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Abstract
The present work reports an investigation on the use of adaptive metamodels based on radial basis
functions (RBFs) for aeroacoustic applications of highly innovative configurations. The relevance of
the topic lies on the paramount importance of metamodelling techniques within the design op-
timisation process of disruptive aircraft layouts. Indeed, the air traffic growth, consequently the
hard environmental constraints imposed by regulations, will make a technological breakthrough,
an imperative need within few years. As a consequence, the engineering community is paying
particular attention to the development of innovative techniques for the design of unconventional
configurations. For this class of applications, the designer cannot successfully rely on historical
data or low-fidelity models, and the expensive direct simulations remain the only valuable design
strategy. In this regard, it can be demonstrated that the use of surrogate models, i.e.,metamodels,
significantly reduces the computing costs, especially in view of a robust approach to the optimised
design. In order to further improve the efficiency of metamodel-based techniques, dynamic
approaches based on hyperparameter optimisation and adaptive sampling procedures have been
recently developed. The case study presented here pertains the exploiting of dynamic RBF-based
metamodels for noise shielding applications. The analysis of the metamodel performances and its
convergence properties shows how the final number of direct simulations is significantly reduced
by the hyperparameter optimisation algorithm, still strongly depending on the choice of the RBF
kernel function.
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Introduction

The sustainable development of the airborne transportation system is currently one of the major
commitments of the aeronautical engineering community to guarantee the satisfaction of the
growing market demand in a context where most of the existing airports are close to the operational
saturation. Despite oscillations due to world-wide crises, the aviation industry has constantly grown
throughout the last century and is expected to further increase in the near future. The average annual
rate of 4.4% in terms of transport capacity (revenue passenger kilometres, RPK) experienced over
the period 1989–2009,1 is foreseen to grow more than 5% in the 2030 horizon.2 This growth is
mostly due to the progressive access to the civil aviation system of the emerging economies (such as
Asia, Middle-East, Africa and Latin America) with more than 6% RPK annual increment during the
last decades.2,3 A broader ambition of 24/7 operations has been set for air transport as a whole to
accommodate mobility needs by 2050, allowing in particular full usage of existing infrastructures in
line with the Flightpath 2050 global vision.4 In addition to the standard aviation of today, as
explained by Rizzi,5 Urban Air Mobility is a rapidly emergingmarket in which new populations will
routinely be exposed to aircraft pollution also in urban areas. Although aviation currently accounts
for only 2–3% of the 36 billion metric tons of CO2 emissions of anthropic origin,6 these emissions
are projected to grow in the foreseeable future as the air traffic increases. The enhancement of the
environmental friendliness of commercial aircraft is thus of paramount importance.

Exhaust emissions are not the only problem estimated to be critical. Sustainable development of
air traffic implies actions to reduce the noise impact generated by aircraft at airport areas so that the
life quality of surrounding communities can be maintained or improved, and the development of
new infrastructure is no longer being considered an issue. Indeed, in many places, a negative
response to aircraft noise has increased in recent years, having a substantial impact on future
extensions of airports which are reaching their capacity limits. The mitigation of aircraft noise levels
in areas surrounding airports during the take-off and landing operations is one of the most complex
subjects for the aeronautical-community. It requires the involvement of several actors such as
airports, local authorities, research organisations, aircraft industry, airlines, regulatory entities and
residents (communities living around airports are directly impacted by this aviation noise) for the
identification of both noise reduction technologies and strategies such as operational improvements,
operating restrictions and land use planning. For this reason, over the last 20 years, the European
Union has encouraged and granted a significant number of research projects focused on aircraft
noise and chemical pollution reduction. This excellence in noise research and engineering has
contributed to the European aircraft industry successes, bringing promising technology concepts to
validation and demonstration stages.7 The H2020 Work Programme mentions two specific chal-
lenges, among others: i) the achievement of the required level of mitigation of noise and adverse
health effects in the transport sector and ii) the reinforcement of the competitiveness and per-
formance of EU transport. The high number of world-wide projects currently involved in this
research field shows that the recent interest in developing new technologies is not only coming from
the industrial sector for commercial and economic purposes, but also from the scientific community
as a response to the fast changes the world is experiencing. One of the H2020 fromework projects
aimed at controlling the aircraft noise is the ANIMA project. The purpose of ANIMA8 is to develop
innovative methods and suitable tools to mitigate andmanage the effects of aircraft noise, improving
the quality of life near the airports. The used approach facilitates both the airport growth and the
aviation industry’s competitiveness, in compliance with the severe environmental constraints.
Within ANIMA, seven EREA members (Association of European Research Establishments in
Aeronautics), strategic partners, leading universities from all over Europe and major entities of the
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European aerospace industry have collaborated to deeply analyse the promising novel concepts and
methods which are directly coupled to new low noise and disruptive aircraft configurations desired
for the 2035 and 2050 horizons.

