used an initial rate of 0.4, a lag tolerance of 34 ms, and
a lax tolerance of 10%. It adjusted its rate as follows: Upon
receiving a signal to speed up,video increased its current rate
by 0.1; upon receiving a signal to slow down by%, video
decreased its rate by %. The profile of rates at which
video ran is shown in Fig. 14(a). Note that after an initial
adaptation phasein which video “hunted” for a stable rate
to use, the rate stabilized at 0.721 at frame 435. The effects of
rate adaptation on the interframe times are shown in Fig. 14(b).
During the adaptation phase, a frame was delayed by close
to one frame time about every 2 s. This is becausevideo
needed to handle the rate adaptation signal about every 2 s.
video achieved full performance after its rate had stabilized.
In particular, even though we started a thread runninggreedy
1000000 shortly after frame 435,video managed to send a
frame about every 33.33 ms. This is in contrast to the situation
shown in Fig. 12, in which we observe a 0.8 s interframe time
becausevideo was started with a low rate of 0.4. There are
totally seven deadline misses in the 3000 frame trace.

486 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 4, AUGUST 1997

(a)

(b)

Fig. 13. Profile of (a) interpacket times foraudio and (b) interframe times
for video in experimentav-g3 .

We also examined a second strategy for rate adaptation in
which an application starts with a very high rate, and then
relies on rate adaptation to adjust its current rate downward.
In our experiment,video was started with an initial rate of
0.9, a lag tolerance of 34 ms, and a lax tolerance of 10%.
Upon receiving a signal to slow down by%, it decreased its
rate by %. Using this strategy,video had a single
adjustment of its rate to 0.732 at frame 137 [Fig. 15(a)].
The profile of interframe times in Fig. 15(b) shows that full
performance was achieved throughout. In particular, starting
greedy 1000000 shortly after frame 137 and seconds
before frame 3000 had no observable effects on the interframe
times. There were totally six deadline misses in the 3000 frame
trace.

VIII. C ONCLUSION

We have presented the design and implementation of a
framework for integrated scheduling of CM and various other
applications in a general-purpose workstation. Experimental
results show that the framework is highly effective. First,
it provides firewall protection between threads such that the
progress guarantee given to a thread is independent of how
other threads actually make scheduling requests. Second, rate
adaptation in the framework allows CM applications to effec-
tively adapt their reserved rates to actual execution rates. The

(a)

(b)

Fig. 14. Profile of (a) rates and (b) interframe times forvideo with rate
adaptation from an initial rate of 0.4.

framework is being used as a component in an end system
architecture we have designed and implemented to support
networking with QoS guarantees. In particular, it provides
progress guarantees to protocol threads in Migrating Sockets,
the user level protocol implementation framework in our end
system architecture.

In this paper, we have investigated the performance of
one particular scheduling algorithm and two rate adaptation
strategies. We note that the ARC scheduling framework is
modular. The scheduling algorithm and adaptation strategy in
the framework can be easily changed. We plan to investigate
other algorithms and strategies and add them to the framework.

APPENDIX

PROOF OF THEOREM 1

We prove Theorem 1 by induction on.
Base Step:For , since is punctual, it generates at

least s of work at time 0. To prove by contradiction,
suppose this amount of work did not finish by time.
For this to happen, the CPU must have been occupied with
work throughout the time interval . Moreover, by the
assumption that the period of clock tick is infinitesimally small,
this work must have been scheduled with RC value not greater
than . There are two possible cases.

YAU AND LAM: RATE-CONTROLLED SCHEDULING FOR MULTIMEDIA APPLICATIONS 487

(a)

(b)

Fig. 15. Profile of (a) rates and (b) interframe times forvideo with rate
adaptation from an initial rate of 0.9.

Case 1: In the busy period containing , only work with
RC value not greater than was executed by time . In this
case, let be the start of the busy period (i.e., the CPU
was idle at time , but was doing work with RC value not
greater than throughout). Because the CPU was idle
at , if any thread, say , became runnable in , the
conditional test in L1 of Fig. 8 would be true. L2 then ensures
that ’s initial work in would not have received an
RC value less than. Because the RC value of any thread is
nondecreasing, we conclude that any work scheduled in
had RC value at least. By L4, L7, and the assumption that
the period of clock tick is infinitesimally small, the maximum
amount of work that can be scheduled for in is

.
Case 2: In the busy period containing , some work with

RC value greater than was executed before time. In this
case, let be the time at which the last piece of work
with RC value greater than finished execution in the busy
period. Consider any thread . If was runnable at , its
RC value at must be greater than since a piece of work
with RC value greater than finished execution at. Hence,
no work was executed for in . If was blocked
at , then, by L1 and L2, any work that might have been
scheduled for in must have RC value at least. By
L4, L7, and the assumption that the period of clock tick is

(a)

(b)

Fig. 16. In (a),t is the time at which the CPU was last idle or a piece
of computation with RC value greater thanpj last finished execution before
time pj . In (b), t is the time at which the CPU was last idle or a piece of
computation with RC value greater than(k0 + 2)pj last finished execution
before time(k0 + 2)pj .

infinitesimally small, the maximum amount of work that can
be scheduled for in is .

