
A

Adaptive Real-time Communication
for Wireless Cyber-physical Systems

MARCO ZIMMERLING, TU Dresden

LUCA MOTTOLA, Politecnico di Milano and SICS Swedish ICT

PRATYUSH KUMAR, FEDERICO FERRARI, and LOTHAR THIELE, ETH Zurich

Low-power wireless technology promises greater flexibility and lower costs in cyber-physical systems. To
reap these benefits, communication protocols must deliver packets reliably within real-time deadlines across
resource-constrained devices, while adapting to changes in application requirements (e.g., traffic demands)
and network state (e.g., link qualities). Existing protocols do not solve all these challenges simultaneously,
because their operation is either localized or a function of network state, which changes unpredictably over
time. By contrast, this paper claims a global approach that does not use network state information as input
can overcome these limitations. The Blink protocol proves this claim by providing hard guarantees on end-
to-end deadlines of received packets in multi-hop low-power wireless networks, while seamlessly handling
changes in application requirements and network state. We build Blink on the non real-time Low-Power
Wireless Bus (LWB), and design new scheduling algorithms based on the earliest deadline first policy. Using
a dedicated priority queue data structure, we demonstrate a viable implementation of our algorithms on re-
source-constrained devices. Experiments show that Blink: (i) meets all deadlines of received packets; (ii) de-
livers 99.97 % of packets on a 94-node testbed; (iii) minimizes communication energy consumption within
the limits of the underlying LWB; (iv) supports end-to-end deadlines of 100 ms across 4 hops and 9 sources;
and (v) runs up to 4.1× faster than a conventional scheduler implementation on popular microcontrollers.

CCS Concepts: rNetworks → Network protocol design; Cyber-physical networks; Cross-layer proto-

cols; Network dynamics; Network experimentation; Logical / virtual topologies; Bus networks; rComputer

systems organization → Sensor networks; Sensors and actuators; Embedded software; Real-time

system architecture;

Additional Key Words and Phrases: Wireless multi-hop network, real-time communication, end-to-end dead-
line, earliest deadline first (EDF), priority queue data structure, real-world implementation, low-power plat-
form, reliability, adaptivity, efficiency, Low-Power Wireless Bus (LWB), Glossy, synchronous transmissions

ACM Reference Format:

Marco Zimmerling, Luca Mottola, Pratyush Kumar, Federico Ferrari, and Lothar Thiele, 2017. Adaptive
real-time communication for wireless cyber-physical systems. ACM Trans. Cyber-Phys. Syst. V, N, Article A
(January 2016), 27 pages.
DOI: http://dx.doi.org/10.1145/3012005

1. INTRODUCTION

The benefits of low-power wireless communication technology in cyber-physical sys-
tems (CPS) are widely acknowledged [Honeywell 2006], ranging from better scalabil-

This work was supported by nano-tera.ch with Swiss Confederation financing, project X-Sense, by the Clus-
ter Projects “Zero-energy Buildings in Smart Urban Districts” (EEB), “ICT Solutions to Support Logistics
and Transport Processes” (ITS), and “Smart Living Technologies” (SHELL) of the Italian Ministry for Uni-
versity and Research, and by the German Research Foundation (DFG) through the Cluster of Excellence
“Center for Advancing Electronics Dresden” (CfAED) and the Priority Program 1914, project EcoCPS.
Author’s addresses: M. Zimmerling, TU Dresden, Center for Advancing Electronics Dresden (CfAED), Net-
worked Embedded Systems Group, Georg-Schumann-Strasse 11, BAR I-56, D-01187 Dresden, Germany;
L. Mottola, Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Via Golgi 42,
Building 22 (room 319, third floor), IT-20133 Milano, Italy; P. Kumar, F. Ferrari, and L. Thiele, ETH Zurich,
Computer Engineering and Networks Laboratory, Gloriastrasse 35, ETZ-G87, CH-8092 Zurich, Switzerland.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
c© 2016 Copyright held by the owner/author(s). 2378-962X/2016/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/3012005

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

A:2 M. Zimmerling et al.

ity through lower installation and maintenance costs to greater flexibility in selecting
sensing and actuation points [Åkerberg et al. 2011b]. Example applications include
level control of dangerous liquids [Honeywell 2006], rapid prototyping of automation
solutions in retrofitting buildings [Agarwal et al. 2011], and minimally invasive moni-
toring of safety-critical assets [Stankovic et al. 2003]. Lower costs and ease of installa-
tion motivate the use of battery-powered or energy-harvesting devices with low-power
wireless transceivers and microcontrollers (MCUs) [Åkerberg et al. 2011a].

Challenges. Because CPS control physical processes that evolve over time, communi-
cation in CPS is inherently subject to hard real-time requirements; that is, packets that
are successfully received at the intended destination must do so before stipulated dead-
lines, for example, to guarantee control stability [Sinopoli et al. 2004]. This entails that
packets not meeting their deadline have no value to the application and count as lost.
Support for this kind of real-time traffic is mainstream in wired fieldbuses [CAN 2004;
FlexRay 2013]. In low-power wireless networks, however, the problem was recognized
early on: “. . . because of the large scale, nondeterminism, noise, etc., it is extremely
difficult to guarantee real-time properties.” [Stankovic et al. 2003]. This is due to four
challenges low-power wireless protocols must address simultaneously to support CPS:

— Deadlines (D): ensure that packets successfully received at the intended destina-
tion(s) meet hard end-to-end deadlines across multiple hops;

— Reliability (R): achieve a high packet delivery ratio across multiple hops despite the
inherent unreliability of wireless communications;

— Adaptivity (A): adapt to unpredictable changes in application requirements (e.g.,
traffic demands) and network state, that is, the physical-layer conditions determining
the nodes’ ability to communicate (e.g., wireless link qualities, hop distances);

— Efficiency (E): operate efficiently with regard to limited resources, including com-
pute power, memory, and energy, as well as large network scales.

As discussed in Sec. 2, these four challenges are yet unsolved. The approach taken by
current solutions prevents them from addressing all challenges at once. Some operate
in a localized fashion [He et al. 2005], which aids scalability but renders them unable to
provide end-to-end guarantees. Others require time-varying network state information
(e.g., link qualities) as input [WirelessHART 2007], which determines their function-
ing. This, however, makes them susceptible to the unpredictable and non-deterministic
dynamics of low-power wireless links [Baccour et al. 2012] that rapidly mutate the
network state, impairing their ability to promptly adapt to those changes or to scale to
large networks [Zhang et al. 2009; Saifullah et al. 2010; Chipara et al. 2011].

Approach. We present Blink, a real-time low-power wireless protocol that solves chal-
lenges D, R, A, and E together. Our approach is different than previous ones: Blink
does not employ network state information as an input and uses only the application’s
real-time traffic requirements to efficiently compute a single global communication
schedule at runtime, such that all received packets provably meet their deadlines. This
crucially means that Blink’s scheduling decisions are not determined by the current
network state, and thus do not need to be adapted to its unpredictable changes. In this
way, we detach Blink’s operation from the network dynamics, overcoming the limita-
tions of previous approaches and enabling adaptive real-time communication even in
the face of mobile nodes and dynamically changing application requirements.

To realize our approach, we leverage the Low-Power Wireless Bus (LWB) [Ferrari
et al. 2012] as Blink’s underlying communication support. As described in Sec. 3, LWB
is a non real-time protocol that maps all communication onto network-wide Glossy
floods [Ferrari et al. 2011]. Real-world experiments show that Glossy achieves packet
delivery ratios above 99.9 % in networks that range in size from 26 to 260 nodes, in

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

Adaptive Real-time Communication for Wireless Cyber-physical Systems A:3

density from a few to over 50 nodes in the same broadcast domain, in diameter from 3
to 8 hops, as well as under external interference (e.g., from Wi-Fi networks) and when
a large subset of the nodes is mobile [Ferrari et al. 2011; Ferrari et al. 2012].

Contributions and road-map. Sec. 4 gives an overview of Blink, while Sec. 5 details
its design and efficient implementation, which rest upon three key contributions:

— Problem mapping. In LWB, nodes communicate in a time-triggered fashion according
to the same global schedule. Further, Glossy reliably delivers all packets to all nodes,
while allowing us to not consider the time-varying network state as an input to the
scheduling problem. We can therefore treat the whole multi-hop wireless network as
a single communication resource that runs on a single clock. This allows us to map
the real-time scheduling problem in Blink to uniprocessor task scheduling, making
it easier to solve than the multi-processor case in prior works [Saifullah et al. 2010].
We note that Chipara et al. [2013] uses a similar abstraction for scheduling real-time
communication in a many-to-one data collection scenario with in-network aggrega-
tion, whereas we focus on many-to-many real-time traffic in critical CPS applications.

— Real-time scheduling policies. Tackling the problem as uniprocessor task scheduling
allows us to conceive scheduling policies based on the well-known earliest deadline
first (EDF) principle [Liu and Layland 1973]. Using these policies, Blink computes a
schedule so that all received packets generated by a set of admitted real-time streams
provably meet their deadline, while minimizing the communication energy consump-
tion within the constraints of the underlying LWB protocol. By computing the sched-
ule online, Blink promptly adapts to changes in the application requirements.

— Efficient data structure and algorithms. Enabling EDF-based real-time scheduling on
low-power, resource-constrained platforms is a significant challenge on its own. Due
to its runtime overhead EDF has seen little adoption even on commodity hardware,
despite its realtime-optimality [Buttazzo 2005; Sha et al. 2004]. To tackle this chal-
lenge, we exploit characteristics of our scheduling problem to design a highly efficient
priority queue data structure and algorithms that take advantage of it.

In Sec. 6, we evaluate Blink on two testbeds with up to 94 nodes, four state-of-the-
art MCUs, and using synthetic simulations as well as a time-accurate instruction-level
emulator. For instance, our testbed results show that Blink meets all deadlines of re-
ceived packets, while losing only 0.03 % of the packets over wireless. Beneficial statis-
tical properties of Glossy [Zimmerling et al. 2013] allow to use well-known methods to
deal with the very few missing packets in the design of CPS controllers [Sinopoli et al.
2004]. Further, we show that Blink supports end-to-end deadlines as small as 100 ms,
thus meeting the requirements of industrial closed-loop control [Åkerberg et al. 2011a].
Such real-time performance rests a long way from the original LWB: simulations in-
dicate that the latter meets only 35–72 % of deadlines in some settings we test. Fi-
nally, using our priority queue and scheduling algorithms, Blink achieves speed-ups of
up to 4.1× compared to a conventional scheduler implementation on state-of-the-art
MCUs. This proves instrumental to the viability of EDF-based real-time scheduling on
widespread low-power embedded platforms, such as those based on MSP430 MCUs.

2. PROBLEM AND RELATED WORK

Guaranteeing hard real-time properties in multi-hop low-power wireless networks is
a long-standing, yet unsolved problem [Stankovic et al. 2003]. The problem originates
from the requirements of emerging CPS applications. We discuss these requirements
next, then state the problem, and finally review previous approaches to solving it.

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

A:4 M. Zimmerling et al.

2.1. Application Requirements and Problem Statement

CPS embed distributed feedback loops into the physical world [Stankovic et al. 2005].
As the physical world evolves over time, timing constraints are important when em-
bedded devices stream sensor data and control signals to drive time-critical control
loops. The control logic executes right on the actuators that affect the environment, or
on a few dedicated devices that periodically distribute control signals to the actuators.

Let Λ denote the set of all n streams in the network. Each stream si ∈ Λ releases one
packet at a periodic interval Pi , called the period of stream si. The start time Si is the
time when si releases the first packet. Every packet released by stream si should be
delivered to the destination(s) within the same relative deadline Di . The next packet
is only released after the absolute deadline of the previous packet, that is, Di ≤ Pi .
We refer to the absolute deadline of si as a shorthand for the absolute deadline of the
last packet released by si. Overall, each stream si ∈ Λ is characterized by its profile
〈Si , Pi , Di〉. If there are k streams with the exact same profile, we also write k〈·, ·, ·〉.1

The concrete stream profiles are application-specific. Specifically, the sensing modal-
ity and/or the nature of the feedback loop often dictate a stream’s period Pi [Åkerberg
et al. 2011a]. Temperature control in liquid volumes demands periods in the order of
minutes [Paavola and Leiviska 2010], and coordinated multi-robot control runs with
periods of at most tens of seconds [Mottola et al. 2014]. On the other hand, compressor
speed control requires periods down to tens of milliseconds [Åkerberg et al. 2011a].
Greater opportunities for energy savings (e.g., through duty cycling) are available in
the former applications, yet we demonstrate in Sec. 6 that Blink can efficiently operate
with periods in the hundreds of milliseconds range. The monitoring or control logic de-
termines a stream’s deadline Di and starting time Si . For example, closed-loop control
typically requires shorter deadlines than open-loop control [Ogata 2001].

Deployments consist of tens to hundreds of devices. Due to the limited communica-
tion range of low-power wireless radios, multi-hop communication is typically needed
to ensure connectivity. Some scenarios feature partially or completely mobile networks,
for example, when optimizing sensing locations or coordinating mobile robots [Mottola
et al. 2014]. This adds to the dynamics of low-power wireless links caused by interfer-
ence, fading, and environmental changes [Srinivasan et al. 2010; Baccour et al. 2012].

Problem. Based on these requirements, one needs to solve challenges D, R, A, and E
at once. Challenge D entails finding schedule(s) such that given n streams, n = |Λ|, for
every stream si ∈ Λ, every packet released by si can be received within Di time units.

2.2. Related Work

Previous efforts to solving the problem can be broadly classified depending on whether
they need local or global knowledge as input for computing communication schedules.

An example of the former class is SPEED, where each node monitors its neighbors
within radio range, for example, to acquire location information and detect transient
congestion [He et al. 2005]. Using only this local information, each node computes and
follows its own communication schedule. Conceptually similar approaches are adopted
by Gu et al. [2009], Kanodia et al. [2001] and Lu et al. [2002]. These scale well because
of their localized nature and can easily accommodate simple approaches to increase
the robustness against varying application requirements and wireless dynamics, such
as retransmissions to counteract packet loss [Liu et al. 2006; Gu et al. 2009; Suriy-
achai et al. 2010]. However, they cannot match the hard real-time requirements of
CPS applications. Such requirements are specified from an end-to-end perspective, but

1For simplicity, we assume a stream releases one packet at a time. If a stream 〈Si , Pi , Di 〉 releases k packets
at a time, we implicitly transform this into k〈Si , Pi , Di 〉 streams each releasing one packet.

