
Adaptive RED: An Algorithm for Increasing the Robustness of RED’s

Active Queue Management

Sally Floyd, Ramakrishna Gummadi, and Scott Shenker

AT&T Center for Internet Research at ICSI

August 1, 2001, under submission

Abstract

The RED active queue management algorithm allows net-

work operators to simultaneously achieve high throughput

and low average delay. However, the resulting average

queue length is quite sensitive to the level of congestion

and to the RED parameter settings, and is therefore not pre-

dictable in advance. Delay being a major component of

the quality of service delivered to their customers, network

operators would naturally like to have a rough a priori es-

timate of the average delays in their congested routers; to

achieve such predictable average delays with RED would

require constant tuning of the parameters to adjust to cur-

rent traffic conditions.

Our goal in this paper is to solve this problem with min-

imal changes to the overall RED algorithm. To do so, we

revisit the Adaptive RED proposal of Feng et al. from 1997

[6, 7]. We make several algorithmic modifications to this

proposal, while leaving the basic idea intact, and then eval-

uate its performance using simulation. We find that this re-

vised version of Adaptive RED, which can be implemented

as a simple extension within RED routers, removes the sen-

sitivity to parameters that affect RED’s performance and

can reliably achieve a specified target average queue length

in a wide variety of traffic scenarios. Based on extensive

simulations, we believe that Adaptive RED is sufficiently

robust for deployment in routers.

1 Introduction

End-to-end congestion control is widely used in the current

Internet to prevent congestion collapse. However, because

data traffic is inherently bursty, routers are provisioned with

fairly large buffers to absorb this burstiness and maintain

high link utilization. The downside of these large buffers is

that if traditional drop-tail buffer management is used, there

will be high queuing delays at congested routers. Thus,

drop-tail buffer management forces network operators to

choose between high utilization (requiring large buffers),

or low delay (requiring small buffers).

The RED buffer management algorithm manages the

queue in a more active manner by randomly dropping

packets with increasing probability as the average queue

size increases; the packet drop rate increases linearly from

zero, when the average queue size is at the RED parame-

ter minthresh (denoted by �✂✁☎✄✝✆✟✞), to a drop rate of �✡✠☞☛☞✌
when the average queue size reaches maxthresh (denoted

by �✡✠✍☛✎✆✟✞).1 One of RED’s main goals is to use this com-

bination of queue length averaging (which accommodates

bursty traffic) and early congestion notification (which re-

duces the average queue length) to simultaneously achieve

low average queuing delay and high throughput. Simulation

experiments and operational experience suggest that RED

is quite successful in this regard.

However, as has been pointed out in [18, 19, 20] among

other places, one of RED’s main weaknesses is that the av-

erage queue size varies with the level of congestion and

with the parameter settings. That is, when the link is lightly

congested and/or �✡✠✍☛ ✌ is high, the average queue size is

near �✂✁✏✄✝✆✟✞ ; when the link is more heavily congested and/or�✡✠☞☛☞✌ is low, the average queue size is closer to, or even

above, �✡✠☞☛✑✆✟✞ . As a result, the average queuing delay from

RED is sensitive to the traffic load and to parameters, and

is therefore not predictable in advance. Delay being a ma-

jor component of the quality of service delivered to their

customers, network operators would naturally like to have

a rough a priori estimate of the average delays in their con-

gested routers; to achieve such predictable average delays

with RED would require constant tuning of RED’s parame-

ters to adjust to current traffic conditions.

A second, related weakness of RED is that the through-

put is also sensitive to the traffic load and to RED parame-

ters. In particular, RED often does not perform well when

the average queue becomes larger than �✡✠✍☛✎✆✟✞ , resulting in

significantly decreased throughput and increased dropping

1In RED’s gentle mode, which we employ here, the dropping rate

increases linearly from ✒✔✓✖✕✘✗ at an average queue size of ✒✔✓✙✕✛✚✢✜ to ✣ at

an average queue size of ✤✦✥✧✒✔✓✙✕ ✚✢✜ .
1

rates. Avoiding this regime would again require constant

tuning of the
★

RED parameters.

There have been several proposals for active queue man-

agement schemes intended to avoid these (and other) prob-

lems. We are currently preparing a detailed examination of

the relative performance of these schemes. However, all of

these schemes represent substantial departures from the ba-

sic RED design, and our purpose here is to look for a more

minimal change to RED that can alleviate the problems of

variable delay and parameter sensitivity mentioned above.

We think that the basic insight for such a solution lies

in the original Adaptive RED proposal of Feng et al. from

1997 [6, 7]. This proposal retains RED’s basic structure

and merely adjusts the parameter �✡✠✍☛✩✌ to keep the aver-

age queue size between �✂✁✏✄✝✆✟✞ and �✡✠☞☛✑✆✟✞ . In this paper,

we describe a new implementation of Adaptive RED which

incorporates several substantial algorithmic changes to the

original Adaptive RED proposal while retaining its basic

intuition and spirit. In addition, this new Adaptive RED al-

gorithm automatically sets several other RED parameters;

operators need only set the desired target average queue

length.2

We have implemented this revised proposal in the NS

simulator, and describe it here. This new version of Adap-

tive RED achieves the target average queue length in a wide

variety of scenarios, without sacrificing the other benefits

of RED. This not only leads to a more predictable average

queuing delay, but also minimizes the possibility of “over-

shooting” �✡✠✍☛✎✆✟✞ ; thus, Adaptive RED reduces both the

packet loss rate and the variance in queuing delay. Adap-

tive RED, thus, appears to solve the problem of setting RED

parameters, which has been one of the banes of RED’s ex-

istence.

While the Adaptive RED algorithm appears promising,

we make no claims that this proposal is the only, or even

the best, way to solve the problems addressed here. We

present it as an existence proof that one need not abandon

the basic RED design in order to stabilize the average queue

length and “auto-tune” the other RED parameters. We also

present Adaptive RED as a serious proposal for deployment

in routers. Based on extensive simulations (only a subset of

which we can report on here), and on the fact that Adap-

tive RED represents a small change to the currently imple-

mented RED algorithm, we believe that that Adaptive RED

is sufficiently robust for deployment.

This paper has eight sections, starting with Section 2

which discusses the metrics and simulation scenarios we

2To avoid confusion and cumbersome terminology, in what follows

the term original Adaptive RED will refer to the proposal of Feng et
al. [6, 7] and the term Adaptive RED will refer to the revised proposal

described here.

use in evaluating Adaptive RED. Section 3 reviews some

preliminary simulation results that illustrate RED’s sensi-

tivity to parameters and show that Adaptive RED does in-

deed address this problem. Section 4 describes the details of

the Adaptive RED algorithm, including the automatic set-

ting for the parameters maxthresh and ✪✬✫ (the queue aver-

aging constant). Simulation results of Adaptive RED in a

variety of settings are presented in Section 5. Section 6 dis-

cusses the inherent tradeoffs between throughput and de-

lay, and the difficult issue of determining the target average

queue size. Related work is discussed in Section 7 and we

conclude in Section 8.

2 Metrics and Scenarios

In this section we describe the metrics and the range of sce-

narios that we used in evaluating Adaptive RED.

