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Adaptive Reduced-Rank MMSE Filtering With
Interpolated FIR Filters and Adaptive Interpolators

Rodrigo C. de Lamare and Raimundo Sampaio-Neto

Abstract—In this letter, we propose a broadly applicable re-
duced-rank filtering approach with adaptive interpolated finite
impulse response (FIR) filters in which the interpolator is ren-
dered adaptive. We describe the interpolated minimum mean
squared error (MMSE) solution and propose normalized least
mean squares (NLMS) and affine-projection (AP) algorithms
for both the filter and the interpolator. The resulting filtering
structures are considered for equalization and echo cancellation
applications. Simulation results showing significant improvements
are presented for different scenarios.

Index Terms—Adaptive algorithms, adaptive equalization, echo
cancellation, interpolated FIR filters, reduced-rank filtering.

I. INTRODUCTION

REDUCED-RANK filtering [1], [2] and other short-data-
record methods [3] are useful in low sample support

situations where they can offer improved convergence perfor-
mance at an affordable complexity. In this context, adaptive
interpolated finite impulse response (AIFIR) filters [4], [5]
represent an interesting alternative for substituting classical
adaptive FIR filters. These structures retain the advantages of
original interpolated FIR ones and present an error surface
with a global minimum if the mean squared error (MSE) cost
function is used [6]. In some applications, they show a better
convergence rate and can reduce the computational burden for
filtering and coefficient updating, due to the reduced number
of adaptive elements. In this work, we propose a novel and
effective AIFIR filter scheme in which the interpolator is also
made adaptive for performing adaptive reduced-rank filtering.
We describe the interpolated minimum mean squared error
(MMSE) filter solution and introduce normalized least mean
square (NLMS) and affine-projection (AP) algorithms for both
IFIR filter and interpolator. The novel AIFIR scheme and al-
gorithms are compared with conventional AIFIR filters with
fixed interpolators, full-rank FIR filters and recent approaches
such as the multistage Wiener filter (MWF) [1] and the auxil-
iary-vector filtering (AVF) with nonorthogonal auxiliary vectors
(AVs) [3].

II. LINEAR INTERPOLATED MMSE FILTERING

Here, we describe linear interpolated filters based on the MSE
criterion and detail the underlying principles of the proposed
structure. Fig. 1 shows the structure of an AIFIR filter, where an
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adaptive interpolator and an adaptive reduced-rank filter are em-

ployed. The observation vector ,

where is the transpose operator, is filtered by the inter-

polator filter , yielding the inter-

polated observation vector , which is projected onto an
-dimensional vector . This procedure corresponds

to removing samples of of each set of consec-
utive ones and then computing the inner product of with
the -dimensional vector of filter coefficients . The pro-
jected interpolated observation vector is ob-
tained with the aid of the projection matrix that is
mathematically equivalent to uniform signal decimation on the

vector . An interpolated MMSE filter with interpo-
lation factor can be designed by choosing the structure of
as
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(1)
where denotes the th row. The key
strategy in the proposed approach, which allows us to devise
solutions for both interpolator and reduced-rank filters, is to ex-
press the output , where denotes Her-
mitian transpose, as a function of and

(2)

where , the coefficients of the IFIR filter and
the interpolator weight vectors and are complex, the
asterisk denotes complex conjugation, is a length seg-
ment of the observation vector beginning at , and

...
...

. . .
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(3)
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The MMSE expressions for both interpolator and reduced-rank
filters can be computed if we consider the cost function

(4)

where is the desired output, and denotes expected
value. By fixing the interpolator filter and minimizing
(4) with respect to , the interpolated Wiener filter weight
vector is

(5)

where , ,
, and by fixing and minimizing (4) with respect

to , we arrive at

(6)

where , , and
. Note that (5) and (6) are not closed-form

solutions for and since (5) is a function of , and
(6) depends on , and thus, one has to iterate (5) and (6)
with an initial guess to obtain a solution. The associated MSE
expressions are

(7a)