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

Adaptive Real-time Communication for Wireless Cyber-physical Systems A:5

devices that reason solely based on local information and that can only influence their
surroundings are unable to enforce end-to-end communication guarantees.

Instead, state-of-the-art solutions from industry [WirelessHART 2007; ISA100 2009;
IEEE 802.15.4e TSCH 2012] and academia [Nirjon et al. 2010; O’Donovan et al. 2013]
compute communication schedules using information about the global network state,
that is, the physical-layer conditions that determine whether any two nodes can com-
municate. Global network state essentially takes the form of a connectivity graph,
where the weight of edge A → B represents the quality (e.g., packet reception ratio)
of the link from node A to node B. Using global network state as an input, these solu-
tions centrally compute and then distribute communication schedules tailored to each
node. Nodes follow their own schedule locally, thereby forming multi-hop routing paths
from sources to destination(s). Network state changes are typically handled through
redundant paths and multi-channel operation [WirelessHART 2007; O’Donovan et al.
2013; Nirjon et al. 2010; IEEE 802.15.4e TSCH 2012]. These approaches can return
highly optimized schedules in static, small-scale networks with little wireless dynam-
ics [Zhang et al. 2009; Nirjon et al. 2010; Saifullah et al. 2010; O’Donovan et al. 2013].
Due to their inherent complexity, however, they suffer from two fundamental problems:

(1) Computing per-node schedules hardly scales to larger networks. Besides a few ex-
ceptions (e.g., [Chipara et al. 2013]), existing works map the problem of scheduling
real-time traffic to scheduling tasks on a multiprocessor [Saifullah et al. 2010],
treating each node as a separate processor. As a result, in WirelessHART, comput-
ing optimal per-node communication schedules takes time at least exponential in
the network diameter [Saifullah et al. 2010]. Despite attempts to address this is-
sue [Zhang et al. 2009; Saifullah et al. 2010; Chipara et al. 2011], these schedulers
are hardly practical in real networks of more than three hops [Chipara et al. 2011].

(2) Network state is volatile because of transient low-power wireless links [Srinivasan
et al. 2010], environmental changes [Baccour et al. 2012], node crashes, and mobil-
ity [Xia et al. 2007]. Any change in the network state must be detected locally and
communicated to the central entity to update the connectivity graph before new
schedules can be computed and distributed. As this happens, new changes may
occur, requiring to repeat the processing over and over again. Meanwhile, packets
are lost due to inconsistent routing paths or miss their deadline because of obsolete
schedules. Real-world experience shows that, for example, WirelessHART needs up
to tens of minutes to adapt to network state changes [Åkerberg et al. 2011b].

Because of these problems, any solution using global network state as input cannot
provide hard real-time guarantees in large-scale networks with non-negligible wireless
dynamics. Thus, solving challenges D, R, A, and E at once remains an open problem.

3. BLINK FOUNDATION

This paper presents Blink, a low-power wireless protocol that solves challenges D, R,
A, and E together. Before presenting the details of Blink’s design and implementation,
we describe LWB [Ferrari et al. 2012], which we use as communication support.

LWB is a non real-time protocol, where nodes communicate in a time-triggered fash-
ion by following a global schedule. All communication occurs via network-wide Glossy
floods [Ferrari et al. 2011]. Glossy distributes a packet from one node to all others over
multiple hops, while time-synchronizing the whole network at no additional cost. Us-
ing Glossy as the only means of communication, LWB transforms a multi-hop wireless
network into a shared bus, where all nodes are potential receivers of all packets.

LWB operation. As shown in Fig. 1 (A), LWB’s operation unfolds in a series of commu-
nication rounds of fixed duration. Nodes keep their radios off between rounds to save

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

A:6 M. Zimmerling et al.

Nn…Schedule Compute scheduleContentionData N1 ScheduleData N2

Fig. 1. Time-triggered operation in the Low-Power Wireless Bus (LWB).

energy. Each round consists of a sequence of non-overlapping slots, shown in Fig. 1 (B).
All nodes participate in the communication in every slot: one node puts a packet on
the bus (i.e., initiates a flood), while all other nodes read the packet from the bus (i.e.,
receive and relay the flood), as shown in Fig. 1 (C). At the end of a round, only the in-
tended receivers (encoded in the packet header) deliver the packet to the application.

Each round starts with a slot allocated to a specific node, called host, for distributing
the global schedule, as shown in Fig. 1 (B). The schedule specifies when the next round
starts and which nodes are allowed to send their packet in the following data slots. Ev-
ery round contains up to B data slots. Therefore, B and the time between subsequent
rounds determine the bandwidth provided by LWB. The shorter the time between sub-
sequent rounds, the more bandwidth is available, and vice versa. The time between
subsequent rounds is upper-bounded to let nodes update their time synchronization
state (via Glossy [Ferrari et al. 2011]) sufficiently often to compensate for clock drift.

Each slot corresponds to one Glossy flood, as shown in Fig. 1 (C). At the start of a
flood, nodes turn on the radio and the owner of the slot transmits its packet (e.g., N1 in
the first data slot in Fig. 1(B)). Glossy ensures nodes receiving the packet retransmit
it synchronously. Due to constructive interference and capture effects [Leentvaar and
Flint 1976], other nodes successfully receive the packet with high probability despite
the apparent collisions. Using these synchronous transmissions, the flood spreads like
a wave throughout the network (see Fig. 1 (C)), where the time needed to reach all
nodes scales linearly with the network diameter. Note that the nodes’ actions during a
flood are only triggered by radio interrupts and occur irrespective of the network state.

To inform the host of their traffic demands, nodes compete in a dedicated contention
slot (see Fig. 1 (B)) by initiating floods with different packets containing their stream
requests. Due to capture effects [Leentvaar and Flint 1976], one packet reaches the
host with high probability despite the contention. Afterwards, the host computes the
schedule for the next round. The new schedule is sent in a final schedule slot, so nodes
know right away when the next round starts and can turn off their radios until then.

Benefits. Using LWB as communication support for Blink brings a number of benefits,
both in terms of performance and from a conceptual point of view.

In terms of performance, Glossy provides sub-microsecond synchronization accuracy
and an end-to-end reliability above 99.9 % across a range of real-world scenarios [Fer-
rari et al. 2011; Ferrari et al. 2012]. In fact, by increasing the number of times a node
transmits during a flood, Glossy’s reliability can be pushed beyond 99.9999 % [Fer-
rari et al. 2011], which goes a long way towards solving challenge R. On top of this,
Zimmerling et al. [2013] show how to provide probabilistic guarantees on LWB’s end-
to-end reliability. Although a purely flooding-based communication scheme may seem
wasteful, LWB outperforms prior solutions also in terms of energy efficiency [Ferrari
et al. 2012], thus providing a promising foundation for addressing part of challenge E.

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

Adaptive Real-time Communication for Wireless Cyber-physical Systems A:7

From a conceptual point of view, LWB brings three key assets to the design of Blink:

— Glossy’s protocol logic is independent of network state: nodes retransmit any packet
they receive regardless of link qualities, hop distances, or other physical-layer char-
acteristic. Thus, using Glossy as the only means to communicate, LWB readily sup-
ports scenarios with significant wireless dynamics including mobile nodes immersed
in static infrastructures [Chipara et al. 2010], creating a virtual single-hop net-
work where every node can directly communicate with every other node. Moreover,
Glossy’s network state independence allows us not to consider the network state as
input to the scheduling problem. This solves part of challenge A in that there is no
need to adapt to network state changes—a key difference compared to prior work.

— Nodes in LWB communicate in a time-triggered fashion according to a single global
schedule. Together with the abstraction of a virtual single-hop network, we can treat
the whole multi-hop wireless network as a single communication resource that runs
on a single clock. This observation allows us to map the scheduling problem to that of
scheduling tasks on a uniprocessor, making it easier to solve than the multiprocessor
formulation in prior works [Saifullah et al. 2010]. Relying on this observation does
not come without a cost; for example, it sacrifices some communication capacity as
the network cannot simultaneously transmit messages from different sources. Sec. 6
shows quantitatively that the gains in simplicity outweigh the potential drawbacks.

— LWB readily supports different traffic patterns, such as one-to-many, many-to-one,
and many-to-many, catering for CPS settings with multiple actuators or controllers.
LWB also includes an effective mechanism to overcome the single point-of-failure at
the host [Ferrari et al. 2012]. This contrasts what happens, for example, in case of a
failure of the central network manager in WirelessHART [2007].

Limitations. Despite these benefits, LWB does not solve challenge D as its scheduling
decisions are oblivious of packet deadlines and only meant to reduce energy consump-
tion. Indeed, our results in Sec. 6.4 show that LWB only meets 35–72 % of deadlines
across a diverse range of stream sets, even at low bandwidth demands.

On the other hand, considering deadlines in the scheduling decisions triggers fre-
quent changes in the time between subsequent LWB rounds (see Fig. 1 (A)), even when
the stream set does not change, as shown in Sec. 6.1. This behavior drastically differs
from the original LWB scheduler, which keeps the time between rounds fixed unless
the stream set changes, which helps deal with lost schedule packets. Without careful
changes to the core LWB implementation, replacing the original scheduler with a real-
time scheduler would result in low packet delivery ratio, thus reinforcing challenge R.

LWB also does not check if the available bandwidth can accommodate the stream
requests it accepts. In case the bandwidth is insufficient, source nodes would need to
locally buffer packets, eventually exhausting their memory, and ultimately losing data.

4. BLINK OVERVIEW

To overcome LWB’s limitations and solve challenges D, R, A, and E, we must address
the following issues. First, we need to conceive an adaptive policy to schedule packets
in a way to meet all deadlines without unnecessarily sacrificing energy efficiency, while
still allowing the set of streams to freely change at runtime. In doing so, our objectives
are: (i) realtime-optimal scheduling to solve challenge D, and (ii) minimizing commu-
nication energy consumption as per challenge E. Objective (i) entails to admit a stream
if and only if there exists a scheduling policy able to meet all deadlines, and to ensure
that all received packets of admitted streams meet their deadlines. Objective (ii) en-
tails to minimize the number of communication rounds over any given time interval,

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

A:8 M. Zimmerling et al.

time

current
round

prospective
next rounds

pending packets when
the next round starts

available slots
in the next round

Fig. 2. Illustration of the interrelated
problems we need to address in Blink.

22 3 4 B 1 31

rounds

time

…

0 1 2

slots

1

allocated slot free slot

ti ti + 1

…
… B4

i

Fig. 3. Discrete-time model of Blink. Each round is of unit length
and comprises B data slots. Here, the i-th round has three allo-
cated data slots, starts at time ti, and ends at time ti + 1.

because each round incurs the energy overhead of distributing twice the schedule, no
matter how many of the B available data slots are actually used.

Second, the adaptive scheduling policy must incur a small runtime overhead as per
challenge E. To allow for a changeable stream set, the scheduler should execute online
at the end of every round, so new stream requests are promptly accounted for. However,
as shown in Fig. 1 (B), the longer it takes to compute the schedule, the fewer data slots
fit within the fixed round duration, thus reducing the available bandwidth. Therefore,
the scheduler needs to execute as fast as possible under severe resource constraints.

Translating these issues into a concrete protocol operation poses three interrelated
problems we must address in the design of Blink:

(1) Start of round computation. As shown in Fig. 2 (top), at the end of a round we must
decide when the next round starts. This can happen between the end of the cur-
rent round and the maximum time allowed between rounds. Our decision should
meet all deadlines while minimizing energy consumption. Intuitively, the earlier
the next round starts, the more “chances” there are for packets to meet their dead-
lines, but the earlier a round starts, the more energy is consumed in the long run.

(2) Slot allocation. Once the start time of the next round is computed, given a number
of packets waiting to be transmitted, we must decide which and how many of these
packets are sent in the round, as shown in Fig. 2 (bottom). If there are more packets
than the B available slots, we need to prioritize packets of different streams.

(3) Admission control. Changing application requirements imply that the stream set
changes over time. We must therefore check whether adding a new stream prevents
meeting the deadlines of the existing ones. This amounts to ensuring that the new
stream set does not demand a bandwidth higher than what Blink can provide. We
call this admission control, and say a stream set is schedulable if our solutions to
(1) and (2) ensure that all received packets of all streams meet their deadlines.

The next section details our solutions to these problems. Like other time-triggered
schemes [CAN 2004], Blink does not use end-to-end packet retransmissions, because
Glossy keeps packet loss below 0.1 %, and CPS controllers can be designed to tolerate a
small fraction of packet loss without sacrificing control stability or performance. These
approaches often assume that packet losses follow a Bernoulli process [Sinopoli et al.
2004]. Since this assumption is indeed highly valid in Glossy [Zimmerling et al. 2013],
we choose to trade a marginal improvement in deadline success ratio for a higher band-
width and for supporting streams with shorter deadlines in Blink. Please note that due
to the unpredictability involved when nodes contend for submitting stream requests,
Blink can only give real-time guarantees after a request has passed admission control.

5. DESIGN AND IMPLEMENTATION OF BLINK

In the following, Secs. 5.1 and 5.2 discuss the slot allocation and the start of round
computation in Blink, respectively, assuming the set of streams is schedulable. Sec. 5.3
describes how Blink ensures this condition through admission control.

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

Adaptive Real-time Communication for Wireless Cyber-physical Systems A:9

Throughout the discussion, we consider the discrete-time model illustrated in Fig. 3.
Each round is atomic and of unit length. This choice stems from the time-critical radio
interrupts Glossy must serve during a flood: interleaving other processing may cause
interference, so other events such as packet deliveries are only served before or after a
round [Ferrari et al. 2012]. As a result, the timeline of possible start times of a round is
also discrete. Between rounds (e.g., between t = 1 and ti in Fig. 3) nodes may perform
any other application processing. Despite the specific discrete-time model, the concepts
described below enjoy general validity, as explained in Online Appendix A available in
the ACM Digital Library or in a companion technical report [Zimmerling et al. 2016].

5.1. Slot Allocation

Let us assume that the start time of the next round has been computed. We now need to
determine the schedule for that next round, which raises two basic questions. With B
slots available per round, how many pending packets should we allocate? How should
we prioritize packets of different streams if the number of pending packets exceeds B?

