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Adaptive Reduced-Rank Interference Suppression
Based on the Multistage Wiener Filter

Michael L. Honig, Fellow, IEEE,and J. Scott Goldstein, Fellow, IEEE

Abstract—A class of adaptive reduced-rank interference sup-
pression algorithms is presented based on the multi-stage Wiener
filter (MSWF). The performance is examined in the context of di-
rect-sequence (DS) code division multiple access (CDMA). Unlike
the Principal Components method for reduced-rank filtering, the
algorithms presented can achieve near full-rank performance with
a filter rank much less than the dimension of the signal subspace.
We present batch and recursive algorithms for estimating the
filter parameters, which do not require an eigen-decomposition.
Algorithm performance in a heavily loaded DS-CDMA system
is characterized via computer simulation. Results show that the
reduced-rank algorithms require significantly fewer training
samples than other reduced- and full-rank algorithms.

Index Terms—Adaptive filters, code-division multiple access
(CDMA), interference suppression.

I. INTRODUCTION

REDUCED-RANK linear filtering has been proposed for
array processing and radar applications to enable accurate

estimation of filter coefficients with a relatively small amount
of observed data (e.g., see [1], [2] and the references therein).
Other applications of reduced-rank filtering include equaliza-
tion [3] and interference suppression in direct-sequence (DS)
code-division multiple access (CDMA) communications sys-
tems [4]–[8]. In this paper we present reduced-rank adaptive
filtering algorithms which are based on the multi-stage Wiener
filter (MSWF) [9], [10]. Algorithm performance is studied in
the context of DS-CDMA.

Reduced-rank interference suppression for DS-CDMA was
originally motivated by situations where the processing gain
is much larger than the dimension of the signal subspace (e.g.,
[4] and [5]). This is relevant for some applications where a large
processing gain is desired for covertness. If an-tap adaptive
filter is used to suppress interference (e.g., see [6]), then large

implies slow response to changing interference and channel
conditions.

Much of the work on reduced-rank interference suppression
for DS-CDMA has been based on “principal components (PC)”
in which the received vector is projected onto an estimate of
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the lower dimensional signal subspace with largest energy (e.g.,
[4], [7]). This technique can improve convergence and tracking
performance when is much larger than the signal subspace.
This assumption, however, does not hold for a heavily loaded
commercial cellular system. Furthermore, in that application
can still be relatively large (i.e., 100).

Two reduced-rank methods that do not require the dimension
of the projected subspace to be greater than that of the signal
subspace are the “cross-spectral (CS)” method, presented in
[11] (see also [12]), and the MSWF, presented in [10]. Unlike
the CS and PC methods, the MSWF does not rely on an explicit
estimate of the signal subspace, but rather generates a set of
basis vectors by means of a successive refinement procedure
[10]. (See also [8], [13]. An “Auxiliary Vector” filter is pre-
sented, which generates the same subspace as the reduced-rank
MSWF.) This technique can attain near full-rank minimum
mean squared error (MMSE) performance with a filter rank
which is much smaller than the dimension of the signal sub-
space [14]. As will be demonstrated, this low rank enables a
substantial reduction in the number of training samples needed
to obtain an accurate estimate of the filter parameters.

We present a class of adaptive filtering algorithms, which are
motivated by the MSWF. These algorithms do not require an
eigen-decomposition, and are relatively simple (especially for
small filter rank). Both batch and recursive algorithms are pre-
sented in this paper, along with training-based, or decision-di-
rected, and blind versions of each. The blind algorithms require
knowledge of the desired user’s spreading code and associated
timing (i.e., see [6]). We will also assume that timing informa-
tion is available for the training-based algorithms. The perfor-
mance of the adaptive MSWF techniques are illustrated numer-
ically, and are compared with other adaptive reduced-rank tech-
niques.

The next section presents the DS-CDMA model, Sections III
and IV review reduced-rank MMSE filtering and the MSWF,
and Section V presents the adaptive MSWF algorithms. Numer-
ical results are presented in Section VI, and adaptive rank selec-
tion is discussed in Section VII.

II. CDMA SYSTEM MODEL

An asynchronous CDMA system model is considered in
which the th user, , transmits a baseband signal

(1)

where is the th symbol transmitted by user, is the
spreading waveform associated with user, and and are,
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respectively, the delay and amplitude associated with user. We
assume binary signaling, so that . For DS-CDMA,

(2)

where , , is the real-valued
spreading sequence, is the chip waveform, normalized to
have unit energy, is the chip duration, and is the
processing gain. It is assumed that the same spreading code is
repeated for each symbol. The numerical results in Section VI
assume rectangular chip shapes.

