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Abstract— The paper presents a methodology for feedback
adaptive control of active vibration systems in the presence of
time varying unknown multiple narrow band disturbances. A
direct adaptive control scheme based on the internal model
principle and the use of the Youla-Kucera parametrization
is proposed. This approach is comparatively evaluated with
respect to an indirect adaptive control scheme based on the
estimation of the disturbance model. The evaluation of the
methodology is done in real time on an active suspension system
and on an active vibration control system using an inertial
actuator.

Index Terms— direct adaptive control, internal model prin-
ciple, Youla-Kucera parametrization, adaptive disturbance re-
jection, multiple narrow band disturbances

I. INTRODUCTION

One of the basic problems in control is the attenuation

(rejection) of unknown disturbances without measuring them.

The common framework is the assumption that the distur-

bance is the result of a white noise or a Dirac impulse passed

through the ”model of the disturbance”. While in general

one can assume a certain structure for such ”model of distur-

bance”, its parameters are unknown and may be time varying.

This will require to use an adaptive approach. To be more

specific, the disturbances considered can be defined as ”finite

band disturbances”. This includes single or multiple narrow

band disturbances or sinusoidal disturbances. Furthermore

for robustness reasons the disturbances should be located in

the frequency domain within the regions where the plant has

enough gain (see explanation in section III).

Solutions for this problem, provided that an ”image” of

the disturbance can be obtained by using an additional

transducer, have been proposed by the signal processing com-

munity and a number of applications are reported ([12], [13],

[6], [17]). However, these solutions (inspired by Widrow’s

technique for adaptive noise cancellation ([32])) ignore the

possibilities offered by feedback control systems and require

an additional transducer. The principle of this signal process-

ing solution for adaptive rejection of unknown disturbances

is that a transducer can provide a measurement, highly

correlated with the unknown disturbance. This information is

applied to the control input of the plant through an adaptive

filter (in general a Finite Impulse Response - FIR) whose

parameters are adapted such that the effect of the disturbance

upon the output is minimized. The disadvantages of this

approach are:

• It requires the use of an additional transducer.

• Difficult choice for the location of this transducer (it is

probably the main disadvantage).

• It requires the adaptation of many parameters.

To achieve the rejection of the disturbance (at least asymp-

totically) without measuring it, a feedback solution can be

considered. As mentioned earlier, the common framework

is the assumption that the disturbance is the result of a

white noise or a Dirac impulse passed through the ”model of

the disturbance” 1. Several problems have been considered

within this framework leading to adaptive feedback control

solutions:

1) Unknown plant and disturbance models ([14]).

2) Unknown plant model and known disturbance ([29],

[33]).

3) Known plant and unknown disturbance model ([8], [2],

[3], [31], [28], [11], [18], [19], [22]).

The present paper will focus on the last case, since this is

the situation encountered in many applications. Among the

various approaches considered for solving this problem, the

following ones may be mentioned:

1) Use of the internal model principle ([16], [20], [5],

[30], [31], [2], [3], [18], [19], [22]).

2) Use of an observer for the disturbance ([28], [11]).

3) Use of the ”phase-locked” loop structure considered in

communication systems ([8], [7]).

Of course, since the parameters of the disturbance model

are unknown, all these approaches lead to an adaptive

implementation which can be of direct or indirect type.

From the user point of view and taking into account the

type of operation of existing adaptive disturbance compen-

sation systems one has to consider two modes of operation

of the adaptive schemes:

• Self-tuning operation (the adaptation procedure starts

either on demand or when the performance is unsat-

isfactory and the current controller is frozen during the

estimation/computation of the new controller parame-

ters).

1Throughout the paper it is assumed that the order of the disturbance
model is known but the parameters of the model are unknown (the order
can be estimated from data if necessary).



Fig. 1. Indirect adaptive control scheme for rejection of unknown
disturbances
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Fig. 2. Direct adaptive control scheme for rejection of unknown distur-
bances

• Adaptive operation (the adaptation is performed contin-

uously and the controller is updated at each sampling).

Using the internal model principle, the controller should

incorporate the model of the disturbance ([16], [20], [5],

[30]). Therefore the rejection of unknown disturbances raises

the problem of adapting the internal model of the controller

and its re-design in real-time.

One way for solving this problem is to try to estimate

in real time the model of the disturbance and re-compute

the controller, which will incorporate the estimated model of

the disturbance (as a pre-specified element of the controller).

While the disturbance is unknown and its model needs to be

estimated, one assumes that the model of the plant is known

(obtained for example by identification). The estimation

of the disturbance model can be done by using standard

parameter estimation algorithms (see for example [25], [27]).