Algorithms. To answer the first question, we note that delaying a packet by not send-
ing it in an otherwise empty slot does not lead to improved schedulability or reduced
energy overhead. In the following round, the number of pending packets is the same
or larger, which can only worsen the overall schedulability. Further, as explained in
Sec. 3, the energy overhead of Blink (on top of serving application data) is determined
by the number of rounds over a given interval of time, not by the number of allocated
data slots. Thus, we allocate as many pending packets as possible in every round.

As noted in Sec. 4, Blink allows us to treat the network as a single communication
resource and hence to resort to uniprocessor scheduling policies to answer the second
question. Among these, earliest deadline first (EDF) is provably realtime-optimal [Sha
et al. 2004]: if a set of streams can be scheduled such that all deadlines are met, then
using EDF also meets all deadlines. This holds also for stream sets demanding the full
bandwidth, whereas other well-known policies (e.g., rate-monotonic) may fail to meet
all deadlines at lower bandwidth demands [Liu and Layland 1973]. In other words,
EDF efficiently exploits the limited communication resources. Finally, EDF can readily
cope with runtime changes in the stream sets [Sha et al. 2004] as the packet priorities
(i.e., absolute deadlines) are dynamically computed while the system executes. This is
crucial to adapt to varying application requirements or crashing source nodes.

Using EDF scheduling in Blink means allocating the next free data slot in a round
to the packet whose deadline is closest to the start time of the round, until the round is
full or there are no more pending packets ready to be sent. This simple logic, however,
bears a significant run-time overhead [Buttazzo 2005]. To implement EDF efficiently,
one should maintain the set of streams in order of increasing absolute deadline, while
the streams’ absolute deadlines are being updated from one packet to the next as they
are allocated to slots in a round. This runtime overhead is one of the reasons why EDF
is rarely used in real systems, such as operating system kernels [Buttazzo 2005].

Design and implementation in Blink. Enabling EDF-based real-time scheduling
on resource-constrained platforms is not a trivial problem. A data structure is needed
that allows to efficiently implement the operations required when manipulating the
stream set Λ during EDF-based slot allocation. Table I summarizes these operations.

Besides operations to add or remove streams, EDF requires a FINDMIN() operation
to retrieve the stream with the earliest absolute deadline, which is to be served next.
For this operation to be efficient, the streams should be maintained in order of increas-
ing absolute deadline. A priority queue, where streams with smaller absolute deadline
are given higher priority, is thus a natural candidate. Moreover, after serving stream s,
its absolute deadline must be set to the deadline of its next packet. Hence, we require

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

A:10 M. Zimmerling et al.

Table I. Operations on stream set required for EDF scheduling. The key of a streams is its absolute deadline.

Operation Description

INSERT(s) Insert stream s into the stream set
DELETE(s) Delete stream s from the stream set
DECREASEKEY(s, δ) Propagate an increment of δ in the key of stream s in the stream set
FINDMIN() Return a reference to the stream with the minimum key in the stream set
FIRST(t) Position traverser t at the stream with the minimum key in the stream set
NEXT(t) Advance traverser t to the stream with the next larger key in the stream set

Stream si

t

Stream sj

time

packet arrival packet deadline

Fig. 4. Example motivating EDF traversal of stream
set for efficient slot allocation.

Stream si

t

Stream sj

timedidj di+Pi

packet arrival packet deadline

Fig. 5. Illustration of upper-bounding the difference
between the absolute deadlines of any two streams.

a DECREASEKEY(s, δ) operation that propagates an increment of δ in the absolute
deadline of s in the queue, so the priority of s is decreased relative to all other streams.

These operations are supported by nearly all priority queue data structures [Brodal
2013]. In addition, because the highest-priority stream returned by FINDMIN() may
release its packet only after the start of the next round at time t, as illustrated in Fig. 4,
we require operations to perform an efficient EDF traversal of the streams while only
those with pending packets are updated. Specifically, it should be possible to position
a traverser t at the highest-priority stream using FIRST(t), and then to visit streams
in EDF-order through repeated NEXT(t) calls. During the EDF traversal, the priority
of only those streams t with a pending packet is updated using DECREASEKEY(t, δ).

Finding a data structure that can support all required operations efficiently in time
and memory is challenging. Only a few of the widely-used priority queue data struc-
tures, from the binary heap to the red-black tree used within the Linux scheduler [Mol-
nar 2015], efficiently support an in-order traversal during which the data structure is
possibly altered, which we need for EDF scheduling. In fact, updating a stream us-
ing DECREASEKEY(t, δ) likely changes the relative ordering of streams, which trig-
gers structural changes inside the data structure. Thus, any kind of runtime stack or
pointer used for in-order traversal becomes invalid [Pfaff 2004] and the traversal must
start anew. This approach is highly inefficient for any reasonable number of streams.

We find, however, that our scheduling problem has the following characteristic prop-
erties that allow us to use a simple, yet highly efficient priority queue data structure:

(1) A stream’s absolute deadline, called the key of a stream, is a non-negative integer.
(2) The key increases monotonically as it is being updated from one packet to the next.
(3) The range of keys in the set of streams at any one time is bounded, as stated below.

THEOREM 1. Let P be an upper bound on the period Pi of every stream si ∈ Λ. Then,
there are never more than 2P − 1 distinct keys in the stream set Λ at any one time.

PROOF. Let di be the absolute deadline of stream si (i.e., the deadline of si’s current
packet) at some point in time. Stream si’s relative deadline Di can be shorter than its
period Pi , so its current packet may not have arrived yet. To determine the maximum
number of distinct keys (i.e., absolute deadlines) in the set of streams Λ at any one
time, we must upper-bound the difference between the absolute deadlines of any two
streams, that is, maximize ∆ij = di − dj for any two streams si, sj ∈ Λ.

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

Adaptive Real-time Communication for Wireless Cyber-physical Systems A:11

0
1

2

3

4

7
6

5

14
15

8

9

10

11

12

13

mod 16

s2: 34

s1: 36

s4: 37

s3: 41

s7: 34

s6: 44

s5: 30

L

Fig. 6. Bucket queue implemented as a circular array of 2P̄ doubly-linked lists. In this example, the largest

period of any stream P is 8, so the queue consists of 16 buckets. The queue contains seven streams ordered by
increasing key. FINDMIN() sets L to 14 because this is the bucket containing the stream with the smallest key.

The value of ∆ij is larger when packets with later deadlines are sent before packets
with earlier deadlines, due to the order of packet arrival. Let us consider the example
in Fig. 5. Assume at time t the current packet of stream si with deadline di is sent,
while the current packet of stream sj with an earlier deadline dj < di is yet to be sent.
This can happen if and only if si’s packet arrives strictly before sj ’s packet; that is, at
time t, sj ’s packet is yet to arrive. After sending the packet of stream si, its absolute
deadline becomes di + Pi , while the absolute deadline of stream sj is still dj . Thus, we
have ∆ij = di + Pi − dj . What is the upper bound on ∆ij ? As si’s packet has arrived by
time t, we have di ≤ t + Pi . Also, as sj ’s packet has not yet arrived by time t, we have
dj > t. With these two conditions, we can establish the following bound

∆ij = di + Pi − dj < t+ Pi + Pi − t ≤ 2P, (1)

where P is an upper bound on the period of any stream. Because all absolute deadlines
are integers, the strict inequality in (1) implies that ∆ij is at most 2P − 1.

Given the properties above, we may consider a monotone integer priority queue. Sim-
ilar reasonings apply, for example, to discrete event simulation [Brown 1988]. To the
best of our knowledge, however, these have not been exploited for real-time schedul-
ing mainly because the three properties stated above and the implications on the data
structure are quite distinctive. Specifically, we use a one-level bucket queue [Dial 1969]
implemented as a circular array B of 2P doubly-linked lists, as shown in Fig. 6, where
P is an upper bound on the period of any stream. Stream si with key di is stored in
B[di mod 2P]. Since a stream’s relative deadline Di is no longer than its period Pi , all
keys in the bucket queue are always in the range [dmin , dmin + 2P − 1], where dmin is
the smallest key currently in the queue. Thus, all streams in a bucket have the same
key. For example, the keys of the streams in the bucket queue of Fig. 6 are in the range
[30, 45], because dmin = 30 and P = 8, and the two streams in B[2] have key 34.

INSERT(s), DELETE(s), and DECREASEKEY(s, δ) take constant time because buckets
are implemented as doubly-linked lists. INSERT(s) inserts a stream s with key d into
B[d mod 2P]. DELETE(s) removes s from the list containing it. DECREASEKEY(s, δ)
first performs a DELETE(s) and then re-inserts stream s into B[(d + δ) mod 2P].

We implement FINDMIN() using an index L, initially set to 0. If B[L] is empty, FIND-
MIN() increments L (modulo 2P) until it finds the first non-empty bucket; otherwise, it
returns the first stream on the list in B[L]. FIRST(t) works alike, using another index I.
NEXT(t) moves to the next stream on the list in B[I]. At the end of the list, NEXT(t)
increments I (modulo 2P) until it finds the next non-empty bucket. Unlike the vast

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

A:12 M. Zimmerling et al.

GS

3 3 3

4 4

5

CS

0,5,43

2,7,54

1,15,125

0 1413121110987654321time

release x packets
x

deadline allocated slot free slot

LS

Fig. 7. Example execution of CS, GS, and LS. CS and
GS schedule more rounds than necessary. Instead, LS

meets all deadlines while minimizing communication
energy costs (i.e., minimizing the number of rounds).

7 2119171513119

time

8 10 12 14 16 18 20

2

4

6
8

10

14

16
18
20

12

fu
tu

re
 d

em
an

d
 (

#
 s

lo
ts

) h2(t)

start time of

the third round

Fig. 8. Illustration of how LS computes the latest
possible start time of the third round in Fig. 7.

majority of priority queues, this logic enables smoothly continuing an EDF traversal
of streams despite updates. The three operations run in O(2P) worst-case time.

Our priority queue data structure underpins not just the EDF-based slot allocation,
whose pseudocode can be found in Online Appendix B, but all algorithms required for
real-time scheduling in Blink (see, for example, Algorithm 1), which would not be fea-
sible otherwise on a resource-constrained platform. Besides enabling a smooth EDF
traversal, the efficiency of our priority queue implementation stems mainly from two
aspects. First, DECREASEKEY(s, δ) is frequently used and at the same time extremely
efficient due to its constant running time. Second, the cost of searching for a non-empty
bucket amortizes: NEXT(t) needs to increment index I in the worst case 2P − 1 times,
yet the following n calls to NEXT(t) require no searching as all n streams are necessar-
ily in B[I]. As a result, Blink can handle hundreds of streams on resource-constrained
devices even when the stream set is continuously changing, as demonstrated in Sec. 6.

5.2. Start of Round Computation

We now turn to the problem of computing the start time of the next round. We use an
illustrate example with B = 5 slots per round and twelve streams with three distinct
profiles: 3〈0, 5, 4〉, 4〈2, 7, 5〉, and 5〈1, 15, 12〉. Fig. 7 shows the release times and dead-
lines of packets generated by these streams in the first 14 time units. Using the EDF-
based slot allocation described before, when should a round start to meet all deadlines
while minimizing communication energy overhead, that is, minimizing the number of
rounds? The scheduling policies we present next are all realtime-optimal; that is, if the
stream set is schedulable, they guarantee that no deadlines are missed but for packet
losses. They differ, however, in the energy required for providing this real-time service.

Algorithms. One way, called contiguous scheduling (CS), is to start a round imme-
diately after the previous one. CS offers the highest bandwidth and thus necessarily
meets all deadlines, provided the streams are schedulable. However, CS wastes energy
by scheduling more rounds than necessary. In Fig. 7, using CS, 8 out of the first 14
rounds are empty: they contain only free slots, causing unnecessary energy overhead.

Greedy scheduling (GS) improves on CS by delaying the next round until there is
at least one pending packet. GS is realtime-optimal just like CS, because it schedules
packets as soon as possible. It can also reduce the energy overhead compared with CS
in certain situations. In Fig. 7, GS results in only 6 rounds in the first 14 time units.
However, there are still 8 free slots, raising the question whether we can do even better.

The crucial observation is that GS starts the next round no matter how “urgent” it
really is. If there was still some time until the earliest deadline of all pending packets,
we could delay the next round even further. Meanwhile, we could await more packet

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

Adaptive Real-time Communication for Wireless Cyber-physical Systems A:13

arrivals and thus allocate more slots in the next round, attaining a better utilization
of individual rounds. This strategy, however, may do more harm than good: without
knowing the future bandwidth demand, we may end up deferring the next round to a
time where the number of packets that must be served over a certain interval exceeds
the number of slots available in that interval. This situation would inevitably cause
deadline misses. To prevent it, we need a way to forecast the bandwidth demand.

Lazy scheduling (LS) is precisely based on this intuition. At the core of LS is the
notion of future demand hi(t) that quantifies the number of packets that must be served
between the end of round i and some future time t. This includes all packets that have
both their release time and deadline no later than time t, and are not served until the
end of round i. This corresponds to the following expression

hi(t) =
n
∑

j=1

{

⌊(t− dj)/Pj ⌋+ 1, if dj ≤ t

0, otherwise
(2)

where Pj is the period and dj is the deadline of stream sj ’s current packet.
LS uses hi(t) to forecast the bandwidth demand and, based on this, computes the

latest possible start time of the next round that does not cause any deadline misses.
As an example, let us compute the start time of the third round t3 in Fig. 7 using LS.

(1) Compute h2(t). As illustrated in Fig. 8, h2(13) = 5 because t = 13 is the absolute
deadline of the 5〈1, 15, 12〉 streams whose packets are pending at the end of the
second round; h2(14) = h2(13) + 7 = 12, since t = 14 is the deadline of the 7 packets
released by the other streams at t = 9 and t = 10; and so on.

(2) Determine a set of latest possible start times {ti3}. For instance, h2(13) = 5 packets
must be served no later than time 13. With B = 5 slots available in each round,
serving them takes ⌈h2(13)/B⌉ = 1 round. Thus, we get a first latest possible start
time t13 = 13−1 = 12, indicated in Fig. 8 by casting a shadow on the time axis. Next,
h2(14) = 12 packets must be served before time 14, which takes ⌈h2(14)/B⌉ = 3
rounds. So, a second latest possible start time of the third round is t23 = 14−3 = 11.
The same reasoning repeats, identifying more latest possible start times.