The primary goals of RED, or of active queue manage-

ment in general, are to provide low average queuing delay

and high throughput. Thus, for the evaluations of Adap-

tive RED in this paper we focus mainly on the metrics of

average queuing delay and throughput. RED also has the

secondary goals of improving somewhat upon the fairness

given by Drop Tail queue management and of minimizing,

for a given average queue length, the packet dropping or

marking rate. We do not discuss the fairness behavior of

Adaptive RED, since this is quite similar to the fairness be-

havior of RED. We only briefly consider the drop-rate be-

havior of RED and Adaptive RED, since degraded drop-rate

behavior is generally reflected in degraded throughput.

A few comments about these metrics are in order. First,

all of these metrics are router-based. While end-user met-

rics, such as file transfer times or per-packet delays, are

important measures of an algorithm’s validity, the end-user

metrics of interest for Adaptive RED can be fairly easily de-

rived from the router-based metrics we present, and we be-

lieve that the router-based metrics give more direct insight

into the dynamics of AQM (Active Queue Management).

Second, we do not consider metrics related to the worst-

case queuing delays because it is not a goal of AQM to

control these worst-case delays. We envision AQM as be-

ing intended mainly for traditional best-effort traffic, where

such worst-case guarantees cannot be provided with simple

packet multiplexing in any case. To the extent that worst-

case queuing delays are needed, they are controlled directly

by configuring the queue’s buffer size at the router (and thus

are independent of the AQM algorithm).

Third, we do not consider metrics directly measuring

queue length oscillations. While there has been substan-

tial recent interest in queue length oscillations (see, for ex-

ample, [8, 13]), we do not think that such oscillations are

2

harmful unless they increase the average queuing delay or

decrease the
★

throughput, in which case the effects would be

measured by our primary metrics. We discuss the impact of

oscillations on our primary metrics in Section 5.1.

In evaluating Adaptive RED, we have explored a wide

range of traffic scenarios, and have investigated the sensi-

tivity of Adaptive RED to our simulation parameters. To

verify robustness, we have considered performance for a

range of workloads, levels of statistical multiplexing, and

levels of congestion. Workloads include long-lived flows

and short web mice, along with reverse-path traffic. The

presence of data traffic on the reverse path introduces ack

(acknowledgment) compression and the loss of ack pack-

ets, thereby increasing the burstiness of the data traffic on

the forward path. Reverse-path traffic also forces a range

of packet sizes on the forward path, as the forward path

is now shared between data and ack packets. We also ex-

plore scenarios with changes in the workload or in the level

of congestion over the course of the simulation. We have

looked at dynamics with and without Explicit Congestion

Notification (ECN). Finally, we have considered the effect

of large window advertisements and different data packet

sizes. We do not have space for all of these results in this

paper, but a more complete description is available in [10].

3 The Motivation for Adaptive RED

Before delving into details of the design and performance

of Adaptive RED, which we describe in Sections 4 and 5

respectively, we first review some simulation results illus-

trating RED’s sensitivity to parameters, and showing that

Adaptive RED does indeed address this problem. This sec-

tion shows simulations illustrating RED’s well-known char-

acteristic of the average queue size and performance vary-

ing as a function of the RED parameters �✡✠✍☛ ✌ and ✪ ✫ . This

section also includes simulation results with Adaptive RED,

showing that by adapting �✡✠✍☛✩✌ to keep the target queue

size within a target range between �✂✁✏✄✝✆✟✞ and �✡✠☞☛✑✆✟✞ , it is

possible to achieve the same performance of that from RED

with a value of �✡✠✍☛ ✌ tuned for that simulation scenario: in

other words, Adaptive RED successfully ”auto-tunes” the

various RED parameters to achieve reliably good results.

Figures 1 through 3 show a set of simulations with a sin-

gle congested link in a dumbbell topology, with the number

of long-lived TCP flows ranging from 5 to 100. The long-

lived flows have a range of round-trip times from 100 to✭✖✮✛✯
ms, and the simulations include web traffic and reverse-

path traffic. The congested link is
✭✖✰

Mbps.

The simulations in Figure 1 use RED with NS’s default

values of ✪ ✫✂✱ ✯✳✲✴✯✵✯✷✶
and �✡✠✍☛ ✌ ✱ ✯✳✲✟✭

, and with �✂✁✏✄✝✆✟✞
and �✡✠☞☛✑✆✟✞ set to 20 and 80 packets respectively. RED

is run in gentle mode in all of these simulations. Each

cross shows the results from a single simulation, with the☛ -axis showing the average queuing delay in packets over

the second half of the 100-second simulation, and the ✸ -

axis showing the link utilization over the second half of

the simulation. Each line shows results from simulations

with ✹ flows, with lines for values of ✹ ranging from 5 to

100. The crosses on each line show the results of simula-

tions with �✡✠✍☛ ✌ ranging from 0.5 on the left to 0.02 on the

right. The packet drop rate in these simulations ranges from

close to zero (for the simulations with five flows) up to 8%

(for the simulations with 100 flows). As Figure 1 shows,

the performance varies both with the number of flows and

with �✡✠☞☛ ✌ , with poorer throughput for those simulations

with a larger number of long-lived flows. For these simu-

lations, increasing the number of flows decreases link uti-

lization, and increasing �✡✠✍☛ ✌ leads to lower queue lengths.

The downturn in utilization for low values of �✡✠☞☛☞✌ reflects

cases where the average queue length overshoots �✡✠☞☛✑✆✟✞ a

significant portion of the time.

As discussed later in Section 4.3, the queue weight of

0.002 is too large for a link bandwidth of
✭✖✰

Mbps, since

it only averages the queue length over a fraction of a typ-

ical
✭✺✯✵✯

ms round-trip time. The simulations in Figure 2

differ from those in Figure 1 only in that they use ✪✬✫ set to

0.00027 instead of 0.002. As is apparent from Figure 2, and

discussed more thoroughly in Section 4.3, RED’s perfor-

mance is best when the average queue size is estimated over

a small multiple of round-trip times, and not over a fraction

of a single round-trip time. Figures 1 and 2 are evidence

that RED’s performance is sensitive to the value of the pa-

rameter ✪ ✫ . Figure 2 also shows that non-adaptive RED

can give quite good performance with this “good” value of✪ ✫ , but that the average queue size and throughput are both

still a function of RED’s parameter �✡✠☞☛ ✌ . In particular,

throughput suffers in the simulations when �✡✠☞☛ ✌ is small

relative to the steady-state packet drop rate, and the aver-

age queue size sometimes exceeds the �✡✠✍☛✎✆✟✞ value of 80

packets. Thus, achieving good throughput and reasonable

average queue lengths with RED requires careful tuning of

both ✪ ✫ and �✡✠☞☛ ✌ . It is this careful tuning that Adaptive

RED is designed to do automatically.

While we have yet to describe the Adaptive RED algo-

rithm in detail (which we do in Section 4), the general de-

sign of Adaptive RED can be easily summarized as setting✪ ✫ automatically (based on the link speed) and adapting�✡✠☞☛☞✌ in response to measured queue lengths. Later, in Sec-

tion 5 we will explore the performance of Adaptive RED in

more detail, but for now we show a few simulations that

suggest that Adaptive RED does indeed remove the need to

carefully tune these RED parameters.