The two cases are summarized in Fig. 16(a). In either case,
because the work of did not finish by , we have

since

contradiction.

Inductive Step:Assume that Theorem 1 is true for
, i.e., the first seconds of ’s work has

been scheduled over time interval . Because
is punctual, it must have generated an additional

seconds of work by time . By L4, L7, and the
assumption that the period of clock tick is infinitesimally small,
the additional seconds of ’s work receives an RC value
of . Using the same derivations as for the base case,
but substituting for [compare Fig. 16(a) and (b)
to see the similarity between the base case and the inductive
case], we can prove by contradiction that the additional
seconds of work of will finish by time . Hence,
Theorem 1 also holds for .

REFERENCES

[1] J. Bennett and H. Zhang, “WF2Q: Worst-case fair weighted queueing,”
in Proc. INFOCOM’96,San Francisco, CA, Mar. 1996.

[2] S. Bradner and A. Mankin, “The recommendation for the IP next
generation protocol,” Internet RFC 1752, Jan. 1995.

[3] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a
fair queuing algorithm,” inProc. ACM SIGCOMM’89,Aug. 1989, pp.
3–12.

[4] K. K. Ramakrishnanet al., “Operating system support for a video-on-
demand service,”Multimedia Systems,vol. 3, pp. 53–65, 1995.

[5] ATM Forum, “ATM traffic management specification,” ver. 4.0, 1995.
[6] R. Gopalakrishnan, “Efficient quality of service support within endsys-

tems for networked multimedia,” Ph.D. dissertation, Washington Univ.,
St. Louis, MO, Dec. 1996.

[7] R. Gopalakrishnan and G. M. Parulkar, “A real-time upcall facility for
protocol processing with QoS guarantees,” in15th ACM Symp. Oper.
Syst. Principles (Poster Session),Copper Mountain, CO, Dec. 1995.

[8] M. I. Chen and K. J. Lin, “Dynamic priority ceilings: A concurrency
control protocol for real-time systems,”Real-Time Systems,vol. 2, pp.
325–346, 1990.

488 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 4, AUGUST 1997

[9] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard real time environment,”J. Ass. Comput. Mach.,vol. 20,
no. 1, pp. 46–61, 1973.

[10] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves:
Operating system support for multimedia applications,” inProc. IEEE
Int. Conf. on Multimedia Computing and Systems,Boston, MA, May
1994.

[11] J. Nieh and M. S. Lam, “Integrated processor scheduling for multime-
dia,” in Proc. 5th International Workshop on Network and Operating
System Support for Digital Audio and Video,Durham, NH, Apr. 1995,
pp. 215–218.

[12] R. Steinmetz, “Analyzing the multimedia operating system,”IEEE
Multimedia Mag.,1995.

[13] H. Tokuda, T. Nakajima, and P. Rao, “Real-time Mach: Toward a
predictable real-time system,” inProc. USENIX Mach Workshop,Oct.
1990.

[14] G. G. Xie and S. S. Lam, “Delay guarantee of Virtual Clock server,”
IEEE/ACM Trans. Networking,vol. 3, no. 6, pp. 683–689, Dec. 1995.

[15] D. K. Y. Yau and S. S. Lam, “An architecture towards efficient OS
support for distributed multimedia,” inProc. IS&T/SPIE Multimedia
Computing and Networking Conf.,Jan. 1996.

[16] , “End system support for networking with quality of service guar-
antees,” inProc. 4th IEEE Workshop Architecture and Implementation of
High Performance Commun. Syst. (HPCS 97),Chalkidiki, Greece, June
1997.

[17] , “Migrating sockets for networking with quality of service
guarantees,” University of Texas at Austin, Austin, Tech. Rep. TR-97-
05, Jan 1997.

[18] L. Zhang, “VirtualClock: A new traffic control algorithm for packet
switching networks,”ACM Trans. Computer Systems,vol. 9, no. 2, pp.
101–124, May 1991.

[19] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP:
A new resource ReSerVation Protocol,”IEEE Network,pp. 8–18, Sept.
1993.

David K. Y. Yau received the B.Sc. (with first class
honors) degree from the Chinese University of Hong
Kong, and the M.S. and Ph.D. degrees in computer
sciences from the University of Texas at Austin, in
1992 and 1997, respectively.

From 1989 to 1990, he worked in the distributed
computing group of Citibank N.A. Beginning Fall
1997, he will be an Assistant Professor of Computer
Sciences at Purdue University, W. Lafayette, IN.
His current research interests are in end system and
networking support for QoS computing.

Simon S. Lam (M’69–SM’80–F’85), for a photograph and biography please
see p. 218 of the April 1997 issue of this TRANSACTIONS.