(3) Take the minimum latest possible start time as t3. Based on the reasoning in (2),
delaying the start of the third round beyond the beginning of the shady area at
min{ti3} = 11 in Fig. 8 would cause deadline misses. Indeed, if we had served only
h2(13) = 5 packets between times 12 and 13, we would be left with h2(14)−h2(13) =
7 packets to serve between times 13 and 14, but these do not fit into B = 5 slots.
Alternatively, an earlier start time could, in the long run, lead to more rounds than
needed, sacrificing energy efficiency. Thus, the third round should start at t3 = 11.

The example clarifies the intuition behind LS. Two questions remain. Which times t
do we need to inspect in steps (1) and (2)? How far do we need to look into the future?

To answer the first question, we note that the future demand hi(t) is a step function:
its value increases only at times of absolute deadlines (see Fig. 8). We can therefore
skip all intervals where hi(t) is constant. The answer to the second question involves
two observations. First, as described in Sec. 3, we can delay the next round by at most
Tmax after the previous round because Blink requires to update the nodes’ synchroniza-
tion state sufficiently often. To find out whether we can delay the next round by Tmax ,
we need to evaluate hi(t) for at least Tmax time units after the end of the previous round
at ti +1. Second, we need to consider any demand arising after t = ti +1+Tmax , which
could possibly prevent us from delaying the next round by Tmax . Thus, we must evalu-
ate hi(t) for another Tb time units beyond t = ti+1+Tmax , where Tb is the synchronous
busy period [Spuri 1996]. Informally, Tb is the minimum time needed to serve the max-

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

A:14 M. Zimmerling et al.

imum demand a stream set may possibly create.2 By looking up to t = ti+1+Tmax +Tb

into the future, we ultimately ensure that all deadlines are met.
We now formalize how LS computes the latest possible start time of the next round.

THEOREM 2. Let Tb be the synchronous busy period of the stream set Λ, Tmax the
largest time by which the next round can be delayed after the previous one, and B the
number of data slots available in a round. Using LS, the start time of each round ti for
all i = 0, 1, . . . is given by

ti+1 = min(ti + Tmax , Ti), (3)

where t0 = −1 and Ti is given by

Ti = min
t∈Di

(

t−

⌈

hi(t)

B

⌉)

. (4)

Di denotes the set of deadlines in the time interval [ti + 1, ti + Tmax + Tb + 1] of packets
that are unsent until the end of round i, and hi(t) is the future demand defined in (2).

PROOF. A schedule S specifies for each round i its start time ti and the set of packets
to be transmitted in the round. Let SLS denote the schedule computed by LS. We prove
this theorem by contradiction; that is, we show that there cannot be any schedule S

′ 6=
S
LS such that S′ is realtime-optimal and some round starts later in S

′ than in S
LS. If we

show this, it follows that amongst all realtime-optimal schedules, SLS delays the start
of each round the most and thus minimizes the communication energy consumption.

Let tLS

i and t′i denote the start times of the i-th round in S
LS and S

′, and let hLS

i and
h′
i denote the future demands after the end of the i-th round in S

LS and S
′, respectively.

Assume some round in S
′ starts later than in S

LS. Let the m-th round be the first
such round, that is, m = min{i | t′i > tLS

i }. In S
LS, the m-th round starts at tLS

m since,
according to Theorem 2, at least one of two conditions holds:

(1) tLS
m − tLS

m−1 = Tmax , where Tmax is the largest interval between the start of consec-
utive rounds supported by the LWB communication support [Ferrari et al. 2012],

(2) hLS
m−1(t

∗) > B(t∗ − tLS
m − 1) for some time t∗ > tLS

m .

Assume condition (1) holds. Then, it follows from the definition of m that t′m−t′m−1 >

tLS
m − tLS

m−1 = Tmax . This violates the requirement that the time between the start of
any two consecutive rounds in S

′ must not exceed Tmax .
Assume condition (2) holds. Then, the interval [tLS

m , t∗] is a busy period in S
LS, so the

number of packets sent in this interval, denoted ηLS(tLS
m , t∗), is lower-bounded as

ηLS(tLS

m , t∗) > B(t∗ − tLS

m − 1). (5)

On the other hand, since t′m > tLS
m due to the definition of m, the number of packets

transmitted in S
′ in the interval [t′m, t∗], denoted η′(t′m, t∗), is upper-bounded

η′(t′m, t∗) ≤ B(t∗ − t′m) ≤ B(t∗ − tLS

m − 1). (6)

From (5) and (6) follows a strict inequality

ηLS(tLS

m , t∗) > η′(t′m, t∗). (7)

We also know that ηLS(0, tLS
m) ≥ η′(0, t′m), because each round 1, 2, . . . ,m − 1 starts no

earlier in S
LS than in S

′, and in S
LS as many pending packets as possible are sent in

2The maximum demand arises when all streams release their packet at the same time. CS essentially serves
this demand “as fast as possible.” The synchronous busy period Tb is then the time between the simultaneous
arrival of packets from all streams and the first idle time where no packet is pending under CS scheduling.

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

Adaptive Real-time Communication for Wireless Cyber-physical Systems A:15

each round. Combining this with (7), we have

ηLS(0, t∗) > η′(0, t∗). (8)

Thus, SLS tightly meets all deadlines at time t∗, while transmitting more packets than
S
′. As S

LS prioritizes packets using EDF, which is realtime-optimal [Sha et al. 2004],
S
′ necessarily misses a deadline at or before time t∗. This contradicts the assumption

that S
′ is realtime-optimal. Thus, for either condition that impacts the choice of tLS

m ,
we have shown that the assumptions on S

′ are contradicted.

The following main result states that LS meets the two objectives from Sec. 4.

THEOREM 3. The LS policy is real-time optimal and minimizes the communication
energy consumption within the limits of the underlying LWB communication support.

PROOF. Due to time synchronization constraints imposed by LWB, the start of the
next round at time ti+1 can be deferred by at most Tmax after the start of the previous
round at time ti. This implies the first component of the min-operation in (3).

We now show that the second component of the min-operation in (3) ensures that
all packets meet their deadlines. The number of packets that must be sent between
the end of round i and some time t ≥ ti + 1 is given by the future demand hi(t). The
available bandwidth in the interval [ti+1, t] is B(t − ti+1), where B is the number of
slots available per round. To ensure that all packets meet their deadlines, the future
demand hi(t) must not exceed the available bandwidth for any time t ≥ ti + 1, that
is, B(t − ti+1) ≥ hi(t). Since m ≥ x if and only if m ≥ ⌈x⌉ for any integer m and real
number x, t− ti+1 ≥ ⌈hi(t)/B⌉. In particular,

ti+1 ≤ min
t≥ti+1∧hi(t)>0

(t− ⌈hi(t)/B⌉) . (9)

The min-operation in (9) is to be performed for every time t larger than ti + 1 at
which the future demand hi(t) is greater than zero. We can restrict this in two ways.

First, we need to apply the min-operation only at every time t in the interval [ti +
1, ti + Tmax + Tb + 1], where Tb is the synchronous busy period of the stream set. We
prove this by contradiction. Let for some t̂ > ti + Tmax + Tb + 1,

t̂ = argmin
t≥ti+1∧hi(t)>0

(t− ⌈hi(t)/B⌉) . (10)

Let the quantity t̂ −
⌈

hi(t̂)/B
⌉

be equal to the start time of the next round ti+1 and
strictly less than ti + Tmax ,

ti+1 = t̂−
⌈

hi(t̂)/B
⌉

< ti + Tmax . (11)

Since ⌈x⌉ = m if and only if m − 1 < x ≤ m for any integer m and real number x,
t̂− ti+1 − 1 < hi(t̂)/B. Multiplying both sides by the positive quantity B,

(t̂− ti+1 − 1)B < hi(t̂). (12)

We interpret (12) as follows. The future demand hi(t̂) exceeds the bandwidth available
in [ti+1 + 1, t̂]. This means that if one were to contiguously serve a demand as large
as hi(t̂), the required time would exceed the length of the interval [ti+1 + 1, t̂]. We can
therefore consider [ti+1+1, t̂] a busy period of length t̂−ti+1−1 > t̂−(ti+Tmax)−1 > Tb ,
because ti+1 < ti+Tmax according to (11). However, Tb is the length of the synchronous
busy period, which is by definition the longest possible busy period [Spuri 1996]. This
contradicts the supposition on the existence of t̂.

Second, we need to perform the min-operation in (9) only at times when hi(t) has
discontinuities. In fact, hi(t) is a right-continuous function with discontinuities only at

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

A:16 M. Zimmerling et al.

Algorithm 1 Compute start time of next round according to lazy scheduling (LS)

Input A bucket queue that is a deep copy of the set of streams Λ (smaller absDeadline means
higher priority), the start time of the current round ti, and the synchronous busy period Tb .

Output The start time of the next round ti+1 according to LS.
initialize futureDemand to 0 and minSlack to ∞
set s to highest-priority stream using s = FINDMIN()
t = s.absDeadline
while t ≤ ti + Tmax + Tb + 1 do

futureDemand = futureDemand + 1
s.absDeadline = s.absDeadline + s.period
update priority of s using DECREASEKEY(s, s.period)
set s to highest-priority stream using s = FINDMIN()
if s.absDeadline > t then

minSlack = min((t− ti)B − futureDemand ,minSlack)
end if
t = s.absDeadline

end while
ti+1 = ti +min(⌊minSlack/B⌋, Tmax)

times that coincide with the deadline of a packet. Thus, we can restrict the domain of
the min-operation to the set of deadlines Di in the interval [ti + 1, ti + Tmax + Tb + 1]
of packets that are unsent until the end of round i. Since (9) yields the largest possible
ti+1 in the case of equality, we obtain the second component of the min-operation in (3)

Ti = min
t∈Di

(t− ⌈hi(t)/B⌉) . (13)

Finally, because EDF is realtime-optimal [Liu and Layland 1973], the necessary con-
dition in (13) is also sufficient.

Design and implementation in Blink. The challenge to using LS is to efficiently
compute the future demand hi(t). The analytic expression for hi(t) in (2) is obtained
by applying concepts from the real-time literature [Stankovic et al. 1998]. We attempt
to compute this expression on a TelosB [Polastre et al. 2005] and observe prohibitive
running times due to many time-consuming divisions. This is generally expected on
resource-constrained platforms that lack hardware support for divisions. Nevertheless,
as we show in Sec. 6.5, the approach we describe next outperforms the analytic method
even on very powerful state-of-the-art platforms, including a 32-bit ARM Cortex-M4.

The key idea is to determine hi(t) by performing efficient operations on the priority
queue of streams rather than computing costly divisions. Algorithm 1 shows the pseu-
docode to compute the start time of the next round ti+1 according to Theorem 2. The
algorithm operates on a deep copy of the current set of streams, maintained in a bucket
queue in order of increasing absolute deadline. It fictitiously serves streams in EDF
order, as if it would allocate slots to pending packets. It uses variable futureDemand to
keep track of the number of streams served thus far and maintains variable minSlack
that ultimately determines how far we can delay the start of the next round.

By avoiding divisions and using our efficient priority queue data structure, our im-
plementation of Algorithm 1 achieves several-fold speed-ups over the analytic method.
We use the same techniques to efficiently compute the length of the synchronous busy
period Tb (see Online Appendix C) and demonstrate similar speed-ups over an existing
analytical method from the real-time literature [Stankovic et al. 1998]. Experimental
results in Sec. 6.5 indicate that these improvements in processing time are instrumen-
tal to the viability of real-time scheduling in Blink on popular low-power platforms.

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

Adaptive Real-time Communication for Wireless Cyber-physical Systems A:17

96 11010810610410210098time

9 9 9

7

release x packets
x

deadline allocated slot free slot

CS

8,4,39

0,25,27

9

Fig. 9. Example of a stream set that is not schedulable, a situation admission control aims to prevent. The
streams demand 16 slots between time 100 and time 103, but there are only 15 slots available in this interval.

5.3. Admission Control

So far we assumed the set of streams is schedulable, yet this is not always the case.
As Fig. 9 shows, for B = 5, the set of 9〈8, 4, 3〉 and 7〈0, 25, 2〉 streams is not schedulable.
The streams require altogether 16 slots in the interval between time 100 and time 103;
however, there are only 15 slots available in this interval, which causes one packet to
miss its deadline. We show next how to prevent such situations by checking prior to
the addition of a new stream whether the resulting set of streams is still schedulable.

Algorithms. As illustrated by the example above, deadlines are missed if, over some
interval, the demand exceeds the available bandwidth. As explained in Sec. 5.2, the
CS policy offers the highest possible bandwidth. Hence, admission control under all
scheduling policies in Sec. 5.2 amounts to checking if CS can meet all deadlines.

We must perform this check over an interval with highest demand. If the bandwidth
is sufficient in this extreme situation, we can safely admit the new stream. Precisely
identifying when this situation occurs is, however, non-trivial, because the streams’
different start times and periods may defer this situation until some arbitrary time. In
Fig. 9, for example, it is not until t = 100 that an interval of highest demand begins.

To tackle this problem, we deliberately create an interval of maximum demand by
pretending that all streams release a packet at t = 0. Using the concept of synchronous
busy period, we then check if CS can meet all deadlines in the interval [0, Tb]. From this
intuition follows a theorem, whose proof descends from known results [Spuri 1996].

THEOREM 4. For a set of streams Λ with arbitrary start times Si , let Λ′ be the same
set of streams except all start times are set to zero. With B data slots available in each
round, Λ is schedulable if and only if

∀t ∈ D, h0(t) ≤ t×B, (14)

where D is the set of deadlines in the interval [0, Tb] of packets released by streams in
Λ′, h0(t) is the number of packets that have both release time and deadline in [0, t], and
t×B is the bandwidth available within [0, t].

Design and implementation in Blink. Implementing Theorem 4 for admission con-
trol faces the same challenges as the start of round computation discussed in Sec. 5.2.
Even though a closed-form expression of h0(t) exists (see Online Appendix D), using
it would result in a performance hog on resource-constrained platforms due to many
costly divisions. We thus perform admission control again by performing efficient pri-
ority queue operations rather than divisions, similar to Algorithm 1. The pseudocode
of this algorithm can be found in Online Appendix D.