(7b)

where . We remark that points of global min-
imum of (4) can be obtained by and

or and
. At a minimum point, (7a) equals (7b) , and the

MMSE for the proposed structure is achieved. We further note
that since , for every , then if is a point
of global minimum of , then is also a point of global
minimum. Therefore, points of global minimum (optimum in-
terpolator filters) can be obtained by .
Since the existence of at least one point of global minimum of

for is guaranteed by the theorem of Weierstrass
[7], then the existence of (infinite) points of global minimum is
also guaranteed for the cost function in (4). For a gradient search
algorithm, the cost function should not exhibit points of local
minimum. Despite the fact that an analytical proof is not yet
available, it is conjectured that (4) has this property. To support
this claim, the plot of the error-performance surface of [for
small interpolator filter length , can be expressed
in spherical coordinates, and a surface can be constructed], for
various scenarios, reveals that has a global minimum value
(as it should) but does not exhibit local minima, which implies
that (4) has no local minima either [if the cost function in (4) had
a point of local minimum, then in (7a) should also exhibit
a point of local minimum, even though the reciprocal is not nec-
essarily true: A point of local minimum of may correspond
to a saddle point of , if it exists]. In Section III, we
propose an iterative solution via adaptive algorithms.

III. ADAPTIVE ALGORITHMS

We describe NLMS and AP algorithms that adjust the param-
eters of the interpolator and the reduced-rank filter based on the

Fig. 1. Proposed adaptive reduced-rank filter structure.

Fig. 2. BER performance of the equalizers with N = 32, L = 4, N =
200, v(0) = [0:5 1 0:5] . The optimized parameters are � = 0:15 and
� = 0:015 for the NLMS and � = 0:1 and � = 0:0075 for the APs.

minimization of the MSE. The novel structure gathers fast con-
vergence, low complexity, and additional flexibility since the de-
signer can adjust the interpolation factor and the length of the
interpolator , depending on the need for fast convergence and
response to changing environments. In addition, the proposed
scheme trades off one adaptive algorithm with full rank in favor
of two reduced-rank recursions, which are operating in parallel.

A. Interpolated NLMS (INLMS) Algorithm

Consider the following unconstrained cost function:

(8)

where and are scalar Lagrange multipliers, the op-
erator Re selects the real part of the argument, and

. Taking the gradient terms of (8) with
respect to , , , and , setting the gradient
terms to zero and solving the resulting equations above yields

(9)

(10)

(11)

where and are
the step sizes of the algorithm, and and are the conver-
gence factors. The new method has a computational complexity

.
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B. Interpolated Affine Projection (IAP) Algorithm

The AP algorithm is one of the prominent adaptive algorithms
that can achieve a good compromise between fast convergence
and low computational complexity. By adjusting the number
of projections, the performance of the algorithm can be con-
trolled from that of the NLMS to that of the RLS algorithm [6].
The AP updates its coefficient vector such that the new solu-
tion belongs to the intersection of hyperplanes defined by the
present and the previous data pairs. The observation ma-
trix is , ,

, the desired output vector
in this case comprises out-

puts, and the error vector is given by

(12)

Consider the following Lagrangian cost function:

Re

Re (13)

where and are vectors of Lagrange multipliers. By cal-
culating the gradient terms of (13), setting them to zero, and
solving the resulting equations, we arrive at the following algo-
rithm:

(14)

(15)

(16)

(17)

where and are the convergence factors, and is a small
constant used to improve robustness. The IAP algorithm de-
scribed here has a computational complexity

, where is the number of operations
required to invert a matrix.

IV. SIMULATIONS

In this section, the filtering structures and algorithms de-
scribed in Sections II and III are used for equalization and
echo cancellation purposes and compared with the full rank,
the AIFIR with fixed interpolators, the MWF [1], and the AVF
of [3]. The convergence and bit error rate (BER) performance
of the resulting equalizers are assessed in a binary phase-shift
keying (BPSK) [8], [9] system for a range of settings. After
coherent demodulation, matched filtering, and sampling at data
rate , the received signal vector is , where

, ,
the channel coefficients at time are , the
complex symbol , is the channel length,
and is a complex white
Gaussian noise vector with covariance matrix . The de-
tected symbols are given by sgn Re , and
the SNR is defined by SNR . We consider
both stationary and typical mobile channel models. The mobile
channel coefficients for the users are , where

is obtained with Clarke’s model

Fig. 3. BER performance of the equalizers withN = 32,L = 4,N = 200,
f T = 0:005, v(0) = [0:5 1 0:5] . The optimized parameters are � =
0:075 and � = 0:005 for the NLMS, whereas � = 0:05 and � = 0:005
for the APs.