3

86

88

90

92

94

96

98

100

10 20 30 40 50 60 70 80 90

Li
nk

 U
til

iz
at

io
n✻

Average Queue Length

"5 flows"
"10 flows"
"20 flows"
"30 flows"
"40 flows"
"50 flows"
"60 flows"
"70 flows"
"80 flows"
"90 flows"

"100 flows"

Figure 1: Delay-Utilization Tradeoff with RED, ✪ ✫✼✱✯✳✲✴✯✵✯✷✶
.

86

88

90

92

94

96

98

100

10 20 30 40 50 60 70 80 90

Li
nk

 U
til

iz
at

io
n✻

Average Queue Length

"5 flows"
"10 flows"
"20 flows"
"30 flows"
"40 flows"
"50 flows"
"60 flows"
"70 flows"
"80 flows"
"90 flows"

"100 flows"

Figure 2: Delay-Utilization Tradeoff with RED, ✪ ✫✼✱✯✳✲✴✯✵✯✵✯✷✶✵✮
.

98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

100.2

40 42 44 46 48 50 52 54 56 58

Li
nk

 U
til

iz
at

io
n✻

Average Queue Length

"5 flows"
"10 flows"
"20 flows"
"30 flows"
"40 flows"
"50 flows"
"60 flows"
"70 flows"
"80 flows"
"90 flows"

"100 flows"

Figure 3: Delay-Utilization Tradeoff with Adaptive RED.

Figure 3 shows the same simulations with Adaptive

RED; in this graph the various values of �✡✠✍☛ ✌ are the ini-

tial values, and Adaptive RED adjusts them, as described

in 4, in response to measured behavior. Note that the ☛ -

and ✸ -axes of Figure 3 don’t match those of Figures 1 and

2, so Figures 1 and 2 contain a box showing the area for

Figure 3. The entire region depicted in Figure 3 occupies

a small area in the “good” performance region of Figures 1

and 2. As in the earlier graphs, Figure 3 shows the results

from the second half of a 100-second simulation; the clus-

tering of the points for a given curve shows that the results

are essentially independent of the initial value of �✡✠☞☛ ✌ .

These simulations show that Adaptive RED, in setting✪ ✫ automatically and adjusting �✡✠✍☛ ✌ in response to cur-

rent conditions, is effective in achieving high throughput

along with maintaining its average queue size within the

target interval [44, 56]. This range corresponds to the algo-

rithm’s requirement of maintaining the average queue size

within a pre-determined range around ✽ �✂✁✏✄✝✆✟✞✿✾❀�✡✠☞☛✑✆✟✞✍❁❃❂ ✶ ,
as explained in Section 4. The only simulations with an av-

erage queue size outside that range are those with 5 flows;

these simulations have few packet drops, a smaller average

queue, and full link utilization.

The simulations with Adaptive RED all have high

throughput, with the throughput ranging from 98% upwards

(with 100 flows) to 100% (with 5 flows). For each num-

ber of flows, one could choose a static setting for �✡✠☞☛ ✌
such that non-adaptive RED gives the same performance

as Adaptive RED. The catch is that this static setting for�✡✠☞☛ ✌ would have to be a function of the simulation sce-

nario. For example, for the simulations with 20 flows, the

performance of Adaptive RED corresponds roughly to the

performance of non-adaptive RED with �✡✠☞☛ ✌ set to 0.07,

while for the simulations with 100 flows, the performance

of adaptive RED corresponds roughly to the performance

of non-adaptive RED with �✡✠☞☛☞✌ set to 0.2.

0

0.02

0.04

0.06

0.08

0.1

20 30 40 50 60 70 80 90

Li
nk

 L
os

s

Average Queue Length

"5 flows"
"10 flows"
"20 flows"
"30 flows"
"40 flows"
"50 flows"
"60 flows"
"70 flows"
"80 flows"
"90 flows"

"100 flows"

Figure 4: Delay-Loss Tradeoff with Normal RED, ✪✬✫ ✱✯✳✲✴✯✵✯✵✯✷✶✵✮
.

0

0.02

0.04

0.06

0.08

0.1

40 42 44 46 48 50 52 54 56 58

Li
nk

 L
os

s

Average Queue Length

"5 flows"
"10 flows"
"20 flows"
"30 flows"
"40 flows"
"50 flows"
"60 flows"
"70 flows"
"80 flows"
"90 flows"

"100 flows"

Figure 5: Delay-Loss Tradeoff with Adaptive RED.

Figures 4 and 5 show the packet drop rates from the sim-

ulations in Figures 2 and 3. They show that while both RED

and Adaptive RED have roughly the same packet drop rates

for a particular set of flows, Adaptive RED, by keeping the

4

average queue size away from �✡✠☞☛✑✆✟✞ , avoids the higher

packet loss that RED incurs when the average queue size is

around �✡✠✍☛✎✆✟✞ . We have also explored fairness, and have

verified that the fairness properties are similar in the simu-

lations with RED and with Adaptive RED.

We have explored these simulations for a range of sce-

narios, including a range of link bandwidths and mixes of

web traffic, with and without ECN, with the queue mea-

sured both in units of packets and in units of bytes, and with

RED in byte mode (taking into account the size of a packet

in bytes in deciding whether or not to drop the packet) and

in packet mode. In all of these simulations, we see the same

good performance from Adaptive RED.

3.1 Illustrating RED’s Varying Queue Size

The previous simulations showed the steady-state perfor-

mance of RED and Adaptive RED. We now investigate how

RED and Adaptive RED respond to a rapid change in the

congestion level. The simulations presented here illustrate

RED’s well-understood dynamic of the average queue size

varying with the congestion level, resulting from RED’s

fixed mapping from the average queue size to the packet

dropping probability. For Adaptive RED, these simulations

focus on the transition period from one level of congestion

to another.

These simulations use a simple dumbbell topology with

a congested link of
✭✛✲❄✰

Mbps. The buffer accommodates

35 packets, which, for 1500-byte packets, corresponds to a

queuing delay of 0.28 seconds. In all of the simulations, ✪ ✫
is set to 0.0027, �✂✁✏✄✝✆✟✞ is set to five packets, and �✡✠✍☛✎✆✟✞ is

set to 15 packets.3

For the simulation in Figure 6, the forward traffic consists

of two long-lived TCP flows, and the reverse traffic consists

of one long-lived TCP flow. At time 25 twenty new flows

start, one every 0.1 seconds, each with a maximum window

of twenty packets. This is not intended to model a realistic

load, but simply to illustrate the effect of a sharp change

in the congestion level. The graph in Figure 6 illustrates

non-adaptive RED, with the average queue size changing

as a function of the packet drop rate. The dark line shows

the average queue size as estimated by RED, and the dotted

line shows the instantaneous queue. The packet drop rate

changes from 1% over the first half of the simulation, to

12.6% over the second half, with corresponding changes in

the average queue size.

The graph in Figure 7 shows the same simulation us-

ing Adaptive RED. Adaptive RED shows a similar sharp

change in the average queue size at time 25. However, after

3The values for ❅✝❆ and ✒✧✓✖✕✵✚✢✜ are obtained from the guidelines in

Section 4.3, while the value for ✒✔❇✟❈ ✚❉✜ is a policy choice.

roughly ten seconds, Adaptive RED has brought the aver-

age queue size back down to the target range, between 9

and 11 packets. The simulations with Adaptive RED have

a slightly higher throughput than those with non-adaptive

RED, (95.1% instead of 93.1%), a slightly lower overall

average queue size (11.5 packets instead of 13.4), and a

smaller packet drop rate. The simulations with Adaptive

RED illustrate that it is possible, by adapting �✡✠✍☛ ✌ , to con-

trol the relationship between the average queue size and the

packet dropping probability, and, thus, maintain a steady

average queue size in the presence of traffic dynamics.