This will lead to an indirect adaptive control scheme. The

principle of such a scheme is illustrated in figure 1. The

time consuming part of this approach is the redesign of

the controller at each sampling time. The reason is that

in many applications the plant model can be of very high

dimension and despite that this model is constant, one has

to re-compute the controller because a new internal model

should be considered. This approach has been investigated

in [8], [18], [19].

However, by considering the Youla-Kucera parametriza-

tion of the controller (known also as the Q-parametrization),

it is possible to insert and adjust the internal model in the

controller by adjusting the parameters of the Q polynomial

(see figure 2). It comes out that in the presence of unknown

disturbances it is possible to build a direct adaptive control

scheme where the parameters of the Q polynomial are

directly adapted in order to have the desired internal model

without recomputing the controller (polynomials R0 and S0

in figure 2 remain unchanged). The number of the controller

parameters to be directly adapted is roughly equal to the

number of parameters of the denominator of the disturbance

model. In other words, the size of the adaptation algorithm

will depend upon the complexity of the disturbance model.

This paper focuses on the direct feedback adaptive control

for the case of unknown and time-varying frequency narrow

band disturbances. The direct adaptive control scheme to

be presented([22]) takes advantage of the Youla-Kucera

parametrization for the computation of the controller. For

evaluation purposes (complexity and performance) an indi-

rect adaptive control scheme based on the Internal Model

Principle will be also presented.

The paper is organized as follows. Section II is dedicated

to a brief review of the plant, disturbance and controller rep-

resentation as well as of the Internal Model Principle. Some

robustness issues are addressed in section III. The direct

and the indirect adaptive control schemes for disturbance

rejection are presented in sections IV and V, respectively.

The application to an active suspension system, including

the real-time results, is presented in VI. The application to

the active vibration control system using an inertial actuator,

including real time results is presented in section VII . Some

concluding remarks are given in section VIII.

II. PLANT REPRESENTATION AND CONTROLLER

STRUCTURE

The structure of a linear time invariant discrete time model

of the plant (used for controller design) is:

G(z−1) =
z−dB(z−1)

A(z−1)
=

z−d−1B∗(z−1)

A(z−1)
, (1)

with:

d = the plant pure time delay in

number of sampling periods

A = 1 + a1z−1 + · · ·+ anA
z−nA ;

B = b1z−1 + · · ·+ bnB
z−nB = q−1B∗ ;

B∗ = b1 + · · ·+ bnB
z−nB+1

,

where A(z−1), B(z−1), B∗(z−1) are polynomials in the com-

plex variable z−1 and nA, nB and nB − 1 represent their

orders2. The model of the plant may be obtained by system

identification. Details on system identification of the models

considered in this paper can be found in [26], [9], [23], [21],

[1], [10].

2The complex variable z−1 will be used for characterizing the system’s
behavior in the frequency domain and the delay operator q−1 will be used
for describing the system’s behavior in the time domain.



Since in this paper we are focused on regulation, the

controller to be designed is a RS-type polynomial controller

([24], [26]) - see also figure 5.

The output of the plant y(t) and the input u(t) may be

written as:

y(t) =
q−dB(q−1)

A(q−1)
·u(t)+ p1(t) ; (2)

S(q−1) ·u(t) = −R(q−1) · y(t) , (3)

where q−1 is the delay (shift) operator (x(t) = q−1x(t + 1))
and p1(t) is the resulting additive disturbance on the output
of the system. R(z−1) and S(z−1) are polynomials in z−1

having the orders nR and nS, respectively, with the following
expressions:

R(z−1) = r0 + r1z−1 + . . .+ rnR
z−nR = R′(z−1) ·HR(z−1) ;(4)

S(z−1) = 1+ s1z−1 + . . .+ snS
z−nS = S′(z−1) ·HS(z

−1) , (5)

where HR and HS are pre-specified parts of the controller

(used for example to incorporate the internal model of a

disturbance or to open the loop at certain frequencies).

We define the following sensitivity functions:

• Output sensitivity function (the transfer function be-

tween the disturbance p1(t) and the output of the system

y(t)):

Syp(z
−1) =

A(z−1)S(z−1)

P(z−1)
; (6)

• Input sensitivity function (the transfer function between

the disturbance p1(t) and the input of the system u(t)):

Sup(z
−1) = −

A(z−1)R(z−1)

P(z−1)
, (7)

where

P(z−1) = A(z−1)S(z−1)+ z−dB(z−1)R(z−1)

= A(z−1)S′(z−1) ·HS(z
−1)+ z−dB(z−1)R′(z−1) ·HR(z−1) (8)

defines the poles of the closed loop ( roots of P(z−1)). In

pole placement design, P(z−1) is the polynomial specifying

the desired closed loop poles and the controller polynomials

R(z−1) and S(z−1) are minimal degree solutions of (8) where

the degrees of P, R and S are given by: nP ≤ nA +nB +d−1,

nS = nB +d−1 and nR = nA−1. Using the equations (2) and

(3), one can write the output of the system as:

y(t) =
A(q−1)S(q−1)

P(q−1)
· p1(t) = Syp(q

−1) · p1(t) . (9)

For more details on RS-type controllers and sensitivity

functions see [26].