So far, a great deal of effort has been accomplished to reduce emissions by applying new
technologies to conventional aircraft layouts, such as laminar flow, winglets, improved IC engines,
composite materials and active control systems. Even though this effort had helped so far to achieve
remarkable improvements, nowadays, an asymptotic limit is being reached in terms of efficiency.9

For this reason, new interests have evolved in studying innovative airframe configurations, low-
noise technologies based on metamaterials10,11 and the use of advanced propulsive systems. During
the last decades, ideas about the noise shielding obtained by installing the engines on top of the
fuselage have been conceived for both conventional and innovative aircraft configurations. Results
of high-level simulations and experimental campaigns have shown the effectiveness of this strategy
in terms of noise shielding.12,13 For this reason among others, aviation industry has put a great deal
of effort into the design of innovative configurations such as the Blended-Wing-Body. Studies
conducted on this configuration have demonstrated that its large centre body surface shaped as an
airfoil contributes to the overall lift force enhancing the aerodynamic efficiency,14 leads itself
excellently to the aforementioned on top engine installation15 and exploit a greater useful volume
compared to that of the standard configurations allowing, in principle, the storage of hybrid-electric
propulsion power-plant.16,17

Due to the strong innovation of such concepts, efficient optimisation procedures must be largely
employed, since the early stage of the aircraft design, to maximise the aerodynamic and acoustic
performances and, at the same time, guarantee constraints to be satisfied. However, the uncon-
ventionality of new concepts makes existing semi-empirical and analytical models inapplicable,
imposing the inclusion of computationally expensive numerical simulations in the conceptual
design frameworks. This fact increases the computational cost of the entire process by order of
magnitudes. For example, the estimate of the noise maps on the ground must be done considering all
the operations in the time slot of interest, thus imposing the use of simple prediction models,
typically based on regression of existing data, to limit the computational cost due to the large
number of evaluation points required. Besides, the need to rely on direct numerical methods in-
troduces uncertainties related to both the simulation model accuracy and the unknown operability
outside the design point, requiring the use of robust design optimisation,18 which tremendously
increases the computational burden.

Although the computing power is continuously evolving, the complexity of high-fidelity analysis
codes, such as finite element analysis, computational fluid dynamics (CFD) and computational
aeroacoustics (CAA), still requires a long time to compute. As a consequence, obtaining a very
accurate model can sometimes be more costly than the advantages it provides, especially during the
conceptual design phase. For these reasons, it is of primary importance the identification of
procedures to concentrate the use of the available resources in the exploration of the design space,
optimising the extraction of information from the simulations (or experiments). Extensive research
has been carried out to overcome the issue of balancing the trade-off between computational
efficiency and prediction accuracy.19 In the development of noise impact management and pre-
diction tools, efficient metamodels can provide an estimate of the effect of unconventional concepts
and procedures at a reasonable computational cost.20–22

In the last few decades, adaptive schemes23–25 have been conceived to improve the metamodel
efficiency in terms of number of points used to obtain the desired accuracy. Following this ap-
proach, the training set is not sampled a priori but instead continuously updated during the
metamodel construction adding new points where needed.26 In a context of multidisciplinary design
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optimisation, a dynamically evolving metamodel can help significantly in reducing the number of
calls to the expensive simulation models and avoid the wasting of resources in irrelevant areas of the
design space. The development of dynamic metamodels is one of the most promising strategies to
answer to the above issues in an effective fashion. Examples of engineering applications of dynamic
RBF networks are oriented to the creation of metamodels used in the context of simulation-based
design (SBD) optimisation,27-29 uncertainty quantification (UQ),30 and reliability analysis (RA).31

In the field of surrogate models, the use of radial basis functions (RBFs) for the reproduction of a
dataset is a standard, well-established interpolation technique initially introduced by Hardy32 for
representing (irregular) topographic surfaces. RBF methods are powerful means to face the problem
of reconstructing unknown functions from a set of small data. As it can be found in literature,33,34

they are particularly suitable for multivariate functions which are dependent on many variables or
parameters, contain non-linearities and are described by (possibly many) scattered data in their
domain. RBF models are widely used due to its theoretical simplicity and efficient implementation
compared to other techniques such as Kriging, Gaussian Process and Neural Networks.