[8]. The results are shown in terms of the normalized Doppler
frequency (cycles/symbol). For the stationary channel,
which is found in [9] and exhibits deep spectral nulls, we make

and use the coefficients , ,
, , and . We compare the

full-rank and the reduced-rank equalizers with the NLMS and
AP algorithms for both fixed and adaptive interpolators, as
depicted in the legends of Figs. 2 and 3. The algorithms use
training symbols and then switch to decision-directed mode.
The convergence factors of the algorithms, the number of
stages of the MWF, and AVs of the AVF have been optimized.
Simulations are averaged over 100 runs and 1000 symbols.

We have conducted experiments in order to obtain the most
adequate dimension for the interpolator , with values
ranging from to . The results indicated that
BER performance was not sensitive to an increase in the number
of taps in . Thus, for this reason and to keep the complexity
low, we selected . In Fig. 2, we show the results for the
stationary channel scenario. In Fig. 3, the results are depicted
for a four-path time-varying fading mobile channel, where
each path is spaced by four symbols, with the profile given by

, , , and .
The reduced-rank receivers that employ adaptive interpo-

lators achieve a superior convergence and BER performance
to full-rank (that need long transmissions to outperform our
scheme) and reduced-rank equalizers that do not update their
interpolators. The improvements are even more significant
for the time-varying channel, as shown in Fig. 3. The AP
algorithms perform better than NLMS recursions, and as the
number of projections is increased, so is the performance.
The novel AIFIR approach using the NLMS is comparable to
the MWF and the AVF and is superior to the MWF and the
AVF when using the AP, whereas its complexity is inferior
to the AVF and the MWF. A disadvantage of the AIFIR as
compared to the MWF and the AVF is an extra effort to tune
the convergence factors.

In echo cancellation applications, the objective of adaptive
filtering is to estimate the acoustic echo path to be cancelled.
Here, we consider an echo path measured in a car, as shown in
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Fig. 4. Car echo path.

Fig. 5. Segmental ERLE curves with N = 128, L = 2, and v(0) =
[0:5 1 0:5] . The optimized parameters are � = 0:15 and � = 0:00025 for
the NLMS, while � = 0:15 and � = 0:00025 for the APs.

Fig. 4, and use real speech and echo signals that are sampled at
8 KHz and quantized to 16 bits. To measure the effectiveness
of the proposed scheme, we have computed the echo return loss
enhancement (ERLE), given by ERLE dB,
where is the error signal [10]. To obtain the most adequate
dimension for the interpolator , we carried out experiments
with values ranging from to and measured the
ERLE performance. The results reveal that achieves a
satisfactory performance at a reduced complexity.

We show the results in terms of segmental ERLE, whose
estimates are obtained by averaging and over 20 ms
frames (160 samples). The curves for the echo cancellation
experiments, depicted in Figs. 5 and 6, indicate that the re-
duced-rank structures that employ adaptive interpolators have a
better performance than the full-rank echo canceller for .
For , the proposed scheme achieves a comparable perfor-
mance to the full-rank filter with only 35 adaptive
elements. The echo cancellers with adaptive interpolators are
significantly superior to the fixed interpolated version in all
situations. In comparison with the MWF and the AVF, the
novel AIFIR approach is slightly superior with the NLMS and
considerably better with the AP.

The simulations results reveal that the algorithms always
converge to the same minimum value, provided that ade-
quate step sizes are chosen, (this eliminates the
signal before decimation) and independently of any initial-
ization, which is an important feature that advocates the
nonexistence of local minima. A convergence analysis of
the proposed method considers the trajectory of both param-
eter vectors in order to obtain the mean tap weight vectors,

Fig. 6. Segmental ERLE curves with N = 128, L = 4, and v(0) =
[0:5 1 0:5] . The optimized parameters are � = 0:15 and � = 0:00025 for
the NLMS, whereas � = 0:15 and � = 0:00025 for the APs.

that is, and and the ex-
cess MSE. For instance, the mean tap vector analysis yields

,
where and are functions of , , and .
For stability, the convergence factors should be chosen so that
the eigenvalues of are less than one. A complete
convergence analysis of the new scheme, conditions, and proofs
are not included here due to lack of space and are intended for
a future and longer paper.

V. CONCLUSIONS

We proposed low-complexity reduced-rank filters based on
AIFIR filters with adaptive interpolators and developed NLMS
and AP adaptive algorithms for the proposed schemes. These
structures were tested for equalization and echo cancellation,
showing superior performance to previously reported AIFIR
techniques with fixed interpolators, full-rank filters, and the
MWF and AVF methods.
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