Let be the -vector containing samples at the output of a
chip-matched filter during theth transmitted symbol, assuming
that the receiver is synchronized to the desired user. Letting

correspond to the user to be detected, we can write

(3)

where is the spreading sequence associated with the desired
user, and are the two -vectors associated with the

th interferer due to asynchronous transmission, andis the
vector of noise samples at time, assumed to be white with co-
variance . In what follows, we will use the more convenient
notation

(4)

where is the matrix with columns given by the cor-
responding signal vectors, is the vector of transmitted sym-
bols across users, and is the diagonal matrix of amplitudes.
(Since the receiver is synchronized to the desired user, if
contains , then the column of corresponding to user 1
contains all zeros.)

III. REDUCED-RANK LINEAR MMSE FILTERING

The MMSE receiver consists of the vector, which is chosen
to minimize the MSE

(5)

where represents Hermitian transpose. For simplicity, we as-
sume that contains coefficients and spans a single symbol
interval, which is suboptimal for asynchronous DS-CDMA [6].
The following discussion is easily generalized to the case where
the vector spans multiple symbol intervals.

The vector can be estimated from received data via standard
stochastic gradient or least squares estimation techniques [6].
However, large implies slow convergence. A reduced-rank
algorithm reduces the number of adaptive coefficients by pro-
jecting the received vectors onto a lower dimensional subspace.
Specifically, let be the matrix with column vectors
which are an orthonormal basis for a-dimensional subspace,
where . The projected received vector corresponding to
symbol is then given by

(6)

where, in what follows, all -dimensional quantities are de-
noted with a “tilde.”

The sequence of projected received vectors is the input
to a tapped-delay line filter, represented by the-vector for
symbol . The filter output corresponding to theth transmitted
symbol is

(7)

Assuming coherent detection, the vector which mini-
mizes the mean squared error (MSE) , where

, is

(8)

where

(9)

(10)

(11)

The associated MMSE for a rank filter is given by

(12)

Before presenting the MSWF, we briefly mention other re-
duced-rank filters, which have been previously proposed. The
performance of the adaptive MSWF algorithms to be described
will be compared with the performance of these other methods
in Section VI. A simulation study of the adaptive eigen-decom-
position and partial despreading methods is presented in [5].

A. Eigen-Decomposition Techniques

PC reduced-rank filtering is based on the eigen-decomposi-
tion

(13)

where is the orthonormal matrix whose columns are eigen-
vectors of , and is the diagonal matrix of eigenvalues. If we
assume the eigenvalues are ordered as ,
then for given subspace dimension, the projection matrix for
PC is , the first columns of . This technique can
allow a significant reduction in rank when the dimension of the
signal subspace is much less than. If this is not the case, then
projecting onto the subspace for small is likely to reduce
the desired signal component. This is especially troublesome in
a near-far environment where the energy associated with the in-
terference subspace is greater than that for the desired user.

If the spreading code for the desired useris known, then
combining the PC method with the Generalized Sidelobe Can-
celer (GSC) structure [15], [16] maintains the desired signal en-
ergy. Specifically, the filter can be expressed as ,
where is a blocking matrix, and satisfies . Se-
lecting to minimize the output MSE gives ,
where , and . A reduced-rank GSC is
then obtained by projecting the output ofonto a smaller sub-
space, spanned by the columns of. A rank- approximation
for is given by , where . For
the PC method, the columns of are the eigenvectors of
corresponding to the largest eigenvalues [17]–[19].
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Fig. 1. Multistage Wiener filter.

An alternative to PC is to choose the set ofeigenvectors for
the projection matrix which minimizes the MSE. Specifically,
if consists of eigenvectors of , then the MSE can be
written in terms of projected variables as

(14)

where is the diagonal matrix of associated eigen-
values. To minimize , the basis vectors should be the
eigenvectors of associated with the largest values of

, where is the th component of ,
and is the th column of . (Note the inverse weighting of

in contrast with PC.)
This technique, called “cross-spectral (CS)” reduced-rank fil-

tering, was presented in [11]. Prior to that work, a similar CS
metric for ordering the eigenvalues in a GSC was presented in
[12]. The CS reduced-rank filter can perform well for
without the GSC structure since it takes into account the energy
in the subspace contributed by the desired user. Unlike PC, the
estimated subspace for CS requires either training, ora priori
knowledge of the desired user’s spreading code. A disadvan-
tage of eigen-decomposition techniques in general is the com-
plexity associated with estimation of the signal subspace.