This work focuses on applying adaptive RBF to build reliable metamodels of aeronautical
interest to be embedded in multidisciplinary optimisation processes of unconventional aircraft
configurations. Specifically, the aim is to extend the use of dynamic metamodels based on the
stochastic RBF formulation introduced in Volpi et al.30 to compare the use of different kernel
functions. Indeed, the set of basis functions used for an interpolation problem cannot be fixed in
advance, but it should depend on the application case.35

By statistically varying the kernel function hyperparameters, the stochastic RBF approach
provides uncertainty quantification to reveal regions of the input space where surrogate predictions
are less accurate (i.e. driving further points acquisition to enhance the model actively). As the choice
of the kernel hyperparameters strongly depends on the training set properties (number of points and
their distributions), an optimisation strategy is included at each iteration of the adaptive scheme to
identify suitable values to be used in the stochastic approach.

The paper is organised as follows. The first section is dedicated to the description of the RBF
formulations. After a brief description of the standard method, the adaptive formulation based on
stochastic RBF is presented. In the next section, the algorithm for the tuning of the hyper parameters
and the kernels used in the analyses are introduced. The proposed method is then applied to the case
study described in the next section, followed by the presentation of the corresponding results.
Finally, the last section collects some concluding remarks.

Standard RBF formulation

The basic idea behind the RBF formulation (Hardy32) is that we look for a function s that in-
terpolates the data in the points where the target response is known, i.e., it satisfies the conditions s
(xj) = fj, 1 ≤ j ≤ N, being xj the j-th training samples and fj = f (xj) the function value. Let’s consider a
target response f (ξ), solution of a certain problem governed by an arbitrarily complex set of PDEs
for ξ 2D, where D is the design domain of interest. Also assume that an analytical form of f is not
available, and its value can be obtained only numerically through expensive computational tools for
specified values of the design variable ξ. Given a training set (TS) of pairs (ξ i, f (ξ i)) for i = 1, NT, a
simple interpolation �f of the data using RBF has the form

�f ðξÞ ¼
XNT

j¼1
wjφ

���ξ� ξj
��� (1)
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with weights wj obtained by imposing the values at the TS points and solving the inverse linear
problem

w ¼ A�1f (2)

where Aij = φ(ξi, ξj) and fj = f (ξ j).
The condition for the surrogate model to reproduce the training set yields the system of equations

for the unknowns wj. The matrix A is symmetric for sets of distinct data sites and the solution to the
fitting problem exists and is unique, if and only if A is non-singular. Therefore, our approximation is
the linear combination of shifts of a function, which is radially symmetric with respect to the given
norm about their centres, or knots, where the function is known. In this work, the l2 norm, i.e., the
Euclidean distance, is used for which radial symmetry means that the function value only depends
on the Euclidean distance. It can be shown that the distance matrix A based on the Euclidean
distance in R

d is always non-singular for a certain class of basis function.35 Specifically, the
scattered data interpolation problem is well-posed under the class of basis functions for which the
matrix is positive definite.

Dynamic metamodels based on stochastic RBF

The objective of a dynamic metamodelling approach is not the simple interpolation of data using
equation (1) but instead obtaining an optimal training set with the minimum number of points
needed to predict the unknown response f (ξ) with the desired accuracy. Therefore, the design space
is no longer sampled a priori employing a static design of experiment (DoE) technique but instead
dynamically updated where it is more useful, trying to use the minimum number of simulations to
represent the function accurately.

In the present section, the dynamic approach based on the stochastic RBF formulation introduced
by Volpi et al.30 is described. In this approach, the RBF metamodel is reinterpreted in a statistical
fashion introducing a stochastic variation of the RBF kernel hyperparameters. The advantage of a
stochastic RBF formulation is the evaluation of the local metamodel uncertainty, which is used to
drive the improvement of the TS with new samples in the more uncertain regions. The prediction is
made on the so-called validation set, which is an ensemble of points (Nval) where the output function
is known, left out from the training set to validate the efficiency of the surrogate model.