5.4. Scheduler Execution and Integration

At the end of a round, the algorithms for slot allocation, computation of the start of the
next round, and admission control execute as shown in Fig. 10. With a pending request

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

A:18 M. Zimmerling et al.

YesStream
request?

No

Start End

Compute
synchronous
busy period

Admission
control

Compute
start time of
next round

Slot
allocation

Fig. 10. Main steps in Blink’s real-time scheduler.

for a new stream s, the scheduler computes the (new) synchronous busy period for the
stream set Λ ∪ {s} and checks if s can be admitted. Regardless of this, the scheduler
computes the start time of the next round and then allocates slots to released packets.

In the worst case, one scheduler execution proceeds through all four steps in Fig. 10.
To keep the scheduler’s execution time under control, we limit the number of changes
to the stream set that increase the required bandwidth to one per round, so admission
control executes at most once. Conversely, we place no limit on the number of changes
to the stream set that decrease the required bandwidth, as they do not require to run
admission control. Overall, experiments in Sec. 6 show that our implementation can
schedule hundreds of streams with a wide range of realistic bandwidth demands.

To deal with the reliability issues arising in the original LWB implementation when
the time between rounds changes frequently, as explained in Sec. 3, after missing a
schedule from the host, a node wakes up at every possible time instant at which a
schedule packet could arrive. As rounds can only start at an integer multiple of the
round length, a node selectively “scans” for schedule packets at the possible beginning
and end of rounds. Compared to the strategy employed by the original LWB implemen-
tation, this approach significantly reduces both the time until a node can again partic-
ipate in the communication and the energy required to search for the next schedule.

6. EVALUATION

We evaluate Blink along four lines: (i) its adaptability to changes in the set of streams,3

(ii) its real-time service in terms of packet delivery ratio and meeting deadlines rang-
ing from 120 sec to 100 ms, also compared to the original LWB scheduler, (iii) the com-
munication energy efficiency of the different real-time scheduling policies, and (iv) the
efficiency of our bucket queue-based implementation of the optimal LS policy.

To this end, we implement Blink according to the processing shown in Fig. 10 on top
of the Contiki operating system [Contiki 2011] for the TelosB and the CC430 system-
on-chip (SoC) platforms. Both feature MSP430 MCUs. We perform experiments on the
FlockLab [Lim et al. 2013] and w-iLab.t [Bouckaert et al. 2011] testbeds with up to 94
nodes, on two other platforms featuring state-of-the-art ARM Cortex-M0/M4 cores, in a
time-accurate instruction-level emulator [Eriksson et al. 2009], and through synthetic
simulations. Our results reveal the following:

— Blink promptly adapts to dynamic changes in the set of streams (i.e., application re-
quirements) without unnecessarily increasing communication energy consumption.

— On a 94-node testbed, Blink meets all deadlines of received packets, while success-
fully delivering 99.97 % of the packets. The few packet losses can be effectively han-
dled by CPS controllers [Sinopoli et al. 2004; Zimmerling et al. 2013].

— LS reduces communication energy costs by up to 2.5× compared with CS and GS.
— In a 4-hop network with 9 sources, Blink supports 100 ms deadlines under full load.
— Simulations show that, unlike Blink, the original LWB scheduler misses on average

28–65 % of deadlines in addition to the (unavoidable) packet losses over wireless.

3We do not evaluate Blink’s adaptability to network state changes (due to interference, node mobility, etc.),
because these changes are seamlessly handled by the underlying LWB, as shown by Ferrari et al. [2012].

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

Adaptive Real-time Communication for Wireless Cyber-physical Systems A:19

0 6 12 90 96 102 108 114 120 126 132 138 144 150 156 162 168 174 180 186 192 198 204 210 216 222 228

Time (seconds)

0

25

51
#
 a

llo
c
a
te

d
 s

lo
ts

1 3 9 50 50 50 50 50 50 50 5051 51 51 51 51 51 1 51 1 51 1 51 1 51 2 51 1 51 1 51 1 51 1 51 1

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

(a) Number of allocated slots in each round, for B = 51 available slots per round.

0 6 12 90 96 102 108 114 120 126 132 138 144 150 156 162 168 174 180 186 192 198 204 210 216 222 228

Time (seconds)

0

10

20

30

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Admission control
Start of round comp.
Slot allocation

(b) Breakdown of scheduler execution time in each round.

Fig. 11. Trace of Blink scheduling streams with varying real-time requirements on FlockLab. After boot-
strapping the network, Blink uses LS to save energy, while meeting all deadlines of the changing streams.

— Our bucket queue-based implementation of the LS scheduler executes up to 4.1×
faster than a conventional LS implementation on popular MCUs.

Unfortunately, comparing Blink with other real-time protocols in a running network
is oftentimes extremely difficult, if not impossible. Considering a protocol that is un-
able to guarantee hard real-time requirements or designed only for specific traffic pat-
terns would be discriminatory. On the other hand, protocols designed for the same
kind of real-time requirements and traffic patterns as Blink usually offer no complete
open-source implementation or are incapable to run on the same hardware as Blink.
WirelessHART open-source implementations, for example, only comprise the function-
ality that runs inside the network. The scheduling process, however, executes on the
central network manager, which is sold as a black box (e.g., by Dust Networks4) with no
inside visibility or possibility of instrumentation to gather the needed measurements.

6.1. Adaptability to Changes in the Set of Streams

Blink promptly adapts to dynamic changes in the stream set without affecting existing
streams and while maintaining efficient performance. By contrast, in WirelessHART,
for example, such changes tend to be disruptive [Zhang et al. 2009], and it takes much
longer to re-gain a condition of efficient performance [Åkerberg et al. 2011b].

We use 29 TelosB nodes on FlockLab [Lim et al. 2013], with a diameter of 5 hops.
One node acts as the host running the scheduler, and three randomly chosen nodes
are destinations. The remaining 25 nodes act as sources generating 2〈0, 6, 6〉 streams
each. We let two sources eventually request and update a third and a fourth stream
with different parameters. The number of slots in a round is B = 51, leaving 100 ms to
compute the schedule at the end of a round. The length of a round is set to 1 sec.

Execution. Fig. 11a shows the number of slots allocated in each round, while Fig. 11b
shows a breakdown of the execution time of the LS scheduler in each round.

In Phase 1, the system is bootstrapping, so Blink schedules rounds contiguously to
allow all nodes to quickly time-synchronize with the host and to submit their stream
requests in the contention slot. This happens for the first time after 3 sec, as visible in
Fig. 11b from the increase in processing time for admission control and slot allocation.

4http://www.linear.com/products/smartmesh_wirelesshart

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

A:20 M. Zimmerling et al.

During the following rounds, the host gradually receives all initial stream requests
and, consequently, admission control and slot allocation take longer.

In Phase 2, because no new stream request recently arrived, Blink adapts its func-
tioning to the normal operation and starts to dynamically compute the start time of
rounds using LS. Fig. 11b shows that it takes about 10 ms to do so. In these conditions,
Blink schedules a round every 6 sec, postponing rounds until right before the packets’
deadlines, which minimizes the energy overhead of the underlying LWB.

At the start of Phase 3, a request for a new stream 〈0, 6, 3〉 arrives. Admission control
executes at t = 131 sec as visible in Fig. 11b. The new stream is admitted and accounted
for starting from t = 140 sec. Rounds are scheduled again every 6 sec and with all
B = 51 available slots allocated. Unlike existing systems, Blink accommodates a a
change in application requirements represented as a new stream without jeopardizing
the existing ones, and still maintains minimum energy overhead. In WirelessHART,
for example, changes in the stream set tend to be way more disruptive, likely affecting
existing streams [Zhang et al. 2009], and thus take much longer to accommodate. For
instance, Åkerberg et al. [2011b] report that it may take WirelessHART up to 30 min
to reconfigure the routing topology after a change in the network.

In Phase 4, another request for a stream 〈0, 6, 6〉 arrives and passes admission con-
trol. Blink allocates the first slot to the new stream at t = 170 sec. However, now there
are 52 pending packets, one more than the B = 51 available slots. Due to this, Blink
schedules the following rounds every 3 sec, with the number of allocated slots alternat-
ing between 51 and 1. This shows how Blink seamlessly copes with dynamic changes
in the stream set, which may result in drastic changes in its runtime operation.

In Phase 5, the node that requested the stream in Phase 3 extends its deadline from
3 to 6 sec. Thus, the 52 streams now all have the same deadline and period. Because 52
packets do not fit in a single round, Blink schedules a complete round with 51 allocated
slots 2 sec before the packets’ deadlines, followed by another round for the remaining
packet. This shows that even a minor change in the profile of one stream may have a
significant impact on how rounds unfold over time, which Blink effectively handles.

6.2. Packet Deadlines and Energy Consumption

We assess Blink’s ability to meet packet deadlines and the related energy costs.

Metrics and settings. We examine the performance along two key dimensions [Sai-
fullah et al. 2010]. The deadline success ratio is the fraction of packets that meet their
deadlines, indicating the level of real-time service. We compute this figure based on
sequence numbers embedded into packets and timestamps taken at both communica-
tion ends. The radio duty cycle is the fraction of time a node has the radio on, which
is widely used as a proxy for energy consumption [Gnawali et al. 2009]. This metric
indicates the energy cost of providing a certain level of real-time service. We measure
radio duty cycles in software using Contiki’s power profiler [Contiki 2011].

We run experiments with 94 TelosB nodes on the w-iLab.t testbed [Bouckaert et al.
2011]. The network has a diameter of 6 hops. We let 90 nodes act as sources, one as the
host, and 3 as destinations, mimicking a scenario with multiple controllers or multiple
actuators [Paavola and Leiviska 2010]. Each source generates two streams, hence a
total of 180 streams generate packets with a 10-byte payload. The number of slots in
a round is again B = 51, and so is the length of a round, which remains 1 sec.

We run two types of experiments. First, we set all starting times Si to zero and vary
the number of distinct periods in different runs, as in configurations combining pri-
mary and secondary control [Ogata 2001]. This way, we generate varying bandwidth
demands between 2.9% and 19.4%. Then, we set the period Pi of all streams to 2 min-
utes and vary the number of distinct starting times. This models situations where, for

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

Adaptive Real-time Communication for Wireless Cyber-physical Systems A:21

1 2 4 6 8 10

Number of distinct periods

0

2

4

6

8

10

12

A
v
e

ra
g

e
 r

a
d

io
 d

u
ty

 c
y
c
le

 (
%

)

Lazy scheduling (LS)
Greedy scheduling (GS)
Contiguous scheduling (CS)

(a) Varying number of distinct periods.

1 24 48 72 96 120

Number of distinct starting times

0

1

2

3

4

5

A
v
e

ra
g

e
 r

a
d

io
 d

u
ty

 c
y
c
le

 (
%

)

Lazy scheduling (LS)
Greedy scheduling (GS)
Contiguous scheduling (CS)

(b) Varying number of distinct starting times.

Fig. 12. Average radio duty cycle of Blink with LS, GS, and CS on the w-iLab.t testbed. Depending on the
stream set, LS achieves up to a 2.5× reduction in energy consumption compared to the GS and CS policies.

example, sources are progressively added to a running system [Paavola and Leiviska
2010]. Deadlines are equal to periods. Each run lasts for 50 min. We start measuring
after 20 minutes to give nodes enough time to submit their stream requests.

Results. The average deadline success ratio is 99.97 %, with a minimum of 99.71 % in
a single run. These figures are noteworthy in at least two respects. First, most modern
control applications, including the ones we mentioned in Sec. 2, can and do tolerate
such small fraction of packets not meeting their deadlines [Åkerberg et al. 2011a]. We
thus demonstrate that Blink can effectively operate in several of these scenarios. Sec-
ond, we verify that deadline misses are entirely due to losses over the wireless channel,
a phenomenon that is orthogonal to real-time scheduling and cannot be fully avoided.
These results thus confirm the reasoning and theoretical results from Sec. 5.

Fig. 12a shows the average radio duty cycle across all nodes. The energy costs gen-
erally increase with the number of distinct periods, since the bandwidth demand in-
creases as well. Differences among the policies stem from scheduling fewer rounds.
LS and GS perform similarly: since all streams start at the same time and because of
the choice and distribution of periods, LS has little opportunity to spare more rounds
than GS. Nonetheless, both LS and GS significantly improve over CS: they need 2.5×
less energy when all streams have the same period. The gap shrinks to 1.2× with 10
distinct periods, mostly because the energy overhead of Blink has a smaller impact on
the total energy costs at higher bandwidth demands.

Fig. 12b shows the average radio duty cycle as the number of distinct starting times
increases. The bandwidth demand is constant, so CS always consumes the same en-
ergy. This time, however, LS and GS perform differently. The energy costs of GS
increase as the number of distinct starting times increases, because packets are re-
leased at increasingly different times and thus GS schedules more rounds. LS, instead,
greatly benefits from aggregating packets over subsequent release times and sending
them in the same round. As a result, the energy costs of LS remain low and constant,
whereas the energy costs of GS approach those of CS.

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

A:22 M. Zimmerling et al.

50220 50270 50320 50370 50420

Time (ms)

1

2

3

4

6

8

15

22

28

33

N
o

d
e

 I
D

Schedule slot

Data slot

Contention slot

Sent data packet

Received data packet

Release time of data packet

Delivery time of data packets

Fig. 13. Trace of Blink running on FlockLab at full load while supporting periods and deadlines of 100 ms.
A 5 ms slot is sufficient to schedule packets in this demanding scenario, and all of them meet their deadline.

These results show that LS is most energy-efficient irrespective of the stream set,
achieving several-fold improvements over GS and CS in some settings. With a few
distinct periods and starting times, GS might also be an option in that it reduces the
packet latency by sending packets as soon as possible.

6.3. Supporting Sub-second Periods and Deadlines under Full Load

At the other end of the settings in Sec. 6.2 are, for example, interlocking and closed-
loop control. Typically, such scenarios include a small number of nodes exchanging
packets over a few hops subject to deadlines in the 10–500 ms range [Åkerberg et al.
2011a]. We show that Blink equally caters for such scenarios.