Figure 8 shows a related simulation with twenty new

flows starting at time 0, and ending at time 25. The sim-

ulation with non-adaptive RED in Figure 8 shows the de-

crease in the average queue size as the level of congestion

changes at time 25. This time, the packet drop rates with

non-adaptive RED are 9.7% over the first half of the simu-

lation, and .8% over the second half.

There is a similar change in the average queue size in

the simulation with Adaptive RED in Figure 9, but within

ten seconds Adaptive RED has brought the average queue

size back to the target range. The simulation with Adap-

tive RED has a similar throughput to that with non-adaptive

RED, (93% instead of 92.7%), and a slightly lower overall

average queue size (11.1 packets instead of 12.4).

4 The Adaptive RED Algorithms

The overall guidelines for Adaptive RED as implemented

here are the same as those for the original Adaptive RED

from [6], that is, of adapting �✡✠✍☛ ✌ to keep the average

queue size between �✂✁☎✄✝✆✟✞ and �✡✠☞☛✑✆✟✞ . Our approach dif-

fers from original Adaptive RED in four ways:❊❋�✡✠✍☛ ✌ is adapted not just to keep the average queue

size between �✂✁✏✄✝✆✟✞ and �✡✠✍☛✎✆✟✞ , but to keep the aver-

age queue size within a target range half way between�✂✁✏✄✝✆✟✞ and �✡✠☞☛✑✆✟✞ .

❊❋�✡✠✍☛✩✌ is adapted slowly, over time scales greater than

a typical round-trip time, and in small steps.

❊❋�✡✠✍☛ ✌ is constrained to remain within the range [0.01,

0.5] (or equivalently, [1%, 50%]).

❊ Instead of multiplicatively increasing and decreas-

ing �✡✠✍☛ ✌ , we use an additive-increase multiplicative-

decrease (AIMD) policy.

The algorithm for Adaptive RED is given in Figure 10.

The guideline of adapting �✡✠✍☛✩✌ slowly and infrequently

allows the dynamics of RED—of adapting the packet-

dropping probability in response to changes in the average

5

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50

S
iz

e
(in

 P
ac

ke
ts

)●

Time (in Seconds)

"ave_queue"
"queue"

Figure 6: RED with an Increase in Congestion.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50

S
iz

e
(in

 P
ac

ke
ts

)●

Time (in Seconds)

"ave_queue"
"queue"

Figure 7: Adaptive RED with an Increase in Congestion.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50

S
iz

e
(in

 P
ac

ke
ts

)●

Time (in Seconds)

"ave_queue"
"queue"

Figure 8: RED with a Decrease in Congestion.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50

S
iz

e
(in

 P
ac

ke
ts

)●

Time (in Seconds)

"ave_queue"
"queue"

Figure 9: Adaptive RED with a Decrease in Congestion.

Every ✁✏✄✝❍❏■✖❑✛▲☞✠✩▼ seconds:
if (✠✍▲✍◆P❖◗❍❏✠✍❑❘◆✩■✖❍ and �✡✠☞☛☞✌❚❙ ✯✳✲❄✰

)
increase �✡✠✍☛ ✌ :�✡✠✍☛ ✌❱❯ �✡✠✍☛ ✌ ✾❳❲ ;

elseif (✠☞▲✷◆❩❨◗❍❬✠☞❑❘◆✩■✺❍ and �✡✠✍☛ ✌❪❭ ✯✳✲✴✯❫✭
)

decrease �✡✠✍☛ ✌ :�✡✠✍☛✩✌ ❯ �✡✠✍☛✩✌✧❴❛❵ ;
Variables:✠☞▲✷◆ : average queue size

Fixed parameters:✁✏✄✝❍❃■✺❑✛▲✩✠☞▼ : time; 0.5 seconds❍❏✠✍❑❘◆✩■✖❍ : target for ✠☞▲☞❜ ;❝ �✂✁✏✄✝✆✟✞✔✾ ✯✳✲❡❞ ❴ ✽ �✡✠✍☛✎✆✟✞❣❢❤�✂✁✏✄✝✆✟✞✍❁ ,�✂✁✏✄✝✆✟✞✐✾ ✯✳✲❄✮ ❴ ✽ �✡✠☞☛✑✆✟✞❥❢❤�✂✁✏✄✝✆✟✞✍❁☎❦ .❲ : increment; min(0.01, �✡✠✍☛ ✌ /4)❵ : decrease factor; 0.9

Figure 10: The Adaptive RED algorithm.

queue size—to dominate on smaller time scales. The adap-

tion of �✡✠☞☛ ✌ is invoked only as needed over longer time

scales.

The robustness of Adaptive RED comes from its slow

and infrequent adjustments of �✡✠✍☛ ✌ . The price of this slow

modification is that after a sharp change in the level of con-

gestion, as in Figures 7 and 9, it could take some time, pos-

sibly ten or twenty seconds, before �✡✠☞☛ ✌ adapts to its new

value. To ensure that the performance of Adaptive RED

will not be unduly degraded during this transition period,

our third guideline restricts �✡✠☞☛ ✌ to stay within the range

[0.01, 0.5]. This ensures that during the transition period

the overall performance of RED should still be acceptable,

even though the average queue size might not be in its tar-

get range, and the average delay or throughput might suffer

slightly.

We do not claim that our algorithm for Adaptive RED is

optimal, or even close to optimal, but it seems to work well

in a wide range of scenarios, and we believe that it could

safely be deployed now in RED implementations in the In-

ternet. As a result of the slow adaptation of �✡✠✍☛ ✌ , the de-

sign of Adaptive RED gives robust performance in a wide

range of environments. As stated above, the cost of this

slow adaptation is that of a transient period, after a sharp

change in the level of congestion, when the average queue

size is not within the target zone. Adaptive RED is thus

consciously positioned in the conservative, robust end of

the spectrum of AQM mechanisms, with the aim of avoid-

ing the more finely-tuned but also more fragile dynamics at

the more aggressive end of the spectrum.

Adaptive RED’s algorithm in Figure 10 uses AIMD to

adapt �✡✠✍☛ ✌ . While we experimented with other linear con-

trols such as MIMD (Multiplicative Increase Multiplicative

Decrease) as well as proportional error controls, as might

be suggested by some control-theoretic analyses, our expe-

riences have been that the AIMD approach is more robust.

This completes the general description of the Adaptive

RED algorithm. Embedded in this algorithm are detailed

6

choices for various parameters. We now briefly justify these

choices.