The surrogate stochastic model for the function f (ξ) is defined considering a stochastic variation
of the kernel parameter ε subjected to a probability density function distribution P (ε). The pre-
diction bf obtained through the stochastic metamodel is thus defined as the expected value (EV) of
the metamodels obtained varying the hyperparameter in the range [ϵmin; ϵmax]

bf ðξÞ ¼ EV

"XNT

j¼1
wjφ

���ξ� ξj
��, ε�#, ε2PðεÞ (3)

¼
Z εmax

εmin

bf ðξ, εÞPðεÞdε (4)

Numerically, the EV is calculated through the Monte Carlo method using Nε points

bf ðξÞ ¼ 1

Nε

XNε

j¼1
bf �ξ, εj� (5)
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The uncertainty is quantified as the difference of the relevant p quantiles of the predictions
obtained varying the ε parameter so as to have a 95% confidence band

Ubf ðξÞ ¼ qðp1,ξÞ � qðp2,ξÞ (6)

with p1 = 0.975 and p2 = 0.025. The quantile q, is defined as the inverse function of the cumulative
distribution function of the predictions bf at ξ

CDFðy,ξÞ ¼
Z
Dε

H y� bf ðξ, εÞh i
PðεÞdε (7)

where H is the Heaviside step function.
Adopting a dynamic update of the metamodel based on the above mentioned stochastic for-

mulation bf SðξÞ, at each iteration of the algorithm, the TS is updated with an additional sample
located where the metamodel uncertainty is maximum.

The flowchart of the dynamic adaptive algorithm is depicted in Figure 1. Starting from an initial
TS, equation (5) is applied to the validation set, and the local value of its uncertainty U(ξ) is
calculated. If the maximum value of the uncertainty is above a certain threshold ϵ, the TS is updated
by adding a new sample (ξ, f(ξ)), which is obtained exploring the variables domain by means of a
genetic algorithm.36 Therefore, the objective function for the search algorithm is the maximum
uncertainty in prediction of the current surrogate model

ξNþ1 ¼ arg max
D

½UðξÞ� (8)

It is worth noting that this is the only step where the expensive model is used. Once the point is
collected (employing the costly simulation tool), (5) is evaluated and the prediction on the Nval

points re-computed.
An appropriate choice of the stochastic parameter allows the conjecture that higher values of U

correspond to a local lack of knowledge about the target response dynamics. To account, for
example, Volpi et al.30 where it is shown the effectiveness of this strategy for a rich set of benchmark
functions and a CFD problem for naval applications, polynomial splines are used as kernel functions
and the polynomial degree α is used as stochastic parameter, on which a uniform distribution
(P (α) = const) in the range [1, 3] is imposed.

The metamodel uncertainty associated with the stochastic variation of the hyperparameters can
be used to estimate the region of the domain where the knowledge about the dynamics of the target
response needs to be improved. An appropriate selection of the stochastic parameter can link

Figure 1. Flowchart of the dynamic adaptive metamodel update.
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directly the local statistical dispersion of the metamodel response to the local metamodel accuracy. It
is worth noting that this procedure allows for an estimate of the local quality of the surrogate model
without additional calls to the expensive simulation models.

The adaptive sampling can follow different approaches depending on the scope of the analysis. In
context of uncertainty quantification, a global approximation of the function is required, so the
sampling is usually driven by the overall model variance.37 Whereas, for optimisation purpose, the
aim is at improving the accuracy of the model in regions of the design space that seems promising,
thus focussing on local model improvement. An overview of the most used approaches can be found
in.38 For the present application, an approach based on the global metamodel uncertainty is used, as
it is done for uncertainty quantification analysis, to explore the entire domain space.

In this work, particular attention is paid to the use of different kernel functions tailored to
aeroacoustic applications. To this aim, using the above formulation as a starting point, a tuning
strategy is introduced in the adaptive scheme to identify the optimal kernel hyperparameters
iteratively.

Hyperparameter tuning

The accuracy of the interpolating function �f ðξÞ for ξ Ï TS strongly depends on the characteristics of
the RBF kernel φ(|ξ � ξj|) = φ(r) and, of course, on the properties of the TS. A condition for the
interpolating function to be positive definite and radial for all dimension d is on its monotonicity
(completely monotonic and multiply monotone functions),33,35 thus on the characteristics of the
chosen basis. Indeed, it is important to remember that there is a strong correlation between the shape
of the training set (number of points and their distribution) and the distance matrix condition
number, so that the well-posedness cannot be ascribed only to the kernel function but to the
combination of these factors. Thus, there is a best choice for the kernel hyperparameters that
depends on the available training set.

Among the large variety existing in the literature, the analysis is here limited to only a few kernel
functions, which are presented in Table 1, having properties of some relevance in the present
context.