Settings. To this end, we use 10 CC430 devices across 4 hops on FlockLab [Lim et al.
2013]. To emulate a typical closed-loop control setting [Åkerberg et al. 2011a], we let 9
nodes each source a stream with Di = Pi = 100ms; one node acts as the destination.
We dimension Blink accordingly by setting the length of a round to 100 ms. Given
this time budget, we can effectively secure the B = 9 data slots necessary in every
round to serve all streams, and can afford up to 5 ms to compute the schedule. We use
FlockLab’s GPIO tracing service [Lim et al. 2013] to log the start and end of slots, and
when packets are released, sent, received, and finally delivered.

Results. Fig. 13 shows a 200 ms snapshot of the trace we obtain. We see each source
releases a packet every Pi = 100ms, which is delivered to the destination within the
stated deadline. For example, packets released at t = 50220ms are sent during the fol-
lowing sequence of data slots; the destination (node 2) receives and delivers all pack-
ets to the application shortly before time t = 50320ms. Since Di = Pi = 100ms for
all streams, Blink immediately starts the next round and allocates all slots. Thus, the
system is running at full load, that is, the streams demand 100 % of the bandwidth.

We can make two key observations: (i) using our efficient priority queue implemen-
tation, a 5 ms slot suffices to schedule packets in a demanding scenario with short
deadlines under full load; (ii) despite this, all packets consistently meet their dead-
lines. This provides evidence of Blink’s ability to reach into challenging application
scenarios, such as interlocking and closed-loop control, yet even shorter timescales
would be possible if the physical layer were to provide higher data rates.

6.4. Comparison against the Original LWB Scheduler

Our work adds real-time communication capabilities to the non real-time LWB proto-
col. To quantify the gap we fill, we compare the deadline success ratio of Blink’s LS
scheduler with that of the original LWB scheduler (OS) [Ferrari et al. 2012].

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

Adaptive Real-time Communication for Wireless Cyber-physical Systems A:23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Deadline to period ratio

0

0.2

0.4

0.6

0.8

1

D
e
a
d
lin

e
 s

u
c
c
e
s
s
 r

a
ti
o

Lazy scheduling (LS) in Blink (irrespective of max stream period)

Original scheduler (OS) in LWB (max period 10 sec 9 70.5% load)
Original scheduler (OS) in LWB (max period 40 sec 9 17.6% load)
Original scheduler (OS) in LWB (max period 120 sec 9 5.8% load)

Fig. 14. Deadline success ratio against deadline to period ratio for Blink’s LS scheduler and the original
LWB scheduler (OS) for different bandwidth demands. The realtime-optimal LS scheduler meets all dead-
lines across all settings, while OS meets on average only 35–72 % of deadlines for 5.8 % bandwidth demand.

Setting. We consider steady-state conditions, that is, the application has already is-
sued all stream requests and these have reached the host. Under these conditions, and
barring packet losses that would equally affect LS and OS, the deadline success ratio
is solely determined by the schedulers’ decisions. Thus, we synthetically simulate the
execution of LS and OS for a given schedulable stream set and across a given time
interval, examining the fraction of packets that meet their deadline.

We consider sets of 180 streams with Si = 0. For each set, we randomly generate the
periods Pi uniformly between 1 sec and a given maximum (10, 40, or 120 sec), yielding
average bandwidth demands of 70.5 %, 17.6 %, and 5.8 %. Deadlines are set to Di =
⌈ρPi⌉, where 0 < ρ ≤ 1 is the deadline to period ratio determining the tightness of
deadlines compared to periods. For a given maximum period, we generate 100 different
stream sets with random periods, and for each set we simulate LS and OS for varying
ρ. We report deadline success ratios after simulating the execution for 10 min.

Results. Fig. 14 plots average and standard deviation of deadline success ratio for LS
and OS against ρ for different bandwidth demands. LS meets 100 % of deadlines across
the board, as we design it to be realtime-optimal. OS, however, meets on average only
35–72 % of deadlines for 5.8 % bandwidth demand. This is because OS is oblivious of
deadlines in its scheduling decisions: it uses a fixed round period chosen as long as
possible only based on the periods to save energy, while providing just enough band-
width to transmit all packets [Ferrari et al. 2012]. This also explains why OS misses
more deadlines for smaller ρ: the shorter the streams’ deadlines compared to their pe-
riods, the less effective are OS’s scheduling decisions in terms of meeting deadlines.
For higher bandwidth demands, OS needs to schedule more rounds to provide enough
bandwidth, which has the (unintentional) side benefit that OS misses fewer deadlines.

6.5. Scheduler Execution Time

We look at the efficiency of our bucket queue-based LS implementation in Blink. The
scheduler’s execution time is critical as it affects the available bandwidth (see Sec. 4).

Method. In the worst case, a single scheduler execution must proceed through all four
steps in Fig. 10. A careful analysis of the relevant algorithms reveals that the execution
time of LS increases with the number of streams n, the largest possible period of any
stream P, the bandwidth demand of the streams, and the synchronous busy period Tb .

Precisely quantifying how the combination of these factors determines the running
time of LS is non-trivial. We opt for an empirical approach that confidently approxi-
mates the worst case. As described in more detail in Online Appendix E, we use 200
streams—the maximum that fits into the 10 kB of RAM on a TelosB with our Blink
prototype—and determine for a given bandwidth demand stream profiles with periods

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

A:24 M. Zimmerling et al.

0 10 20 30 40 50 60 70 80 90 100

Bandwidth demand (%)

0

200

400

600

800

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

 4.1x speed-up
Bucket queue based implementation
Conventional implementation

Fig. 15. Execution time of LS against bandwidth demand on a 16-bit MSP430 clocked at 4 MHz, for a bucket
queue-based implementation and a conventional one. The bucket queue-based implementation consistently
outperforms the conventional approach based on analytic computations, achieving speed-ups of up to 4.1×.

no larger than P = 255 sec such that Tb is maximum. In this way, we obtain “worst-
case” stream sets for bandwidth demands between 5 % and 95 %, in 5 % steps.

To assess the effectiveness of our bucket queue-based implementation of the algo-
rithms required in Blink, we implement as a baseline the first three steps in Fig. 10
following the conventional approach, based on analytic computations like those in (2).
This includes an implementation of the fastest analytic EDF schedulability test known
today [Zhang and Burns 2009] for admission control. We benchmark both implementa-
tions in a 2.5 h execution of Blink, where 200 streams are initially admitted one after
the other, and measure the execution time of the different steps in Fig. 10.

We test three different MCUs: a 16-bit MSP430F1611 running at 4 MHz, which rep-
resents the class of MCUs currently used to target the lowest possible energy consump-
tion in the CPS applications of Sec. 2; a 32-bit ARM Cortex-M0 clocked at 48 MHz; and
a 32-bit ARM Cortex-M4 running at 72 MHz. The ARM cores offer higher processing
power at higher energy consumption, yet they might be a viable option if some energy
overhead can be traded for better computing capabilities [Ko et al. 2012].

We use msp430-gcc v4.6.3 for the MSP430 and IAR build tools for the two ARM cores;
we choose the highest optimization level that makes the binaries still fit into program
memory. We deploy the binaries in the MSPsim time-accurate instruction-level emu-
lator [Eriksson et al. 2009] and on evaluation boards from STMicroelectronics for the
ARM cores. Execution times are measured in software with microsecond accuracy.

Results. Fig. 15 plots the total execution time of the two scheduler implementations on
the MSP430 as the bandwidth demand increases from 5 % to 95 %. The time increases
slightly in the beginning, but ramps up severely for the conventional implementation
as the bandwidth demand exceeds 65 %. This is due to an increase in the times needed
for synchronous busy period computation, admission control, and start of round com-
putation, whereas the time needed for slot allocation remains almost constant.

Our bucket queue-based implementation consistently outperforms the conventional
one, culminating in a 4.1× speed-up at 95 % bandwidth demand. For this demand,
the reduced execution time (182 ms vs. 756 ms) means there is space for 44 instead
of only 3 data slots per round. Fictitiously simulating the system’s evolution using an
efficient bucket queue implementation as we do, rather than explicitly performing ana-
lytic computations, is thus instrumental to the viability of realtime-optimal scheduling
using LS on this class of devices. At the same time, LS ensures minimal communica-
tion energy consumption within the limits of the underlying LWB.

Despite approximating the worst-case execution time of LS, the stream sets above
are not often seen in low-power applications. Our review in Sec. 2 indicates that the
typical demands would rarely exceed 20 % of the maximum available bandwidth. Un-
der this regime, we measure execution times below 43 ms with the bucket queue-based

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

Adaptive Real-time Communication for Wireless Cyber-physical Systems A:25

implementation: well below the upper bound of 100 ms in our Blink prototype. Thus,
due to a 2.3× speed-up over the conventional implementation in this regime, there is
plenty of room for employing more constrained ultra-low-power platforms, or for con-
siderably scaling up the number of streams with more available memory.

These observations also hold for the ARM cores. As expected, the conventional im-
plementation benefits from the richer instruction sets, in particular on the Cortex-M4,
which features SIMD instructions and a hardware divide. Therefore, we consistently
measure scheduler execution times below 30 ms. Nevertheless, our bucket queue-based
implementation achieves speed-ups of 1.6–2× on both cores for realistic bandwidth de-
mands of up to 20 %. This is mostly because using the bucket queues, the next time t
that the loop in Algorithm 1 should examine is readily available due to the EDF-based
ordering of streams. Instead, using the conventional approach, the next time t must be
explicitly computed, which costs as much as computing hi(t) via (2).

We therefore demonstrate that a bucket queue-based implementation of LS is bene-
ficial even on less constrained state-of-the-art platforms. In general, faster processing
may either allow one to increase the bandwidth by reducing the time allocated to the
scheduling step in a round, or to handle more streams with the same time allocated to
scheduler execution. By providing a further reduction of the time required for schedul-
ing, our implementation thus amplifies the benefits of faster processors.

7. CONCLUSIONS

Blink supports hard real-time communication in large wireless multi-hop networks at
low energy costs. It overcomes fundamental limitations of prior art in terms of scala-
bility and adaptivity to changes in application requirements and network state. Our
experiments demonstrate that Blink meets all deadlines of received packets, success-
fully delivers 99.97 % of packets regardless of such changes, and consumes minimum
energy within the limits of the underlying LWB communication support. This perfor-
mance applies to periods and deadlines down to 100 ms, while significantly improving
over the original LWB scheduler, which would miss a large fraction of deadlines. Our
efficient priority queue data structure enables speed-ups of up to 4.1× over a conven-
tional scheduler implementation based on analytic computations on popular low-power
microcontrollers. We thus maintain that Blink provides a key stepping stone towards
the adoption of low-power wireless technology in mission-critical CPS applications.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

ACKNOWLEDGMENTS

The authors would like to thank Reto Da Forno for his help with some of the experiments, and Jan Beutel,
Tonio Gsell, and Roman Lim for their excellent technical support.

References

Yuvraj Agarwal, Bharathan Balaji, Seemanta Dutta, Rajesh K. Gupta, and Thomas Weng. 2011. Duty-
Cycling Buildings Aggressively: The Next Frontier in HVAC Control. In Proc. of the ACM/IEEE Int.
Conf. on Information Processing in Sensor Networks (IPSN).

Johan Åkerberg, Mikael Gidlund, and Mats Björkman. 2011a. Future Research Challenges in Wireless
Sensor and Actuator Networks Targeting Industrial Automation. In Proc. of the IEEE Int. Conf. on
Industrial Informatics (INDIN).

Johan Åkerberg, Frank Reichenbach, Mikael Gidlund, and Mats Björkman. 2011b. Measurements on an
Industrial WirelessHART Network Supporting PROFIsafe: A Case Study. In Proc. of the IEEE Int.
Conf. on Emerging Technologies and Factory Automation (ETFA).

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

A:26 M. Zimmerling et al.

Nouha Baccour, Anis Koubâa, Luca Mottola, Marco Antonio Zúñiga, Habib Youssef, Carlo Alberto Boano,
and Mário Alves. 2012. Radio Link Quality Estimation in Wireless Sensor Networks: A survey. ACM
Trans. Sen. Netw. 8, 4 (2012), 1–34.

Stefan Bouckaert, Wim Vandenberghe, Bart Jooris, Ingrid Moerman, and Piet Demeester. 2011. The w-
iLab.t Testbed. In Proc. of the ICST Int. Conf. on Testbeds and Research Infrastructures for the Develop-
ment of Networks and Communities (TridentCom).

Gerth Stølting Brodal. 2013. A Survey on Priority Queues. In Space-Efficient Data Structures, Streams, and
Algorithms. Springer-Verlag, 150–163.

Randy Brown. 1988. Calendar Queues: A Fast O(1) Priority Queue Implementation for the Simulation Event
Set Problem. Commun. ACM 31, 10 (1988), 1220–1227.

Giorgio Buttazzo. 2005. Rate Monotonic vs. EDF: Judgment Day. Real-Time Systems 29, 1 (2005), 5–26.

Giorgio Buttazzo. 2011. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Ap-
plications. Vol. 24. Springer Science & Business Media.

CAN. 2004. ISO 11898-4:2004–Road vehicles–Controller area network (CAN)–Part 4: Time-triggered com-
munication. (2004).

Octav Chipara, Chenyang Lu, Thomas C. Bailey, and Gruia-Catalin Roman. 2010. Reliable Clinical Moni-
toring using Wireless Sensor Networks: Experiences in a Step-down Hospital Unit. In Proc. of the ACM
Conf. on Embedded Networked Sensor Systems (SenSys).

Octav Chipara, Chenyang Lu, and Gruia-Catalin Roman. 2013. Real-time Query Scheduling for Wireless
Sensor Networks. IEEE Trans. Comput. 62, 9 (2013).

Octav Chipara, Chengjie Wu, Chenyang Lu, and William Griswold. 2011. Interference-Aware Real-Time
Flow Scheduling for Wireless Sensor Networks. In Proc. of the Conf. on Real-Time Systems (ECRTS).

Contiki. 2011. Contiki: The Open Source OS for the Internet of Things. (2011). http://www.contiki-os.org/

Robert B. Dial. 1969. Algorithm 360: Shortest-Path Forest with Topological Ordering [H]. Commun. ACM
12, 11 (1969), 632–633.

Joakim Eriksson, Fredrik Österlind, Niclas Finne, Nicolas Tsiftes, Adam Dunkels, and Thiemo Voigt. 2009.
COOJA/MSPSim: Interoperability Testing for Wireless Sensor Networks. In Proc. of the EIA Int. Conf.
on Simulation Tools and Techniques (SIMUTools).