B. Partial Despreading

In this method, proposed in [20], the received DS-CDMA
signal ispartially despreadover consecutive segments of
chips, where is a parameter. The partially despread vector
has dimension , and is the input to the -tap filter.
Consequently, corresponds to the full-rank MMSE filter,
and corresponds to the matched filter. The columns of

in this case are nonoverlapping segments of, where each
segment is of length .

Specifically, if , the th column of is

(15)

where , the subscript denotes components
through of the corresponding vector, and there are

zeros on the left and zeros on the right. This
is a simple reduced-rank technique that allows the selection of
MMSE performance between the matched and full-rank MMSE
filters by adjusting the number of adaptive filter coefficients.

IV. THE MULTISTAGE WIENER FILTER (MSWF)

The MSWF was presented in [10] for the known statistics
case, i.e., known covariance matrix and steering vector .
A block diagram of a four-stage MSWF is shown in Fig. 1.
The stages are associated with the sequence of nested filters

, where is the order of the filter. If , then
the filter is the full-rank MMSE (Wiener) filter. Let denote
a blocking matrix, i.e.,

(16)

In what follows, we will sometimes write ,
which is , and other times write ,
which is , but has rank .

Referring to Fig. 1, let denote the output of the filter
, and denote the output of the blocking matrix ,

both at time . The ( )st multi-stage filter is determined by

(17)

For , we have (the desired input symbol),
, and is the matched filter . As in [10], it

will be convenient to normalize the filters so that
.

The filter output is obtained by linearly combining the outputs
of the filters via the weights . This
is accomplished stage-by-stage. Referring to Fig. 1, let

(18)

for and . Then is selected to
minimize .

The rank- MSWF is given by the following set of recur-
sions.

Initialization:

(19)

For (Forward Recursion):

(20)

(21)

if (22)

if (23)

Decrement (Backward Recursion):

(24)

(25)

where . The estimate of is .
At stage the filter generates a desired sequence

and an “observation” sequence . Replacing in the
MSWF by the MMSE filter for estimating
from gives the full-rank MMSE filter. The MSWF
is “self-similar” in the sense that the MMSE filter is
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replaced by the associated MSWF. The covariance matrix for
the projected vector is tri-diagonal
[10].

It is shown in [14] that MSWF has the following properties.

1) Let denote the -dimensional subspace associated
with the rank MSWF. Then

(26)

(27)

where the first set of basis vectors is an orthonormal set,
and the basis vectors in the second set are not orthog-
onal. That is, a reduced-rank MSWF projects the received
signal onto , the Krylov subspace defined by (27), and
optimizes the filter within that subspace.

2) The rank needed to achieve full-rank performance does
not scale with system size ( and ). This is shown
by computing the large system output SINR for the re-
duced-rank MSWF, defined by letting and

with fixed . For the ideal synchronous CDMA
model, as increases, this large system output SINR con-
verges to the full-rank large system SINR as a continued
fraction. As a consequence, full-rank performance is es-
sentially achieved with rank for a wide range of
loads and signal-to-noise ratios (SNRs).

We remark that, as increases, the set of basis vectors in
(27) can become nearly linearly dependent even for . In
that case, the transformed covariance matrix becomes
ill-conditioned, which creates numerical problems with com-
puting the reduced-rank filter. This indicates that fewer than
basis vectors essentially span the projection subspace, and that

can be decreased without significantly increasing the MSE.
This observation is used in Section VII to formulate an adaptive
rank selection method.

V. ADAPTIVE REDUCED-RANK ALGORITHMS

In this section, we present a family of adaptive algorithms
which are related to the MSWF. A straightforward way to de-
rive such an adaptive algorithm is to replace statistical aver-
ages by sample averages. This has the geometric interpreta-
tion of changing the metric space in which variables are de-
fined [21]. Namely, for the known statistics case, we define
the inner product between two random variablesand as

, which leads to an MMSE cost criterion
(minimize for random and ).

For the given data case, inner product between two vectors is
defined in the standard way. Given a sequence ofreceived
vectors and training (or estimated) symbols

(28)

(29)

the ( ) vector of errors is defined as

(30)

Fig. 2. Algorithm 1. Batch adaptive MSWF with training.

and our objective is to minimize , which is the standard
least squares (LS) cost function. For rank , the cost
function becomes

(31)

where and are the associated projected variables. Specifi-
cally

(32)

where the columns of are the estimated basis vectors for
the subspace at time .