A relevant taxonomy concerns the oscillatory or non-oscillatory behaviour of the kernel function.
This property is of cardinal relevance in the aeroacoustic context, where, as already pointed out, the
target response is often a complex wavy field. A further classification can be made in term of
properties of the function support: compactly supported functions are identically zero for r ≥ r0,
whereas not compactly supported functions are defined in the interval ½0,∞Þ. The use of compactly
supported functions provides, when properly scaled, banded collocation matrices that have a better
behaviour than sparse or dense matrices when centres (i.e. TS points) are added a posteriori, such as

Table 1. RBF kernels used in the present analysis.

Class Kernel name φ(r) Hyperparams

Non-oscillatory Polynomial spline γrϵ γ; ϵ

Generalised multiquadric ð1þ γr2Þε; ε< 0 γ; ϵ

Oscillatory Gaussian wave packet e�ðr=σÞ2 cosðεrÞ σ; ϵ
Truncated Bessel

max
�
1� jrj

r0
,0
�
J0ðεrÞ r0; ϵ
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in dynamic TS definition schemes.33 This means that, in principle, they are more robust to the
training set variation.

The idea to apply oscillatory kernels to aeroacoustic applications comes from recent studies in
which these basis functions have been used to approximate numerical solutions for the 2D
Helmholtz equation using a radial basis function-generated finite difference scheme (RBF-FD) on
irregular domains.39-42 The RBFs are directly used as the basis to approximate the solutions by
enforcing the governing equation and boundary conditions on collocation points. The strength of
this method for the solution of PDEs lies in the fact that RBFs are a meshless tool so as to not require
any prescribed structure (the weights depends only on the distance between the training set points)
and they lead to a non-singularity of the interpolation matrix for scattered data in problems with
dimensionality d > 1. Led by these facts, for the present study, this family of oscillatory kernels has
been adopted and compared to more classical kernels to reproduce the dynamics of aeroacoustic
engineering problems by interpolating few high-fidelity simulation data.

Many of the kernels used as radial basis function, such as polynomial splines, generalised
multiquadrics and Gaussian wave packets, contain a free shape parameter γ that plays a key role in
the accuracy of the method. In43 it is shown that the condition number of the system matrix is also
influenced by the choice of this parameter. This inter-dependence is known as uncertainty or trade-
off principle44 and is still being investigated. On the other hand, the truncated Bessel does not
have a shape parameter but for this kernel we introduce the truncation factor r0 which makes it
compactly supported. Similarly to the shape parameter, the truncation factor is an additional degree
of freedom for the metamodel identification and thus it also requires to be carefully selected. In the
following, we will refer to both the shape parameter and the truncation factor as the auxiliary
hyperparameters to distinguish them from the stochastic hyperparameter ε used in the adaptive
scheme.

In their standard formulation, RBF methods involve the solution of linear systems whose
matrices are often full and severely ill-conditioned.45 Even though several approaches, such as
stabilisation techniques, have been applied in literature to overcome the issue of ill-conditioned
distance matrix,39 choosing the correct hyperparameters is often the most challenging activity of
RBF methods and strongly influences the accuracy of the surrogate model. Many authors dealt with
the problem of identifying the best shape parameters for classical kernel functions.46-52 In the
present application, we deal with both non-conventional basis functions and adaptive scheme for
which the training set is updated throughout the process. For this reasons, the application of
empirical formulae cannot be applied directly to the proposed problem. Furthermore, thanks to the
development of high computational power, iterative approaches have been formulated to determine
the best hyperparameters. Among others, the power-function and the cross-validation methods are
the most used. Despite the high computation demand, the method of cross-validation is widely used
in the statistics literature. In this method, the optimal hyperparameter values are found minimising a
cost function given by the (least-square) error for a sequence of partial fits where a sub-set of centres
are left out for the prediction (a series of test sets which in batches span all the NT points).

A special implementation of cross-validation is the leave-one-out cross-validation (LOOCV)
where, in round, one point of the training set is left out from the fit until all points are used as test
points, which is more robust for small TS. Consequently, the evaluation metric is based on the
Euclidean norm of the vector E ¼ E½E1,…,EN �T , where N is the total number of training points
available. As it can be observed, this method is even more demanding of the general cross-validation
and becomes unfeasible for problems with large sets of data. For this reason, many authors have
worked on alternative or simplified algorithm forms to assess and validate the accuracy of their
surrogate models. LOOCV forms the basis of the algorithm proposed by Rippa in46 for choosing an
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optimal value of the shape parameter in the setting of scattered data interpolation with RBFs,
requiring less computation effort. While this classical implementation of the leave-one-out algo-
rithm would be rather expensive ðOðN 4ÞÞ,35 Rippa showed that the algorithm can be simplified as
follows

ERippa,i ¼
����f ðξiÞ � �f ðξiÞ

���� ¼ wi

A�1
ii

(9)

where wi is the i-th coefficient in the interpolant �f ðfÞ based on all the data points, and A�1
ii is the i-th

diagonal element of the inverse of the corresponding collocation matrix.46 In the case of searching
the tuning parameter, the calculation is thus reduced to OðN3Þ, since the distance matrix is cal-
culated once for each hyperparameter value. Even though this simplification introduces an error,
Rippa showed that this error is sufficiently constant over the range of variation, so that the minimum
coincides with that obtained using the classical LOOCV approach. For this reason, in the follows
this simplified calculation is employed.