4.1 The range for ❧❤♠✳♥ ✌
The upper bound of 0.5 on �✡✠✍☛✩✌ can be justified on two

grounds. First, we are not trying to optimize RED for

packet drop rates greater than 50%. In addition, because

we use RED in gentle mode, this means that the packet drop

rate varies from 1 to �✡✠☞☛ ✌ as the average queue size varies

from �✂✁✏✄✝✆✟✞ to �✡✠☞☛✑✆✟✞ , and the packet drop rate varies from�✡✠☞☛ ✌ to 1 as the average queue size varies from �✡✠✍☛✎✆✟✞
to twice �✡✠☞☛✑✆✟✞ . Thus, with �✡✠✍☛✩✌ set to 0.5, the packet

drop rate varies from 0 to 1 as the average queue size varies

from �✂✁✏✄✝✆✟✞ to twice �✡✠☞☛✑✆✟✞ . This should give somewhat ro-

bust performance even with packet drop rates greater than

50%. The upper bound of 0.5 on �✡✠☞☛ ✌ means that when

the packet drop rate exceeds 25%, the average queue size

could exceed the target range by up to a factor of four.4

The lower bound of 0.01 on �✡✠✍☛ ✌ is motivated by a de-

sire to limit the range of �✡✠☞☛ ✌ . We believe that for sce-

narios with very small packet drop rates, RED will perform

fairly robustly with �✡✠☞☛ ✌ set to 0.01, and no one is likely

to object to an average queue size less than the target range.

4.2 The parameters ♦ and ♣
We note that it takes at least

✯✳✲❡❞✍q ❂❘❲ intervals for �✡✠☞☛ ✌ to

increase from 0.01 to 0.50; this is 24.5 seconds for our de-

fault parameters for ❲ and ✁✏✄✝❍❏■✖❑✛▲☞✠✩▼ (see Figure 10). Simi-

larly, it takes at least r✢s✵t ✯✳✲✴✯✷✶ ❂ r✟s✵t ❵ intervals for �✡✠☞☛☞✌ to

decrease from 0.50 to 0.01; with our default parameters,

this is 20.1 seconds. Given a sharp change from one level

of congestion to another, 25 seconds is therefore an upper

bound on the interval during which the average queue size

could be outside its target range, and the performance of the

AQM might be somewhat degraded.

In recommending values for ❲ and ❵ , we want to en-

sure that under normal conditions a single modification

of �✡✠☞☛ ✌ does not result in the average queue size mov-

ing from above the target range to below it, or vice versa.

Let’s assume for simplicity that when �✡✠✍☛✩✌ is adapted

the steady-state packet dropping probability ✉ remains the

same, and the average queue size ✠✍▲✍◆ simply shifts to match

the new value of �✡✠☞☛ ✌ . Thus, assuming ✉ ❨ �✡✠☞☛ ✌ ,
when �✡✠✍☛ ✌ increases by ❲ , ✠☞▲✷◆ can be expected to de-

crease from �✂✁☎✄✝✆✟✞✈✾ ✌✇✦①③② ✗ ✽ �✡✠✍☛✎✆✟✞❪❢◗�✂✁✏✄✝✆✟✞✍❁ to �✂✁✏✄✝✆✟✞❥✾✌✇✦①③② ✗⑤④⑦⑥ ✽ �✡✠☞☛✑✆✟✞❣❢⑧�✂✁✏✄✝✆✟✞✍❁ ✲ This is a decrease of

4For ✒✔✓✖✕ ✚✢✜❱⑨❶⑩ ✒✧❇✟❈ ✚✢✜ , the target queue size is ❷❏❸✳❹❺ ✒✧❇✟❈ ✚✢✜ , and

with packet drop rates approaching 100% and ✒✧✓✖✕✘✗ set to 50%, the

average queue size approaches ✤❻✒✔✓✙✕ ✚✢✜❼⑨ ✤ ⑩ ✒✔❇❽❈ ✚✢✜ .

❲
✽ �✡✠✍☛ ✌ ✾❋❲❼❁ ✉�✡✠✍☛ ✌ ✽ �✡✠✍☛✎✆✟✞✈❢❤�✂✁✏✄✝✆✟✞✍❁ ✲

As long as this is less than
✯✳✲❄✶ ✽ �✡✠☞☛✑✆✟✞P❢❾�✂✁✏✄✝✆✟✞✍❁ , the av-

erage queue size should not change from above the tar-

get range to below the target range in a single interval.

This suggests choosing ⑥❿ ✇➀①❻② ✗✺④⑦⑥✷➁ ❨ ✯✳✲❄✶
, or equivalently,❲❋❨ ✯✳✲❄✶✵✰ �✡✠☞☛ ✌ . Our default setting of ❲ (shown in Figure

10) obeys this constraint.

Similarly, we have to check that the mutliplicative de-

crease of �✡✠☞☛ ✌ does not cause the average queue size to go

from below to above the target range after a single adjust-

ment of �✡✠☞☛ ✌ . A similar analysis to that for ❲ shows that

as long as✉➂✽ ✭ ❢❤❵➂❁�✡✠✍☛ ✌ ❵ ✽ �✡✠☞☛✑✆✟✞✈❢❤�✂✁☎✄✝✆✟✞✍❁✦❨ ✯✳✲❄✶ ✽ �✡✠☞☛✑✆✟✞✈❢❤�✂✁☎✄✝✆✟✞✍❁➄➃
the average queue size should not change from below the

target range to above the target range in a single interval.

This suggests choosing ➅❃➆➈➇➇ ❨ ✯✳✲❄✶
, or equivalently, ❵✼❖✯✳✲❄➉✵➊

. This constraint is satisfied by our default value of 0.9

for ❵ (see Figure 10).

4.3 Setting RED parameters ❧❤♠✳♥ ✆✟✞ and ➋ ✫
As described above, Adaptive RED removes RED’s depen-

dence on the parameter �✡✠✍☛✩✌ . To reduce the need for other

parameter-tuning for RED, we also specify procedures for

automatically setting the RED parameters �✡✠✍☛✎✆✟✞ and ✪ ✫ .
In automatic mode �✡✠✍☛✎✆✟✞ is set to three times �✂✁✏✄✝✆✟✞ .

This follows the recommendations in [9].5 In this case the

target average queue size is centered around
✶✦➌ �✂✁✏✄✝✆✟✞ , and

is therefore determined only by the RED parameter �✂✁✏✄✝✆✟✞ .

Considerations in specifying the target average queue size

are discussed in Section 6.

The guidelines for setting ✪✬✫ given in the original RED

paper [12] are in terms of the transient queue size accom-

modated by RED, and the time required by the estimator

to respond to a step change in the actual queue size. From

[12], if the queue size changes from one value to another, it

takes ❢ ✭ ❂ r✟➍➎✽ ✭ ❢ ✪ ✫ ❁ packet arrivals for the average queue

to reach 63% of the way to the new value. Thus, we refer to❢ ✭ ❂ r❽➍➎✽ ✭ ❢ ✪✬✫ ❁ as the “time constant” of the estimator for

the average queue size, even though this “time constant” is

specified in packet arrivals and not in time itself.

The default in the NS simulator is for ✪✬✫ to be set to

0.002; this corresponds to a time constant of 500 packet

arrivals. However, for a 1 Gbps link with 500-byte pack-

ets, 500 packet arrivals corresponds to a small fraction of a

5By chance, we haven’t followed this recommendation in all of the

simulations in this paper, but following the recommendation does not

change our results.

7

round-trip time (1/50-th of an assumed round-trip time of

100 ms). Clearly
➏

higher-speed links require smaller values

for ✪ ✫ , so that the time constant remains on the order of

round-trip times, rather than fractions of round-trip times.