A. Batch Algorithms

Here we consider estimation of the MSWF parameters given
and in (28) and (29). The approach just described leads to

Algorithm 1 (see Fig. 2, the batch adaptive MSWF with training
(35)–(43). Following the approach in [10], it is straightforward
to show that this algorithm tri-diagonalizes the
extended sample covariance matrix

(33)

where

- - - (34)

In what follows, we assume that the rows of each blocking
matrix , , are orthonormal, so that the per-
formance is independent of the specific choice of blocking ma-
trix. In general, the performance does depend on the choice
of blocking matrices when they are not constrained to be or-
thonormal [22]. Note that , the minimized LS
cost function in (31). When used in decision-directed mode, the
estimate of the block of transmitted symbolsis , where

is computed from (43).
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Fig. 3. Algorithm 2. Adaptive MSWF based on tri-diagonalization of the
sample covariance matrix.

A nontraining based, or blind version of the preceding al-
gorithm can be obtained simply by substituting (spreading
code for the desired user) for in the preceding algorithm.
The resulting set of forward recursions does not exactly tri-diag-
onalize the extended sample covariance matrix, and the associ-
ated output SINR tends to converge more slowly to the optimum
value relative to a training-based algorithm. An illustrative ex-
ample is given in Section VI.

An alternative set of computations to Algorithm 1 for
estimating the MSWF parameters is Algorithm 2, given
by (44)–(51) (see Fig. 3). Algorithm 2 tri-diagonalizes the
extended sample covariance matrix [10]. Specifically, let

, where is defined by (39), and
“;” separates rows, so that is . Then Algorithm
2 computes the tri-diagonal matrix . Namely,

is the matrix, which occupies
the upper left corner of , computed in Algorithm 2. In
Algorithm 2, denotes the row vector containing the

th through th components of theth row of the matrix .
The MSWF recursions (19), (21)–(23), and (25) are then used
to compute the filter output.

We remark that the computational requirements of the pre-
ceding algorithm for small are modest in comparison with
reduced-rank techniques that require the computation of eigen-
vectors of the sample covariance matrix .

B. Recursive Algorithms

A recursive update for the extended sample covariance matrix
is given by

(52)

where is a forgetting factor which discounts past data. The
preceding algorithms can, in principle, be used to update the
MSWF parameters at each, although this would be compu-
tationally intensive. A somewhat simpler recursive algorithm,

Fig. 4. Algorithm 3. Stochastic gradient (SG) MSWF.

which is equivalent to the adaptive MSWF, is based on com-
puting powers of , to be described in the next section.

Rather than perform an exact tri-diagonalization of the
sample covariance matrix at each iteration, it is also possible to
approximate the MSWF parameters via sample averages. This
leads to Algorithm 3, given by (53)–(62) (see Fig. 4), the “Sto-
chastic Gradient (SG)” MSWF algorithm. This algorithm is
computationally simpler than recursive versions of Algorithms
1 and 2, but does not exactly tri-diagonalize the extended
sample covariance matrix at each iteration. Consequently,
Algorithm 3 does not perform as well as the “exact” Algorithms
1 and 2, as the results in Section VI illustrate.

C. Algorithms Based on Powers of

An alternative set of adaptive algorithms can be derived based
on the second representation for given in (27). For the given
data case with training, we replace the matrix of basis vectors

by

(63)

where

(64)

and is updated according to (52). Let

(65)

(66)

(67)
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Fig. 5. Algorithm 4. Batch adaptive algorithm based on ppowers of the sample
covariance matrix.

where the dependence onis not shown for convenience. Note
that is an matrix. Selecting to
minimize (31), where is given by (32), gives

(68)

Given and in (28) and (29), a reduced-rank batch
algorithm with training is Algorithm 4 given by (69)–(71)
(see Fig. 5). If is known, then in the absence of training,

in (63) and (65) can be replaced by .
Following the same argument used to prove [14, Theorem 2],

it can be shown that Algorithm 4 is equivalent to Algorithm 1 if
the blocking matrix in (40) is replaced by , and the
dimensions of the other variables are adjusted accordingly. That
is, both algorithms produce the same filter output. Of course, the
preceding algorithm can be implemented recursively, where the
variables and are recomputed for each.