Performing hyperparameters tuning means that the model used for the approximation is
identified within the analysis process to maximise its fitting capability and accuracy. This strategy
can be further applied to the choice of the kernel itself, and often these approaches are coupled.53–55

In the proposed method, a loop on the stochastic (ε) and the auxiliary hyperparameters is added to
the process comparing the error norms for different values of the hyperparameters, choosing the
optimal ones that yield the minimum error norm. Adding this further step, the adaptive algorithm
reported in Figure 1 becomes the one depicted in Figure 2. As said, Rippa’s method has been used as
metric for the research of optimal hyperparameters. At each iteration of the adaptive scheme, the
best hyperparameters for the current training set are detected by means of the same genetic algorithm
used to identify the maximum uncertainty. The optimisation objective function is the minimum-
square-error of the Rippa’s estimator

EMSE�LOOCV ðξÞ ¼ 1

N

XN

i¼1
E2
Rippa,i (10)

with ERippai from equation (9).
It is worth noting that both the auxiliary and the stochastic hyperparameters have been optimised

in a deterministic way, i.e., through the standard RBF formulation. To inject uncertainty in the
system, which is used to detect the next point to be added, the stochastic hyperparameter is varied in
a range given by ± 15% of the optimal value. The stochastic hyperparameters are sampled uniformly
in their range, using a Latin hypercube sampling method to guarantee such a uniform distribution

Figure 2. Flowchart of the dynamic adaptive metamodel update with kernel hyperparameter tuning.
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with a number of samples that depends on the problem dimensionality so as to guarantee the statistic
convergence.

Case study: Noise shielding

Existing aircraft noise prediction tools allow the computation of noise contours around airports as
well as the noise certification levels, starting from aircraft tracks (in terms of altitude, speed, thrust
and general configuration) and airport layout. From a broader viewpoint, a noise prediction tool can
help the aircraft designer, and consequently the aviation industries, to drive markets towards in-
creasingly eco-sustainable choices. In order to include innovative aircraft concepts within the well-
assessed prediction tools, a feasible strategy could be providing a correction for the existing NPD
(Noise-Power-Distance) curves, which represent a standard technique for evaluating the noise
impact due to flight procedures. The NPD relationship provides noise levels as a function of
observer distance via spherical spreading through a standard atmosphere, with suitable corrections
to account for specific single-event metric (under standard meteorological conditions). Noise levels
are integrated over the microphones array to yield a single value instead of instantaneous sound
pressure level so as to represent the noise produced by infinite flight-paths with constant height and
speed.56 Corrections for innovative configurations deviating from what is considered in the NPD
curves must be evaluated with computationally more expensive tools, i.e., CAA numerical sim-
ulations. The method presented in the previous sections is used in the following to build a surrogate
model of noise shielding for the application case of an airfoil in an uniform flow impinged by an
incident field generated by a point source monopole, as depicted in Figure 3. The acoustic describer
for the noise shielding effect characterisation is the Insertion Loss (IL), defined in frequency domain
as it follows

IL ¼ 20 log10
~pI
~pT

� �
¼ SPLI � SPLT (11)

Figure 3. Total pressure field for an airfoil impinged by a point monopole source in the presence of a uniform
flow. The insertion loss (IL) is evaluated at a linear array of virtual microphones (monitoring points).
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where ~pT ¼ ~pI þ ~pS is the total pressure, ~pI the incident pressure, ~pS the scattered pressure and SPL
is the sound pressure level (~• indicates Fourier transformation). Pressure data are computed using a
boundary integral formulation for the solution of the convected Helmholtz equation, numerically
solved with an in-house developed code implementing a zero-th order boundary element method
(BEM) based on the collocation method. Specifically, we are interested in modelling the IL in one-
third-octave bands integrated over a linear array of monitoring points, obtained by varying the flow
speed and the source position. The independent variables domain is thus represented by the source
location xs (above the lifting surface) and the Mach number xM. The design space bounds are�0.5 <
xs < 0.5 (leading edge and trailing edge of the airfoil) and 0.1 < xM < 0.3. An example of the resulting
integrated IL fields for the one-third-octave band fc = 1250 Hz is depicted in Figure 4.