Following the approachs in [15, 21], in automatic mode we

set ✪✬✫ as a function of the link bandwidth.

For RED in automatic mode, we set ✪ ✫ to give a time

constant for the average queue size estimator of one second;

this is equivalent to ten round-trip times, assuming a default

round-trip time of 100 ms. Thus, we set

✪ ✫➐✱ ✭ ❢⑧■✺☛ ✉✿✽ ❢ ✭ ❂✵➑❱❁ (1)

where ➑ is the link capacity in packets/second, computed

for packets of the specified default size.

5 Simulations
The simulations in Section 3 suggest that Adaptive RED, by

automatically setting ✪ ✫ and continually adapting �✡✠☞☛ ✌ ,

achieves the goals of high throughput and low average

queueing delays across a wide variety of conditions. In this

section we more closely examine three aspects Adaptive

RED’s behavior: oscillations, effects of ✪✬✫ , and response

to routing dynamics.

5.1 Exploring Oscillations

Because of the feedback nature of TCP’s congestion con-

trol, oscillations in the queue length are very common.

Some oscillations are “malignant”, in that they degrade

overall throughput and increase variance in queuing de-

lay; other oscillations are “benign” oscillations and do not

significantly effect either throughput or delay. Figures 11

through 14 each show the average queue size for a simula-

tion with 100 long-lived flows, each with a round-trip time

of
✶✵✰✛✯

ms, and with a congested link of
✭✖✰

Mbps. All of

the flows use ECN and 1000-byte data packets. The RED

queue management has �✂✁☎✄✝✆✟✞ ✱ ✶✛✯
and �✡✠☞☛✑✆✟✞ ✱ ➉✛✯

.

The simulation in Figure 11, which uses RED, has three

factors that each encourage oscillations in the queue size:

(1) a fixed (and overly small) value for �✡✠✍☛ ✌ ; (2) a high

value for ✪✬✫ ; and (3) a simple traffic mix of one-way traf-

fic of long-lived flows. Figure 11 shows dramatic oscilla-

tions in the average queue size, with the average queue size

going below �✂✁✏✄✝✆✟✞ and above �✡✠☞☛✑✆✟✞ in each oscillation.

This leads to oscillations between periods of high packet

drop rates and periods of no packet drops, and results in

degraded throughput and high variance in queueing delay.

Exceeding �✡✠✍☛✎✆✟✞ incurs a non-linearity in the form of a

large packet drop, with a corresponding decrease in utiliza-

tion, and forces the average queue size to decrease sharply,

in this case, below �✂✁☎✄✝✆✟✞ . But when the average queue

size falls below �✂✁✏✄✝✆✟✞ , the average packet drop probabil-

ity becomes zero, and the flows once again ramp up their

congestion windows over the next few RTTs, thereby sus-

taining the oscillations. In this case, RED achieves a link

utilization of
q✛✯✍➒

, and a high variance in queuing delay.

The packet loss rate is about
➊✩✲❄✰✷➒

, even with the use of

ECN.

Figure 12 shows that such malignant oscillations are sig-

nificantly dampened with a more realistic traffic mix includ-

ing reverse path traffic and web traffic; that is, even with a

badly tuned and non-adaptive RED, many of the worst ef-

fects of the oscillations are decreased when a slightly more

realistic traffic load is used.

We now consider how Adaptive RED, with its lower

value for ✪ ✫ and its automatically adapting �✡✠☞☛ ✌ , fares

in these two traffic scenarios. Figure 13 shows that even

with the simple traffic mix of one-way, long-lived traffic,

Adaptive RED is able to eliminate the malignant oscilla-

tions, and turn them into benign oscillations. Thus, in spite

of the high, fixed RTT of
✶✵✰✛✯

ms and with neither reverse

traffic nor web traffic, Adaptive RED achieves a utilization

of
q✵✮✩✲❄➉✷➒

, an average queuing queue size oscillating within

the target range of [44, 56] packets, and a negligable loss

rate. (Recall that the traffic is using ECN.) We note that ma-

lignant oscillations persist with Adaptive RED if the larger

value of 0.002 is used for ✪ ✫ ; that is, adapting �✡✠✍☛ ✌ and

choosing a good value for ✪ ✫ are both required for elimi-

nating the malignant oscillations for this scenario.

Figure 14 shows that with a slightly more realistic traffic

mix, with web traffic and reverse traffic, the benign oscil-

lations of Figure 13 have been replaced by more irregular

variations of the average queue size, generally within the

target range of [44, 56] packets. The utilization in this case

is also slightly higher than that in Figure 13.

5.2 The Effects of Queue Weight

While Figure 1 showed the performance costs, in terms of

decreased throughput, of too large a value for ✪ ✫ , this sec-

tion illustrates the costs, in terms of increased queuing de-

lay, of too small a value for ✪ ✫ .
Figures 15 through 17 show the results of a simple simu-

lation with two long-lived TCP flows, each with a round-

trip around
❞✍✰

ms, competing over a
✭✖✰

Mbps link. The

second TCP flow starts a time 2.5 in a 10-second simula-

tion. With two TCP flows, the average congestion window

should be around 85 packets. All three simulations use non-

adaptive RED, and differ only in ✪✬✫ . These simulations also

illustrate one of the costs of an overly-small value of ✪ ✫ , of

being slow to respond to a large, sustained increase in the

8

0

20

40

60

80

100

120

0 20 40 60 80 100

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h

➓

Time (in Seconds)

Figure 11: RED, one-way long-lived traffic, ✪ ✫ =0.002.

0

20

40

60

80

100

120

0 20 40 60 80 100

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h

➓

Time (in Seconds)

Figure 12: RED, richer traffic mix, ✪ ✫ =0.002.

0

20

40

60

80

100

120

0 20 40 60 80 100

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h

➓

Time (in Seconds)

Figure 13: Adaptive RED, one-way long-lived traffic, ✪ ✫ =0.00027.

0

20

40

60

80

100

120

0 20 40 60 80 100

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h

➓

Time (in Seconds)

Figure 14: Adaptive RED, richer traffic mix, ✪ ✫ =0.00027.

instantaneous queue.

The simulation in Figure 15 uses RED with a large value

for ✪ ✫ of 0.002. All of the simulations use the automatic

settings for �✂✁☎✄✝✆✟✞ and �✡✠☞☛✑✆✟✞ , resulting in �✂✁✏✄✝✆✟✞ set to 19

packets and �✡✠✍☛✎✆✟✞ set to
➊ �✂✁✏✄✝✆✟✞ . Figure 15 shows the in-

stantaneous queue size, as well as the average queue size

estimated by RED. Although the second TCP is cut off in

its slow-start slightly before it reaches its desired conges-

tion window in Figure 15, Figures 15 and 16 both show

reasonable good performance for this scenario.

In contrast, Figure 17 shows one of the costs of having✪ ✫ set too small. In this simulation ✪ ✫➔✱ ✯✳✲✴✯✵✯✵✯❫✭
, with

the result that RED is slow to detect a sudden increase in

congestion, and does not detect the congestion building up

at time 2.5 until a queue of 350 packets has built up. In

this simulation the sharp increase in the queue is due to the

slow-start of a single high-bandwidth TCP flow, but the in-

crease could also have been due to a flash crowd, a routing

failure, or a denial-of-service attack. This simulation is run

with a large buffer size, allowing the spike in the queue to

reach 350 packets. If the buffer size had been smaller, then

the simulation would simply have reverted to the typical be-

havior of Drop-Tail queue management, of multiple pack-

ets dropped from a window of data. We explored a range of

scenarios, and in almost all cases, even in steady-state sce-

narios, the link utilization suffered when we used a smaller

value of ✪ ✫ than suggested by Equation 1.