Federico Ferrari, Marco Zimmerling, Luca Mottola, and Lothar Thiele. 2012. Low-Power Wireless Bus. In
Proc. of the ACM Conference on Embedded Network Sensor Systems (SenSys).

Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh. 2011. Efficient Network Flooding and
Time Synchronization with Glossy. In Proc. of the ACM/IEEE Int. Conf. on Information Processing in
Sensor Networks (IPSN).

FlexRay. 2013. ISO 17458-1:2013–Road vehicles–FlexRay communications system–Part 1: General infor-
mation and use case definition. (2013).

Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and Philip Levis. 2009. Collection Tree
Protocol. In Proc. of the ACM Conference on Embedded Networked Sensor Systems (SenSys).

Yu Gu, Tian He, Mingen Lin, and Jinhui Xu. 2009. Spatiotemporal Delay Control for Low-Duty-Cycle Sensor
Networks. In Proc. of the IEEE Real-Time Systems Symposium (RTSS).

Tian He, John A. Stankovic, Chenyang Lu, and Tarek F. Abdelzaher. 2005. A Spatiotemporal Communica-
tion Protocol for Wireless Sensor Networks. IEEE Trans. Parallel Distrib. Syst. 16, 10 (2005), 995–1006.

Honeywell. 2006. Choosing the Right Industrial Wireless Network. (2006). https://www.honeywellprocess.
com/library/support/Public/Documents/WirelessWhitePaper_Nov2006.pdf

IEEE 802.15.4e TSCH. 2012. 802.15.4e-2012–IEEE Standard for local and metropolitan area networks–Part
15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC sublayer. (2012).

ISA100. 2009. Wireless Compliance Institute. (2009).

Vikram Kanodia, Chengzhi Li, Ashutosh Sabharwal, Bahareh Sadeghi, and Edward Knightly. 2001. Dis-
tributed Multi-hop Scheduling and Medium Access with Delay and Throughput Constraints. In Proc. of
the ACM Int. Conf. on Mobile Computing and Networking (MobiCom).

JeongGil Ko and others. 2012. Low Power or High Performance? A Tradeoff Whose Time Has Come (and
Nearly Gone). In Proc. of the European Conf. on Wireless Sensor Networks (EWSN).

Krijn Leentvaar and Jan H. Flint. 1976. The Capture Effect in FM Receivers. IEEE Trans. Commun. 24, 5
(1976), 531–539.

Roman Lim, Federico Ferrari, Marco Zimmerling, Christoph Walser, Philipp Sommer, and Jan Beutel. 2013.
FlockLab: A Testbed for Distributed, Synchronized Tracing and Profiling of Wireless Embedded Sys-
tems. In Proc. of the ACM/IEEE Int. Conf. on Information Processing in Sensor Networks (IPSN).

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

Adaptive Real-time Communication for Wireless Cyber-physical Systems A:27

Chung Laung Liu and James W. Layland. 1973. Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment. J. ACM 20, 1 (1973), 46–61.

Ke Liu, Nael Abu-Ghazaleh, and K-D Kang. 2006. JiTS: Just-in-time scheduling for real-time sensor data
dissemination. In Proc. of the Int. Conf. on Pervasive Computing and Communications (PERCOM).

Chenyang Lu, Brian M. Blum, Tarek F. Abdelzaher, John A. Stankovic, and Tian He. 2002. RAP: A Real-
Time Communication Architecture for Large-Scale Wireless Sensor Networks. In Proc. of the IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS).

Ingo Molnar. 2015. The Linux Completely Fair Scheduler (CFS). (2015). https://www.kernel.org/doc/
Documentation/scheduler/sched-design-CFS.txt

Luca Mottola, Mattia Moretta, Kamin Whitehouse, and Carlo Ghezzi. 2014. Team-level Programming of
Drone Sensor Networks. In Proc. of the ACM Conf. on Embedded Network Sensor Systems (SenSys).

S. M. Shahriar Nirjon, John A. Stankovic, and Kamin Whitehouse. 2010. IAA: Interference Aware Anticipa-
tory Algorithm for Scheduling and Routing Periodic Real-time Streams in Wireless Sensor Networks.
In Proc. of the IEEE Int. Conf. on Networked Sensing Systems (INSS).

Tony O’Donovan and others. 2013. The GINSENG System for Wireless Monitoring and Control: Design and
Deployment Experiences. ACM Trans. Sen. Netw 10, 1 (2013), 1–40.

Katsuhiko Ogata. 2001. Modern Control Engineering (4th ed.). Prentice Hall.

M. Paavola and K. Leiviska. 2010. Wireless Sensor Networks in Industrial Automation. Springer-Verlag.

Ben Pfaff. 2004. An Introduction to Binary Search Trees and Balanced Trees. (2004). http://adtinfo.org/
libavl.html/

Joseph Polastre, Robert Szewczyk, and David Culler. 2005. Telos: Enabling Ultra-Low Power Wireless Re-
search. In Proc. of the ACM/IEEE Int. Conf. on Information Processing in Sensor Networks (IPSN).

Abusayeed Saifullah, You Xu, Chenyang Lu, and Yixin Chen. 2010. Real-Time Scheduling for WirelessHART
Networks. In Proc. of the IEEE Real-Time Systems Symposium (RTSS).

Lui Sha, Tarek F. Abdelzaher, Karl-Erik Årzén, Anton Cervin, Theodore Baker, Alan Burns, Giorgio But-
tazzo, Marco Caccamo, John Lehoczky, and Aloysius K. Mok. 2004. Real Time Scheduling Theory: A
Historical Perspective. Real-Time Systems 28, 2-3 (2004), 101–155.

Bruno Sinopoli, Luca Schenato, Massimo Franceschetti, Kameshwar Poolla, Michael I. Jordan, and
Shankar S. Sastry. 2004. Kalman Filtering with Intermittent Observations. IEEE Trans. Automat. Con-
trol 49, 9 (2004), 1453–1464.

Marco Spuri. 1996. Analysis of Deadline Scheduled Real-Time Systems. Technical Report 2772. INRIA.

Kannan Srinivasan, Prabal Dutta, Arsalan Tavakoli, and Philip Levis. 2010. An Empirical Study of Low-
power Wireless. ACM Trans. Sen. Netw. 6, 2 (2010), 1–49.

John A. Stankovic, Tarek F. Abdelzaher, Chenyang Lu, Lui Sha, and Jennifer C. Hou. 2003. Real-Time
Communication and Coordination in Embedded Sensor Networks. Proc. IEEE 91, 7 (2003), 1002–1022.

John A. Stankovic, Insup Lee, Aloysius Mok, and Raj Rajkumar. 2005. Opportunities and Obligations for
Physical Computing Systems. IEEE Computer 38, 11 (2005), 23–31.

John A. Stankovic, Krithi Ramamritham, and Marco Spuri. 1998. Deadline Scheduling for Real-Time Sys-
tems: EDF and Related Algorithms. Kluwer Academic Publishers.

Petcharat Suriyachai, James Brown, and Utz Roedig. 2010. Time-Critical Data Delivery in Wireless Sensor
Networks. In Proc. of the Int. Conf. on Distributed Computing in Sensor Systems (DCOSS).

WirelessHART. 2007. WirelessHART. (2007). http://en.hartcomm.org/main_article/wirelesshart.html

Feng Xia, Yu-Chu Tian, Yanjun Li, and Youxian Sung. 2007. Wireless Sensor/Actuator Network Design for
Mobile Control Applications. Sensors 7, 10 (2007), 2157–2173.

Fengxiang Zhang and Alan Burns. 2009. Schedulability Analysis for Real-Time Systems with EDF Schedul-
ing. IEEE Trans. Comput. 58, 9 (2009), 1250–1258.

Haibo Zhang, Pablo Soldati, and Mikael Johansson. 2009. Optimal Link Scheduling and Channel Assign-
ment for Convergecast in Linear WirelessHART Networks. In Proc. of the Int. Symp. on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOPT).

Marco Zimmerling, Federico Ferrari, Luca Mottola, and Lothar Thiele. 2013. On Modeling Low-power Wire-
less Protocols Based On Synchronous Packet Transmissions. In Proc. of the IEEE Int. Symp. on Model-
ing, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS).

Marco Zimmerling, Luca Mottola, Pratyush Kumar, Federico Ferrari, and Lothar Thiele. 2016. Adaptive
Real-time Communication for Wireless Cyber-physical Systems. Technical Report. ETH Zurich. ftp:
//ftp.tik.ee.ethz.ch/pub/publications/TIK-Report-356.pdf

Received March 2016; revised September 2016; accepted October 2016

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

Online Appendix to:
Adaptive Real-time Communication
for Wireless Cyber-physical Systems

MARCO ZIMMERLING, TU Dresden

LUCA MOTTOLA, Politecnico di Milano and SICS Swedish ICT

PRATYUSH KUMAR, FEDERICO FERRARI, and LOTHAR THIELE, ETH Zurich

A. VALIDITY OF ALGORITHMS

Throughout Sec. 5, we consider a discrete time model in which (i) each round is atomic
and of unit length, and (ii) each round starts at an integer multiple of the unit length
of a round, as illustrated in Fig. 3.

The reasoning behind (i) is that the single MCU on today’s low-power wireless plat-
forms is responsible for both application processing and interacting with the radio (e.g.,
to transfer a packet to the radio’s transmit buffer and start a transmission). These ra-
dio interactions are time-critical and occur frequently during a Glossy flood [Ferrari
et al. 2012]. Because each slot in a round consists of a Glossy flood, the MCU essen-
tially has no time for application processing during a round. As a result, the application
must release packets before a round starts and can only handle received packets after
a round. We therefore consider rounds atomic. (ii) is beneficial in a practical Blink im-
plementation. For example, it allows a node that got out-of-sync to selectively turn on
the radio in order to receive the next schedule transmitted by the host (and thereby
synchronize again) rather than keeping the radio on all the time, which consumes
more energy but is unavoidable if rounds can start at arbitrary times. Blink exploits
this opportunity, as mentioned in Sec. 5.4.

Although the presentation in Sec. 5 is based on this discrete-time model, our analysis
and algorithms are also valid for streams with start times Si , periods Pi , and deadlines
Di that are not integer multiples of the unit length of a round. For example, fractional
packet release times are simply postponed to the next discrete time (by taking the
ceiling) and fractional packet deadlines are preponed to the previous discrete time
(by taking the floor). Thus, the atomicity of rounds does not prevent any stream from
meeting its deadlines. This is essential to the validity of our EDF-based scheduling
policies in that ”preemptions” in the execution of the underlying resource (i.e., the
entire network which we abstract as a single communication resource that runs on a
single clock) can only occur at discrete times.

B. COMPUTATION OF SLOT ALLOCATION

Algorithm 2 shows the pseudocode to allocate as many pending packets as possible to
the B available slots in the next round. The algorithm operates on the current set of
streams, maintained in a bucket queue in order of increasing absolute deadline. Start-
ing from the stream with the smallest (earliest) absolute deadline, it visits streams in
EDF order through repeated NEXT(t) calls. Whenever it sees a stream t with a pending
packet, it allocates a slot to stream t and updates its priority in the queue using DE-
CREASEKEY(t, t.period). The algorithm stops when all B available slots are allocated,
or when it sees a stream with an absolute deadline larger than the horizon.

This second termination criterion using the horizon is needed as there may be less
than B pending packets by the time the next round starts. Algorithm 2 determines the

c© 2016 Copyright held by the owner/author(s). 2378-962X/2016/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/3012005

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

App–2 M. Zimmerling et al.

Algorithm 2 EDF-based slot allocation

Input A bucket queue of the current set of streams Λ (smaller absDeadline means higher prior-
ity), the start time of the next round ti+1, the upper bound on any stream’s period P, and the
number of data slots available in a round B.

Output Allocation of packets that are pending by time ti+1 in EDF order to the available slots.
initialize slot counter c to 0
position traverser t at highest-priority stream using FIRST(t)
horizon = t .absDeadline + P − 1
while (c < B) and (t .absDeadline ≤ horizon) do

if t .releaseTime ≤ ti+1 then
allocate a slot to stream t and set c = c+ 1
t .releaseTime = t .releaseTime + t .period
t .absDeadline = t .absDeadline + t .period
update t’s priority using DECREASEKEY(t, t.period)

end if
advance traverser t to next stream in EDF-order using NEXT(t)

end while

at most P

t
i+1

Stream s
i

time horizon

d
min

d
i

packet arrival packet deadline

Fig. 16. Illustration of the second termination criterion in Algorithm 2. Any stream si with an absolute

deadline di greater than horizon = dmin + P − 1 releases its current packet after the start of the next round
at time ti+1 and therefore need not be considered for slot allocation.

horizon initially, horizon = dmin +P− 1, where dmin is the earliest absolute deadline of
all streams at this time and P is an upper bound on the period of any stream. As shown
in Fig. 16, the next round starts before dmin , that is, ti+1 ≤ dmin − 1. Thus, stream si
with absolute deadline di > horizon releases its current packet no earlier than

di − P > dmin + P − 1− P ≥ ti+1. (15)

The strict inequality in (15) implies that si releases its current packet only after the
start of the next round. Thus, stream si need not be considered for slot allocation in
the next round. As Algorithm 2 visits streams in EDF order, it can terminate when it
sees the first such stream.

C. SYNCHRONOUS BUSY PERIOD COMPUTATION

The synchronous busy period Tb is crucial to admission control and computing the
start time of the next round in LS. It denotes the time needed to contiguously serve
the maximum demand that a given set of streams creates when all streams release a
packet at the same time. The real-time literature suggests computing the synchronous
busy period Tb through an iterative process [Stankovic et al. 1998]

ω0 =
n

B
and ωm+1 =

1

B

n
∑

i=1

⌈

ωm

Pi

⌉

(16)

which terminates when ωm+1 = ωm; then, Tb = ⌈ωm⌉.
As discussed in Sec. 5.2, implementing this iterative method on a resource-

constrained platform leads to prohibitive running times due to many costly divisions.
To overcome this problem, we compute Tb by simulating the execution of CS, which

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

Adaptive Real-time Communication for Wireless Cyber-physical Systems App–3

Algorithm 3 Compute synchronous busy period

Input A bucket queue that is a deep copy of the set of streams Λ, where s.releaseTime is initial-
ized to 0 for all streams si and streams with smaller releaseTime are given higher priority.