Validation metric

Identifying relevant metrics to systematically validate and estimate the quality of metamodels is an
essential aspect of this process, and it should be tailored to the application under analysis, namely, if
we want to reach a global or local accuracy. Nevertheless, the stop criterion is also a crucial aspect,
since in real applications the validation set (including the dynamically updated TS) can be non-
representative of the global quality of the metamodel with areas of the design space unexplored.
However, in this work, we present a benchmark application assuming the function is known densely
to focus our attention on the proposed methodology. In adaptive surrogate-based analyses, another
aspect to consider is the efficiency of reducing the number of necessary high-fidelity simulations
required to obtain a reliable metamodel. Thus, the proposed kernels’ aptitude is judged based on the
final number of points added to reach the required accuracy (and consequently, the time and re-
sources necessary to build the model). An evaluation criterion based on the metamodel uncertainty
trend is inefficient for a kernel-based analysis with hyperparameter tuning. In fact, the uncertainty
range is very sensitive to both the kernel and the stochastic range of hyperparameters variation
(which, in this work, is updated at each iteration of the algorithm).

Therefore, a criterion based on the root-mean-square (RMS) error (%) between the validation set
values and the metamodel prediction is used as a stop criterion (even though in actual applications,
this issue must be further analysed due to the current validation set’s representativeness). The
normalised RMS error is computed as follows

Figure 4. Integrated IL (frequency band f_c = 1250 Hz) for an airfoil geometry with unitary chord in presence
of a uniform flow as function of source position (x axis) and Mach number (y axis).
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ERMSðξÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nval

XNval

i¼1
EðξiÞ2

r
(12)

EðξiÞ ¼
f ðξiÞ � bf ðξiÞ��� ���

maxðf Þ �minðf Þ (13)

with ξ i the i-th validation point. The RMS error has been selected because it is a global performance
metrics, allowing to better compare the kernels in terms of position and number of points that must
be added to guarantee a certain level of accuracy of the final metamodel.

Results

In this section, the results of the application of the proposed method to the case study described
above are presented. For all the analyses, an initial TS of five points was set following the Central
Composite Design57 approach, and an uniform grid of 30 × 50 points was used as validation set.
Figure 5 summarises the results obtained for all the third-octave bands in terms of points added (No.
TS added) and maximum local relative error in percentage [%] obtained at the end of the iterative
process (Max local Error). In the table, the kernels are indicated as PS (polynomial splines), GMQ
(generalised multiquadric), TB (truncated Bessel) and GWP (Gaussian wave packet). As it can be
seen in Figure 5, the GMQ and GWP kernels generally performs better than the other functions in
terms of points added. Concerning the max. local error, GMQ presents the highest value at the
lowest frequency (fc = 315Hz). Observing all the frequencies, PS and TB kernels present the overall
lower values of local errors for the target normalised RMS (set to the 3%), resulting thus the most
robust kernel in terms of global accuracy. However, TB adds more points than the other functions,
which is the reason for it presenting the lowest local errors especially for the highest frequency
bands. Among the oscillatory kernels, GWP performed better than TB in terms of points added. In
Figures 6–8, the metamodel prediction, the final TS, the local error (subfigs. (a), (b), (c) and (d)) and
the RMS error trend (subfig. (e)) are shown for all the analysed kernels and for the frequency bands

Figure 5. Noise shielding results: final number of points added to the training set (a) and maximum relative
local error (b).
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Figure 6. Integrated Insertion loss 2D, freq. band = 315 Hz.
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fc = 315 Hz, fc = 630 Hz and fc = 1250 Hz, respectively. Observing the RMS error trends for all the
presented frequencies, GWP kernel (and similarly TB kernel, although at a lesser extent) presents
several spikes, while PS and GMQ exhibit a much smoother behaviour.

Figure 7. Integrated Insertion loss 2D, freq. band = 630 Hz.
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It should be noted that in real-life applications we cannot rely on the validation set to define a rule
to exit the adaptive loop based on the RMS error between true function and prediction. As can be
found in Volpi et al.,30 the stop criterion is based on the metamodel uncertainty. The graph in
Figure 9 shows the trend of the maximum uncertainty as a function of the number of points added to

Figure 8. Integrated Insertion loss 2D, freq. band = 1250 Hz.
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Figure 9. Trend of the maximum uncertainty for all analysed kernels (frequency band fc = 1250).