5.3 Simulations of Routing Changes

This section explores briefly the transient behavior of Adap-

tive RED in environments with sharp changes in the load

due to routing changes. Figure 18 illustrates the average

queue size as a function of time in a simulation where the

output link becomes unavailable from time
✰✛✯

to time
✮✛✯

(in seconds). The simulation topology includes an alternate

path with a lower precedence but only half the link capac-

ity, so the TCP connections continue to send packets during

the link outage. When the link comes back up, the entire

load is shifted back to the original link. The link utilization

reaches 88.3% over the 10-second period immediately fol-

lowing the repair, and 96.1% for the following 10-second

period. Thus, this scenario demonstrates the good dynamic

behavior of Adaptive RED. More extensive results are pre-

sented in [10].

6 Tradeoffs between Throughput and
Delay

Given the Adaptive RED algorithm and the automatic set-

ting of maxthresh and ✪ ✫ described earlier in this paper, the

only critical parameter left to specify for RED is the target

average queue size. Adaptive RED maintains an average

queue size of twice minthresh; therefore, given a target for

the average queue size, setting minthresh is straightforward.

The hard part is determining the desired average queue size.

The “optimal” average queue size for a router is a func-

tion of the relative tradeoff between throughput and delay,

9

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9 10

S
iz

e
(in

 P
ac

ke
ts

)

→

Time

"ave_queue"
"queue"

Figure 15: RED, two flows, ✪ ✫ too large, at 0.002.

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9 10

S
iz

e
(in

 P
ac

ke
ts

)

→

Time

"ave_queue"
"queue"

Figure 16: RED, automatic setting for ✪ ✫ , 0.00027.

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9 10

S
iz

e
(in

 P
ac

ke
ts

)

→

Time

"ave_queue"
"queue"

Figure 17: RED, ✪ ✫ too small, at 0.0001.

and this tradeoff is necessarily a question of policy. In ad-

dition, these tradeoffs between throughput and delay are a

function of characteristics of the aggregate traffic, in par-

ticular of the burstiness of the aggregate. Thus, scenarios

with one-way traffic, long-lived flows, short RTTs, and a

high level of statistical multiplexing allow both very high

throughput and very low delay, while scenarios with higher

burstiness that results from two-way traffic and web mice or

scenarios with low levels of statistical multiplexing require

some harder tradeoffs between throughput and delay.

Leaving behind the issue of optimality, and following Ja-

cobson et al. in [15] and the simulation scripts in [11],

in automatic mode we set �✂✁☎✄✝✆✟✞ as a function of the link

bandwidth. For slow and moderate speed links, we have

found that setting �✂✁✏✄✝✆✟✞ to five packets works well, so we

continue to use this as a lower bound for �✂✁✏✄✝✆✟✞ in auto-

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180 200

T
im

e
(in

 S
ec

on
ds

)

➣

Average Queue Length

Figure 18: Average queue size variation with routing

change.

matic mode. For a high-speed link, however, an average

queue size of ten packets is very small relative to the delay-

bandwidth product, and results in a severe loss of through-

put.

Our rule of thumb for a plausible tradeoff between

throughput and delay is to require that the average queu-

ing delay at a router be only a fraction of the end-to-end

round-trip time, using a default value of
✭✺✯✵✯

ms. Setting�✂✁✏✄✝✆✟✞ ✱↕↔③➙❬➛ ①③➜ ✚➞➝❃➟➡➠❬➢➤✚✳➥➦ gives a target average queuing delay

of ➧ ■✖▼➨✠ ✸ ✆ ①③➩❏➫ ➙ ✆ seconds, for ➑ the link capacity in pkts/sec.

We use a ➧ ■✖▼➨✠ ✸ ✆ ①③➩❏➫ ➙ ✆ of
✰
ms, and in automatic mode we set�✂✁✏✄✝✆✟✞ to ➭ ✠☞☛➲➯ ✰ ➃ ↔③➙❬➛ ①❻➜ ✚➞➝❏➟✏➠➳➢➨✚☞➥➦ ➵ packets. This translates to

setting minthresh to 12.5 packets for a
✭✺✯

Mbps link, and to

125 packets for a
✭✺✯✵✯

Mbps link. [10] reports on extensive

simulations exploring the tradeoffs between throughput and

delay in a range of settings.

7 Related Work

The parameter sensitivity of RED has been discussed in a

number of papers, and we briefly discuss some of this re-

lated work in this section. There is a growing body of re-

search on AQM, and our paper builds upon observations

from a range of this earlier work. We do not attempt to

evaluate each of these proposals here, but simply note that

we don’t believe that any of these proposals has yet pre-

sented the full answer to the parameter sensitivity of RED.

In particular, we believe that none of these proposals have

presented a deployable mechanism for adapting the RED

parameter �✡✠☞☛ ✌ . Similarly, for the proposals not based

upon RED, we do not believe that any of these has yet pro-

vided a robust, deployable proposal for AQM for realistic

scenarios with bursty two-way traffic and a range of packet

sizes. Some of these proposals will be evaluated in a sepa-

rate work.

The Adaptive RED proposal in this paper is based on the

original Adaptive RED proposed by Feng et al., in [6, 7],

10

of adapting �✡✠✍☛✩✌ as a function of the average queue size.

This original➸ Adaptive RED adjusts the packet dropping

probability, �✡✠☞☛ ✌ , in RED to keep the average queue size

greater than minthresh and less than maxthresh. In particu-

lar, the original version of Adaptive RED increased �✡✠☞☛ ✌
multiplicatively when the average queue size went below

minthresh, and decreased �✡✠✍☛ ✌ multiplicatively when the

average queue size went above maxthresh.

Jacobson et al. in [15], a early draft of an in-progress

paper, suggest a self-tuning RED with the RED parameters

determined by the bandwidth of the output link. Other pro-

posals in [15] include setting the average queue size to the

instantaneous queue size whenever the instantaneous size is

less than the average, and setting minthresh to
✯✳✲❄➊✛➺

.

Ziegler et al.[21, 22, 23] explore the stability of RED,

and recommend settings for �✡✠☞☛ ✌ so that the average queue

size converges to
✇➼➻❉➽ ✚❉✜ ④ ✇✦①③② ✚✢✜➦ . In this paper, we follow

their goal of loosely converging to a certain queue size:

“we define convergence very loosely as achieving a state

of bounded oscillation of the queue-size around a value be-

tween �✂✁✏✄✝✆✟✞ and �✡✠☞☛✑✆✟✞ so that the amplitude of the oscil-

lation of the average queue size is significantly smaller than�✡✠☞☛✑✆✟✞➾❢➔�✂✁☎✄✝✆✟✞ and the instantaneous queue-size remains

greater than zero and smaller than the total buffersize” [21].