VI. NUMERICAL RESULTS

Fig. 6 shows plots of error rate versus the number of di-
mensions for reduced-rank adaptive algorithms after training
with 200 symbols. Parameters for all numerical examples are

, , and the received powers are log-normal
with standard deviation 6 dB. The top graph shows results for
the following algorithms: MSWF, CS, PC with the GSC struc-
ture (PC-GSC), and the matched filter (MF). For the adaptive
CS method, and in (13) and (14) are replaced by and

, respectively. The simulated MSWF and CS filters require
a training sequence, and do not require knowledge of. In
contrast, the simulated PC-GSC does not require a training se-
quence, but is assumed to know.

The bottom graph in Fig. 6 shows results for three partial de-
spreading (PD) methods, which correspond to the way the filter

is updated given the sequence of training symbols
and the projected (partially despread) vectors . Stochastic
Gradient with PD (SG-PD) indicates that the vectoris up-
dated according to a normalized Stochastic Gradient algorithm.
LS-PD and MMSE-PD correspond to LS and MMSE solutions
for . The adaptive PD algorithms require both a training se-
quenceandknowledge of .

The error rate in Fig. 6 is computed assuming that the
residual interference plus noise at the output of the adaptive
filter is Gaussian. Specifically,

(72)

(a)

(b)

Fig. 6. Error rate versus the number of dimensions for reduced-rank adaptive
algorithms after training with 200 symbols.N = 128, 42 asynchronous users,
standard deviation of received powers= 6 dB, desired user’s SNR= 10
dB. (a) Comparison of adaptive MSWF with reduced-rank filters based on
eigen-decomposition. (b) Comparison of adaptive MSWF with PD methods.

where is the covariance matrix for the interference plus
noise [i.e., (10) without the desired signal], and is the re-
duced-rank filter, which must be computed from the estimated
MSWF parameters (see [10]), or equivalently, from (68). Re-
sults are averaged over random spreading codes, delays, and
powers.

Fig. 6 shows that the adaptive reduced-rank techniques gen-
erally achieve optimum performance when . Namely,
when is large, insufficient data is available to obtain an accu-
rate estimate of the filter coefficients, whereas for small, there
are insufficient degrees of freedom to suppress interference. The
minimum error rate for the adaptive MSWF is achieved with
only eight stages (dimensions), which is much smaller than the
minimizing order for the other reduced-rank techniques. Fur-
thermore, this minimum error rate for the MSWF is substan-
tially lower than the error rate for the matched filter receiver,
and is not very far from the full-rank MMSE error rate. Addi-
tional simulations with only 100 training samples show that the
minimum error rate for the adaptive MSWF is again achieved
with .

Fig. 7 shows output SINR versus time, or number of training
symbols, for the “exact” MSWF algorithm given by (44)–(51).
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Fig. 7. Output SINR versus time (training symbols) for recursive MSWF and
RLS-PD algorithms. Parameters are the same as in Fig. 6.

Curves corresponding to different ranksare shown. Analo-
gous curves for the RLS algorithm with PD are also shown.
System parameters are the same as in Fig. 6. The figure shows
that a low-rank adaptive MSWF (e.g., ) can converge sig-
nificantly faster than the full-rank RLS, and has nearly the same
asymptotic SINR. As expected, for the RLS with PD, as the
dimension decreases, convergence speed increases, but asymp-
totic SINR decreases.

Fig. 8 compares the convergence of blind MSWF algorithms
(i.e., ). Plots are shown for the exact MSWF with

and , and for the gradient MSWF with . The
rank filters perform best over a wide range of training
intervals. Also shown are plots for the full-rank blind SG algo-
rithm [6], the full-rank blind RLS algorithm (i.e., ),
and the MSWF with training with . These results show
that for the parameters selected, the reduced-rank algorithms
converge significantly faster than the analogous full-rank algo-
rithms. However, we remark that the full-rank blind RLS algo-
rithm was found to be sensitive to the initialization of, and
the choice of exponential weightin (52). (The full-rank RLS
algorithm with training is much less sensitive to the choice of
these parameters.) Specifically, for the exact algorithms shown
in Fig.8, and . For the SG algo-
rithms, . Reducing significantly improves the con-
vergence speed of the full-rank RLS algorithm over relatively
short training intervals, but this is traded off against degraded
steady-state performance. In contrast, the performance of the
blind MSWF is relatively insensitive to these parameters. These
results also show that there is a noticeable degradation in perfor-
mance in going from the training-based to blind to SG MSWF
algorithms for the case considered. Still, these latter algorithms
perform significantly better than the full-rank SG algorithm.