Figure 10. Optimal hyperparameter histories, freq. band = 1250 Hz.
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the TS in the adaptive loop for the frequency band fc = 1250. A general noisy behaviour is observed,
especially when the GWP and TB kernels are used. This behaviour turns out to be a side effect
related to the way the stochastic metamodel is built. Indeed, the values of the metamodel uncertainty
depend either on the kernel used (or on the auxiliary hyperparameter), and on the stochastic
hyperparameter range which in turn depends on the optimal value of the stochastic parameter. On
the other hand, the optimal values of the hyperparameters are strongly influenced by the char-
acteristics of the TS (number of points and their distribution in the domain), which change at each
iteration of the adaptive process, as can be observed in Figure 10. Therefore, it seems not possible to
define a stop criterion based on the maximum uncertainty due to its severe fluctuations during the
metamodel building, at least for the case of GWP and TB kernel functions. However, the PS and
GMQ kernels appear to be more stable to such variations.

Nonetheless, the presented algorithm greatly helps in reducing the number of points needed to
reach the required convergence, which is the most important feature in SBD for a given accuracy. A
comparison between metamodels with and without hyperparameter optimisation is shown in
Figure 11 for the frequency band fc = 630 Hz. With respect to the adaptive scheme without hy-
perparameter tuning (shown in Figure 1), it has been noted that the tuning strategy helps to distribute
the samples more uniformly, at least for the PS kernel.21 In fact, it is known30 that polynomial
splines basis tends to add new samples in regions where the function exhibits the maximum
curvature, which can be a good characteristic if the metamodel is built within an optimisation
framework but not if we want to explore the whole design space.

Conclusions

In this work, an adaptive metamodelling technique based on the radial basis function scattered data
approximation method is proposed for aeroacoustic applications of innovative aircraft layouts. The
method exploits the stochastic RBF formulation introduced by Volpi et al.30 to evaluate the local
metamodel uncertainty, which is used to drive the improvement of the training set with new samples
in the more uncertain regions. A procedure to identify the optimal kernel hyperparameters is
included at each iteration of the adaptive scheme to enhance the algorithm’s performance and allow

Figure 11. Comparison between metamodels with and without hyperparameter optimisation, freq. band =
630 Hz.
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to compare kernel functions for which a suitable range of hyperparameter values are difficult to be
identified a priori in an adaptive approach where the training set varies at each iteration. To build the
dynamic metamodel, the stochastic variable is sampled in a range defined as the ±15% of the optimal
value, found by means of a suitable optimisation problem. The kernel hyperparameter tuning
technique is based on the LOOCV method, where the Rippa estimator is used as operative research
metric. The proposed technique has been applied to the case study of a simple airfoil in a uniform
flow impinged by a point monopole source placed on top of the lifting surface. Specifically, the
function to be reproduced is the Insertion Loss (IL) integrated over a linear array of receiver points,
considering the Mach number and the point source position as design variables. An initial set of five
training points based on the Central Composite Design sampling approach has been used to build a
metamodel with the present technique, in which the exact value of IL has been obtained by solving
the 2D convective Helmholtz equation through a BEM solver. The results are presented for several
third-octave bands, showing that the method is able to successfully reproduce the Insertion Loss
field with a given accuracy. Several kernel functions have been tested and compared to see how this
design choice influences the adaptive metamodelling process. In particular, attention has been paid
to the use of oscillatory and non-oscillatory kernels. It has been proved that using stochastic RBF, a
reliable and accurate model of the IL noise shielding can be built using a limited number of direct
simulations. This approach allows the designer to reduce the computational burden required to
perform airport procedure and configuration optimisation of innovative aircraft configurations, for
which the lack of historical data imposes the use of costly direct simulations in the design process.
However, updating the stochastic range at each step of the adaptive loop leads to a noisy behaviour
of the uncertainty trend, especially for the oscillatory kernels which have demonstrated to be
particularly sensitive to the hyperparameters variation. Indeed, this issue is less severe for the
polynomial spline and generalised multiquadric kernels, which are relatively stable bases for the
RBF adaptive scheme. This issue represents a drawback of the proposed method since in real-life
applications, where often it is not possible to rely on few validation points RMS error to establish the
accuracy of the model, the uncertainty could be a good candidate to define the convergence of the
method. Nevertheless, the proposed technique appears to be very promising for adaptive schemes,
although further investigation is still necessary to identify a suitable metric for the stop criterion.
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