[21] recommends settings of �✂✁✏✄✝✆✟✞ , �✡✠☞☛✑✆✟✞ , ✪ ✫ , and �✡✠☞☛ ✌
to achieve these goals. Ziegler et al. set ✪✬✫ as a function

of the link bandwidth to give a fixed time constant in of

one second for the estimator. Ziegler et al. also show that

the original Adaptive RED from [6, 7] does not always give

good performance.

May et al.’s critical evaluation of RED in [18] summa-

rizes as follows: “RED with small buffers does not improve

significantly the performance of the network”, and “param-

eter tuning in RED remains an inexact science, but has no

big impact on end-to-end performance”.

Christiansen et al.[5] evaluated RED experimentally in a

laboratory scenario with web traffic with congestion only in

the forward path, and concluded that RED offers no clear

advantage over tail-drop FIFO in terms of per-connection

response times for web users. The paper also reports that

performance is quite sensitive to the setting of RED param-

eters.

Misra et at. in [19] also discuss the difficulties in tuning

RED parameters. They illustrate the benign oscillations in

the instantaneous queue size, and say that they are currently

investigating tuning RED parameters. Hollot et al. in [13]

also focus on oscillations in the queue size, and use this

starting point to recommend values for RED parameters.

Firoiu et al. in [8] also considered problems with RED

such as oscillations in the queue size, and made recommen-

dations for configuring RED parameters. [8] recommended

that the ideal rate for sampling the average queue size is

once per round-trip time.

A number of papers have proposed alternate mechanisms

for active queue management. These include Ott et al.’s Sta-

bilized RED (SRED) [20], Lapsley et al.’s Random Early

Marking (REM) [17, 4], Hollot et al.’s Proportional-Integral

(PI) controller [14], and Kunniyur et al.’s AVG [16].Several

of these proposals share Adaptive RED’s goal of keeping

a stable average queue size with changing levels of con-

gestion. AVG tries to keep the average queue size small

even during high congestion, and uses a token bucket with

a fill rate less than the link capacity. The PI controller is

primarily designed to avoid oscillations in the queue size.

SRED tackles the goal of stabilizing the buffer occupancy

by estimating the number of active flows. Aweya et al.’s

Dynamic-RED (DRED) [2, 3] also has the goal of main-

taining the queue size close to a threshold value, and uses

a controller that adapts the packet-dropping probability as

a function of the average distance of the queue from the

threshold value.

8 Conclusions

In this paper we have reported on Adaptive RED, which, by

adapting the RED parameter �✡✠☞☛☞✌ and automatically set-

ting the RED parameters ✪ ✫ and �✡✠☞☛✑✆✟✞ , maintains a pre-

dictable average queue size and reduces RED’s parameter

sensitivity. Adaptive RED, however, leaves the choice of

the target queue size to network operators who must make

a policy tradeoff between utilization and delay. In future

work, we plan to explore the use of Adaptive RED in vir-

tual queues with the goal of providing very small average

queueing delays. In this case, the virtual queue would be

configured with a throughput slightly lower than the actual

throughput of the link so that the queuing delay would be

determined solely by the traffic burstiness.

References

[1] J. Aweya, M. Ouellette, D. Y. Montuno and A. Chap-

man. Enhancing TCP Performance with a Load-

adaptive RED Mechanism. International Journal of
Network Management, V. 11, N. 1, 2001

[2] J. Aweya, M. Ouellette, D. Y. Montuno and A. Chap-

man. A Control Theoretic Approach to Active Queue

Management. Computer Networks 36, 2001.

[3] J. Aweya, M. Ouellette, D. Y. Montuno and A. Chap-

man. An Optimization-oriented View of Random

11

Early Detection. Computer Communications, 2001,

to appear.

[4] S. Athuraliya, D. Lapsley, and S. Low. An Enhanced

Random Early Marking Algorithm for Internet Flow

Control. Infocom 2000.

[5] M. Christiansen, K. Jeffay, D. Ott, and F. D. Smith.

Tuning RED for Web Traffic. SIGCOMM, pages 139–

150, Sep. 2000.

[6] W. Feng, D. Kandlur, D. Saha, and K. Shin. Tech-

niques for Eliminating Packet Loss in Congested

TCP/IP Network. U. Michigan CSE-TR-349-97,

November 1997.

[7] W. Feng, D. Kandlur, D. Saha, and K. Shin. A Self-

Configuring RED Gateway. Infocom, Mar 1999.

[8] Victor Firoiu and Marty Borden. A Study of Active

Queue Management for Congestion Control. Infocom,

pages 1435–1444, 2000.

[9] S. Floyd. RED: Discussions of Set-

ting Parameters, November 1997.

http://www.aciri.org/floyd/REDparameters.txt.

[10] S. Floyd, R. Gummadi, and S. Shenker. Adaptive

RED: An Algorithm for Increasing the Robustness of

RED. Technical Report, to appear, 2001.

[11] S. Floyd, M. Handley, J. Padhye, and J. Widmer.

TFRC Web Page, 2000. http://www.aciri.org/tfrc/.

[12] S. Floyd and V. Jacobson. Random Early Detec-

tion Gateways for Congestion Avoidance. IEEE/ACM
Transactions on Networking, 1(4):397–413, Aug.

1993.

[13] C. Hollot, V. Misra, D. Towsley, and W. Gong. A

Control Theoretic Analysis of RED. Infocom, 2001.

[14] C. Hollot, V. Misra, D. Towsley, and W. Gong. On De-

signing Improved Controllers for AQM Routers Sup-

porting TCP Flows. Infocom, 2001.

[15] V. Jacobson, K. Nichols, and K. Poduri, RED

in a Different Light, September 1999. draft,

www.cnaf.infn.it/̃ferrari/papers/ispn/red light 9 30.pdf.

[16] S. Kunniyur and R. Srikant. Analysis and Design of an

Adaptive Virtual Queue (AVQ) Algorithm for Active

Queue Management. CSL Technical Report, Univer-

sity of Illinois, January 2001.

[17] D. Lapsley and S. Low. Random Early Marking for

Internet Congestion Control. Proceedings of Globe-
com ’99, pages 1747–1752, December 1999.

[18] M. May, J. Bolot, C. Diot, and B. Lyles. Reasons

Not to Deploy RED. Proc. of 7th. International Work-
shop on Quality of Service (IWQoS’99), pages 260–

262, June 1999.

[19] Vishal Misra, Wei-Bo Gong, and Donald F. Towsley.

Fluid-based Analysis of a Network of AQM Routers

Supporting TCP Flows with an Application to RED.

SIGCOMM, pages 151–160, 2000.

[20] T. Ott, T. Lakshman, and L. Wong. SRED: Stabilized

RED. Infocom, 1999.

[21] T. Ziegler, S. Fdida, and C. Brandauer. Stabil-

ity Criteria for RED with Bulk-data TCP Traffic,

2001. Technical Report, August 1999. http://www-

rp.lip6.fr/publications/production.html.

[22] T. Ziegler, S. Fdida, and C. Brandauer.

Stability Criteria for RED with TCP

Traffic, May 2000. Technical Report,

http://www.newmedia.at/ tziegler/papers.html.

[23] T. Ziegler, S. Fdida, C. Brandauer, and B. Hechen-

leitner. Stability of RED with Two-way

TCP Traffic, October 2000. IEEE ICCCN,

http://www.newmedia.at/ tziegler/papers.html.

12