Output The synchronous busy period Tb of the set of streams.
initialize Tb and slot counter c to 0
set s to highest-priority stream using s = FINDMIN()
while (s.releaseTime = 0)
or (s.releaseTime < Tb and c = 0)
or (s.releaseTime ≤ Tb and c > 0) do

if current round has only one free slot (i.e., c = B − 1) then
set Tb = Tb + 1 and c = 0 to “start” a new round

else
set c = c+ 1 to “allocate” a slot in the current round

end if
s.releaseTime = s.releaseTime + s.period
update priority of s using DECREASEKEY(s, s.period)
set s to highest-priority stream using s = FINDMIN()

end while
if current round has at least one allocated slot (i.e., c > 0) then

set Tb = Tb + 1 to “round up” to the next discrete time
end if

essentially entails going through the same processing that underlies (16) in a step-
by-step manner. To this end, we trigger the maximum demand by letting all streams
release a packet at time t = 0. Using CS, we then serve this demand “as fast as possi-
ble” until we find the first idle time where no packet is pending.

Algorithm 3 shows the pseudocode. The algorithm operates on a deep copy of the
current set of streams, maintained in a bucket queue in order of increasing release
time.5 It fictitiously allocates slots to packets in the order in which they are released.
Tb keeps track of the number of (full) rounds, and slot counter c keeps track of the
number of allocated slots in the current round. The algorithm executes as long as there
is a stream s whose initial packet is still to be sent (i.e., s.releaseTime = 0), or there is
a packet that was already pending before the new round started (i.e., s.releaseTime <
Tb and c = 0), or there is any pending packet while the current round has at least
one allocated slot (i.e., s.releaseTime ≤ Tb and c > 0). Otherwise, the algorithm has
encountered the first idle time and thus the end of the synchronous busy period.

D. PERFORMING ADMISSION CONTROL

As noted in Sec. 5.3, the challenge in implementing Theorem 4 is to efficiently compute
the future demand h0(t). Using the closed-form expression from the real-time schedul-
ing literature [Buttazzo 2011]

h0(t) =
n
∑

i=1

⌊

t+ Pi −Di

Pi

⌋

(17)

is not a viable option as it involves many costly divisions.
Thus, as already described in Sec. 5.3, we perform admission control by simulating

the execution with CS. Algorithm 4 shows the pseudocode. The algorithm takes as in-
put a deep copy of the current set of streams, including the new stream to be admitted,
and the new synchronous busy period Tb . All streams start at time t = 0 to trigger an

5This results in high efficiency, because in each iteration the algorithm needs the earliest release time of all
streams in order to check whether it has encountered the first idle time where no packet is pending.

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

App–4 M. Zimmerling et al.

Algorithm 4 Admission control

Input A bucket queue that is a deep copy of the stream set Λ including the new stream, with
s.absDeadline initialized to Di for all streams si (smaller absDeadline means higher priority),
the utilization as well as the deadline-based utilization of that joint stream set, and the new
synchronous busy period Tb of that joint stream set.

Output Whether the new stream is to be admitted or is to be rejected.
if utilization exceeds 1 then

return “reject”
end if
if deadline-based utilization does not exceed 1 then

return “admit”
end if
initialize demand , availableBandwidth, and t to 0
while demand ≤ availableBandwidth do

set s to highest-priority stream using s = FINDMIN()
if s.absDeadline > t then

if s.absDeadline > Tb then
return “admit”

end if
availableBandwidth = t×B
t = s.absDeadline

end if
demand = demand + 1
s.absDeadline = s.absDeadline + s.period
update priority of s using DECREASEKEY(s, s.period)

end while
return “reject”

interval of maximum demand, so the absolute deadline of each stream si is initialized
to the relative deadline Di . Using a bucket queue to keep streams in EDF order, the
algorithm repeatedly updates the absolute deadline of the highest-priority stream as
if it were executing CS. In doing so, the algorithm keeps track of the number of dead-
lines seen until time t (i.e., the demand). If this quantity exceeds the availableBandwidth
in the interval [0, t] for any t in [0, Tb], the new stream cannot be admitted.

Algorithm 4 contains two optimizations that improve the average-case performance.
First, it checks whether the end of the interval [0, Tb] has been reached and updates
the availableBandwidth only when t has advanced. This avoids unnecessary processing
when multiple deadlines coincide. Second, it performs two simple checks before the
while-loop. The new stream can be rejected without further processing if the utiliza-
tion, defined as 1

B

∑n

i=1
1
Pi

, exceeds one [Liu and Layland 1973]. Further, since Di ≤ Pi

for any stream si, the new stream can be admitted if the deadline-based utilization,
defined as 1

B

∑n

i=1
1
Di

, does not exceed one [Stankovic et al. 1998]. We incrementally

update both types of utilizations as streams are added and removed at runtime.

E. APPROXIMATING THE WORST-CASE EXECUTION TIME OF THE LS SCHEDULER

In the worst case, an execution of the LS scheduler needs to proceed through all four
steps in Fig. 10. A careful analysis of the corresponding algorithms (Algorithms 1, 2, 3,
and 4) reveals that the execution time of the LS scheduler grows with: (i) the number of
streams n, (ii) the largest possible period of any stream P, (iii) the bandwidth demand
of the streams, denoted u, and (iv) the synchronous busy period Tb of the streams.

Both n and P are application-dependent, yet the memory available on a given plat-
form determines their maximum value. For example, in our Blink prototype, the re-
quired memory scales linearly with n and P; for P = 255 seconds it supports up to

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

Adaptive Real-time Communication for Wireless Cyber-physical Systems App–5

n = 200 streams on the TelosB, which comes with 10 kB of RAM. Let us denote with N
the maximum number of streams supported for a given upper bound on the period of
any stream P. On the other hand, quantities u and Tb vary depending on the param-
eters of the streams. Based on this insight, we aim to compute, for a given bandwidth
demand u, N stream profiles with periods no larger than P such that the synchronous
busy period Tb is maximum. We describe how we determine such worst-case stream
profiles, and then discuss the concrete settings we use in the experiment of Sec. 6.5.

Determining worst-case stream profiles. We use two integer linear programs
(ILPs). In both ILPs, the decision variables are the periods of the streams, which are
integers in the interval [1, P]. We encode the periods through variables x1, x2, . . . , xP ,
where xi denotes the number of streams with period i. All start times of streams are
assumed to be zero, and deadlines are equal to periods.

First, we tackle the problem of minimizing the bandwidth demand u of N streams,
given their synchronous busy period Tb , by solving the following ILP:

minimize
{x1,x2,...,xP

}

P
∑

i=1

xi/i

subject to

P
∑

i=1

xi = N

P
∑

i=1

xi⌈1/i⌉ > B

P
∑

i=1

xi⌈2/i⌉ > 2B

...

P
∑

i=1

xi⌈(Tb − 1)/i⌉ > (Tb − 1)B

P
∑

i=1

xi⌈Tb/i⌉ ≤ TbB

The objective function is the bandwidth demand. The inequality constraints ensure
that at the end of each interval [0, t], t ∈ {1, 2, . . . , Tb − 1}, there are one or more pend-
ing packet, while there is no pending packet at the end of interval [0, Tb]. Note that
although the non-linear ceiling function arises in the above ILP, it does not operate on
the variables xi and Tb is a known input. Thus, the left-hand side of each inequality is
linear in the variables, so the program is efficiently solved by an ILP solver.

Solving this ILP for different values of Tb , we obtain a function f(u) that gives the
maximum Tb for a given bandwidth demand u, as shown in Fig. 17. We now want to
invert this function, that is, compute a stream set with a bandwidth demand as close
as possible to a given target bandwidth demand u, and with the maximum possible Tb .
To this end, we solve the following modified ILP:

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

App–6 M. Zimmerling et al.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Bandwidth demand (%)

M
a
x
.
sy
n
ch
ro
n
o
u
s
b
u
sy

p
er
io
d
T
b
(s
ec
o
n
d
s)

Fig. 17. The maximum synchronous busy period Tb as a function of the bandwidth demand, for N = 200

streams, a maximum stream period of P = 255 seconds, and B = 51 available slots per round.

minimize
{x1,x2,...,xP

}

P
∑

i=1

xi/i

subject to

P
∑

i=1

xi = N

P
∑

i=1

xi/i ≥ u

P
∑

i=1

xi⌈1/i⌉ > B

P
∑

i=1

xi⌈2/i⌉ > 2B

...

P
∑

i=1

xi⌈(f(u)− 1)/i⌉ > (f(u)− 1)B

P
∑

i=1

xi⌈f(u)/i⌉ ≤ f(u)B

Again, the non-linear functions do not operate on the variables, and this time u and
f(u) are known inputs.

Settings and method. We proceed in two steps to approach the worst-case execution
time of the LS scheduler in Sec. 6.5.

In a first step, we solve the ILPs above to determine the worst-case stream profiles.
To this end, we consider the maximum number of streams N = 200 supported by our
Blink prototype on the TelosB for a maximum stream period of P = 255 seconds. We
determine different sets of N = 200 streams for bandwidth demands between 5 % and

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

Adaptive Real-time Communication for Wireless Cyber-physical Systems App–7

T
a

b
le

II
.

W
o

rs
t-

c
a

s
e

s
tr

e
a

m
p

ro
fi
le

s
u

s
e

d
in

th
e

e
xe

c
u

ti
o

n
ti
m

e
e
x
p

e
ri

m
e

n
t

o
f

S
e

c
.

6
.5

.
F

o
r

e
a

c
h

s
tr

e
a

m
s
i
,

th
e

s
ta

rt
ti
m

e
S
i

is
s
e

t
to

0
a

n
d

th
e

d
e

a
d

lin
e
D

i
is

e
q

u
a

l
to

th
e

p
e

ri
o

d
P
i
,

w
h

ic
h

is
s
h

o
w

n
in

th
e

ta
b
le

b
e

lo
w

.

B
a

n
d

w
id

th
S

y
n

c
h

r
o

n
o

u
s

P
e
r
io

d
s

o
f

th
e

w
o

r
s
t-

c
a

s
e

s
tr

e
a

m
p

r
o

fi
le

s
d

e
m

a
n

d
(%

)
b

u
s
y

p
e
r
io

d
(s

e
c
)

(n
u

m
b

e
r

o
f

s
tr

e
a

m
s

w
it

h
a

g
iv

e
n

p
e
r
io

d
in

s
e
c
o

n
d

s
,
w

r
it

te
n

a
s

“
#
s
tr

e
a

m
s
×

p
e
r
io

d
”
)

5
5

1
×

2
,
4
×

3
,
1
9
5
×

2
5
5

1
0

5
5
×

3
,
1
1
×

4
,
1
8
4
×

2
5
5

1
5

5
4
×

1
,
8
×

3
,
1
×

4
,
1
8
7
×

2
5
5

2
0

5
4
×

1
,
1
5
×

3
,
2
×

4
,
1
7
9
×

2
5
5

2
5

5
3
×

1
,
1
×

2
,
2
5
×

3
,
1
×

4
,
1
7
0
×

2
5
5

3
0

6
3
×

1
,
1
×

2
,
6
×

3
,
3
6
×

4
,
1
×

5
,
1
5
3
×

2
5
5

3
5

6
3
×

1
,
3
9
×

3
,
5
×

4
,
1
5
3
×

2
5
5

4
0

6
7
×

1
,
3
6
×

3
,
4
×

5
,
1
5
3
×

2
5
5

4
5

7
1
9
×

1
,
1
×

2
,
4
×

3
,
5
×

4
,
1
×

5
,
1
7
0
×

2
5
5

5
0

7
1
5
×

1
,
2
4
×

3
,
6
×

4
,
2
×

5
,
1
5
3
×

2
5
5

5
5

8
1
1
×

1
,
4
4
×

3
,
1
×

4
,
8
×

5
,
1
3
6
×

2
5
5

6
0

9
2
7
×

1
,
6
×

6
,
1
4
×

7
,
1
5
3
×

2
5
5

6
5

1
0

3
1
×

1
,
3
×

2
,
1
6
6
×

2
5
5

7
0

1
1

3
1
×

1
,
1
×

6
,
1
4
×

7
,
1
8
×

9
,
1
3
6
×

2
5
5

7
5

1
3

3
5
×

1
,
1
×

5
,
1
×

8
,
1
×

9
,
1
0
×

1
0
,
1
4
×

1
1
,
1
3
8
×

2
5
5

8
0

1
5

3
6
×

1
,
1
×

3
,
4
4
×

1
1
,
1
1
9
×

2
5
5

8
5

1
9

3
9
×

1
,
1
×

3
,
1
×

5
,
1
×

7
,
1
×

1
2
,
4
0
×

1
4
,
5
×

1
7
,
1
1
2
×

2
5
5

9
0

2
8

4
2
×

1
,
5
×

2
,
4
×

1
3
,
4
×

2
4
,
9
×

2
5
,
1
3
6
×

2
5
5

9
5

5
0

4
6
×

1
,
3
×

3
,
2
×

8
,
3
×

4
0
,
5
×

4
1
,
2
×

4
2
,
5
×

4
3
,
5
×

4
4
,
2
×

4
5
,
5
×

4
6
,
5
×

4
7
,
1
1
7
×

2
5
5

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

App–8 M. Zimmerling et al.

95 %, with B = 51 available slots per round. Table II lists the different sets of worst-
case stream profiles we compute.

In a second step, we emulate for each set of worst-case streams a 2.5 h execution of
our Blink prototype using MSPsim. MSPsim is a time-accurate instruction-level emu-
lator that runs the same code that we also use on the real nodes [Eriksson et al. 2009].
During each 2.5 h execution, requests for each of the 200 worst-case streams are sub-
mitted one by one in consecutive rounds, and we measure in each round the individual
execution times of the four different steps in the LS scheduler (see Fig. 10). We keep
measuring for some time even after all streams are admitted. Then, we take for each
step individually the maximum execution time we measured during the 2.5 h execu-
tion. Fig. 15 plots for a given bandwidth demand the sum of these individual maximum
execution times, combining the times of synchronous busy period computation and ad-
mission control to aid visibility. Thus, the total execution times we show in Sec. 6.5 are
higher than the maximum total execution time we actually measured in one round.

ACM Transactions on Cyber-Physical Systems, Vol. V, No. N, Article A, Publication date: January 2016.