The initial degradation in performance shown for the blind al-
gorithms (especially prominent for the full-rank RLS algorithm)
occurs because the estimated covariance matrixis ill-condi-
tioned for very short training intervals. This behavior has been
verified analytically in [23]. Increasing the diagonal weights in

Fig. 8. Output SINR versus time (number of received vectors) for blind
adaptive MSWF algorithms. Parameters are the same as in Fig. 6.

the initial estimate reduces this initial degradation at the
expense of somewhat slower convergence to steady-state.

VII. RANK ADAPTATION

Fig. 6 indicates that the performance of the adaptive MSWF
can be a sensitive function of the rank. Here we provide
two adaptive methods for selecting the rank of the filter. Re-
lated work on rank selection for the Auxiliary Vector method is
presented in [24]. The first method is based on the observation
that the basis vectors , where ,
are linearly dependent, or nearly dependent, for relatively small
values of . Furthermore, it is easily shown that if is in ,
the subspace spanned by , then for all

. This leads to thestopping rule

(73)

where is the orthogonal projection of the vectoronto
the subspace, and is a small positive constant.

For the powers of method, the stopping rule (73) prevents
the matrix in (70) from being ill-conditioned. In the Ap-
pendix it is shown that

(74)

where is given by (37). We have not found an analogous
expression for in terms of MSWF parameters, which is
easily computable. Consequently, we do not have an equivalent
stopping rule which can be conveniently used with Algorithms
1–3.

The second method for selecting the filter rank is based on
estimating the MSE from thea posterioriLS cost function

(75)
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Fig. 9. Output SINR versus number of symbols for the blind adaptive MSWF
with rank adaptation. Parameters are the same as in Fig. 6.

where the subscript denotes the rank associated with the vari-
able. For each, we can select the which minimizes .
The exponential weighting factor is needed since the optimal
rank can change as a function of training interval.

The preceding rank selection techniques were simulated for
the same system model and parameters used to generate Fig. 6.
For rank selection based on (73), we chose . Further
simulations indicate that performance is insensitive to this
choice over a reasonable range (i.e., between 10and 10 ).
For the MSWF with training, the results essentially coincide
with those shown for rank in Fig.7, although the second
method, based on thea posterioriLS cost function, performs
slightly worse than the first method. Further simulations and
analysis indicate that rank appears to be optimal, or
nearly optimal, for a wide range of system parameters and
training intervals [23]. This observation is consistent with the
results in [14] (for synchronous CDMA), which show that the
MSWF achieves essentially full-rank performance with rank

.
For the blind adaptive MSWF, the optimal rank generally

changes with the training interval, as shown in Fig. 8. For very
short training intervals ( ), or is best. The
optimal increases with training, but is generally5, which is
typically less than the optimal for the MSWF with training.
Fig. 9 shows output SINR versus training interval for the blind
adaptive MSWF with rank selected according to (73), and rank
selected by minimizing in (75) with for each
. Also shown are curves corresponding to fixed ranks

and . For the case simulated, the latter rank adaptation
method is able to track the optimal rank fairly closely, whereas
the former method tracks the performance with .

VIII. C ONCLUSION

Adaptive reduced-rank linear filters have been presented
based on the MSWF. These algorithms can be used in any
adaptive filtering application, although the performance has
been examined in the context of interference suppression for

DS-CDMA. For large filter lengths, the MSWF allows a sub-
stantial reduction in rank, relative to other reduced-rank filters,
such as those based on an eigen-decomposition of the sample
covariance matrix. Numerical results show that the adaptive
MSWF achieves near full-rank performance with fewer training
samples than what is required by other full- and reduced-rank
techniques. For the examples considered, an adaptive MSWF
with rank eight achieves near full-rank performance with
significantly less than training samples, where is the
number of filter coefficients. Methods for tracking the optimal
rank as a function of training interval have also been presented.

APPENDIX

DERIVATION OF (74)

It is shown in [14] that

(76)

where is given by (20) for the MSWF and
is a normalization constant. For the given data

(unknown statistics) case, is given by (37).
From (27) and (76), we can write

(77)

where , and the s are constants, so that

(78)

Combining (78) with (76) gives

(79)

To evaluate , we combine (76) and (77) which gives

(80)

Writing , and equating
right- and left-hand coefficients of shows that

(81)

since . Combining with (79) establishes (74) for the
known statistics case. The preceding derivation also applies to
the given data case, where statistical averages are replaced by
sample averages.
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