Suppose that p1(t) is a deterministic disturbance, so it can

be written as

p1(t) =
Np(q

−1)

Dp(q−1)
·δ(t) , (10)

where δ(t) is a Dirac impulse and Np(z
−1), Dp(z

−1) are

coprime polynomials in z−1, of degrees nNp and nDp , re-

spectively. In the case of stationary disturbances the roots of

Dp(z
−1) are on the unit circle. The energy of the disturbance

is essentially represented by Dp. The contribution of the

terms of Np is weak compared to the effect of Dp, so one

can neglect the effect of Np.

Internal Model Principle: The effect of the disturbance

given in (10) upon the output:

y(t) =
A(q−1)S(q−1)

P(q−1)
·

Np(q
−1)

Dp(q−1)
·δ(t) , (11)

where Dp(z
−1) is a polynomial with roots on the unit circle

and P(z−1) is an asymptotically stable polynomial, converges

asymptotically towards zero if and only if the polynomial

S(z−1) in the RS controller has the form:

S(z−1) = Dp(z
−1)S′(z−1) . (12)

In other terms, the pre-specified part of S(z−1) should be

chosen as HS(z
−1) = Dp(z

−1) and the controller is computed

using (8), where P, Dp, A, B, HR and d are given3.

Using the Youla-Kucera parametrization (Q-

parametrization) of all stable controllers ([4], [30]),

the controller polynomials R(z−1) and S(z−1) get the form:

R(z−1) = R0(z
−1)+ A(z−1)Q(z−1) ; (13)

S(z−1) = S0(z
−1)− z−dB(z−1)Q(z−1) . (14)

The (central) controller (R0,S0) can be computed by poles

placement (but any other design technique can be used).

Given the plant model (A,B,d) and the desired closed-loop

poles specified by the roots of P one has to solve:

P(z−1) = A(z−1)S0(z
−1)+ z−dB(z−1)R0(z

−1) . (15)

Equations (13) and (14) characterize the set of all stabilizable

controllers assigning the closed loop poles as defined by

P(z−1) (it can be verified by simple calculations that the

poles of the closed loop remain unchanged). For the purpose

of this paper Q(z−1) is considered to be a polynomial of the

form:

Q(z−1) = q0 + q1z−1 + . . .+ qnQ
z−nQ . (16)

To compute Q(z−1) in order that the controller incorporates

the internal model of the disturbance one has to solve the

diophantine equation:

S′(z−1)Dp(z
−1)+ z−dB(z−1)Q(z−1) = S0(z

−1) , (17)

where Dp(z
−1), d, B(z−1) and S0(z

−1) are known and S′(z−1)
and Q(z−1) are unknown. Equation (17) has a unique solution

for S′(z−1) et Q(z−1) with: nS0
≤ nDp + nB + d − 1, nS′ =

nB +d−1, nQ = nDp −1 . One sees that the order nQ of the

polynomial Q depends upon the structure of the disturbance

model.

III. ROBUSTNESS CONSIDERATIONS

As it is well known, the introduction of the internal model

for the perfect rejection of the disturbance (asymptotically)

will have as effect to raise the maximum value of the

modulus of the output sensitivity function Syp. This may

lead to unacceptable values for the modulus and the delay

margins if the controller design is not appropriately done

3Of course it is assumed that Dp and B do not have common factors.



(see [26]). As a consequence, a robust control design should

be considered assuming that the model of the disturbance is

known, in order to be sure that for all situations an acceptable

modulus margin and delay margin are obtained.

On the other hand at the frequencies where perfect rejec-

tion of the disturbance is achieved one has Syp(e
− jω) = 0

and
∣

∣Sup(e
− jω)

∣

∣ =

∣

∣

∣

∣

A(e− jω)

B(e− jω)

∣

∣

∣

∣

. (18)

Equation (18) corresponds to the inverse of the gain of the

system to be controlled. The implication of equation (18) is

that cancellation (or in general an important attenuation) of

disturbances on the output should be done only in frequency

regions where the system gain is large enough. If the gain

of the controlled system is too low, |Sup| will be large at

these frequencies. Therefore, the robustness vs additive plant

model uncertainties will be reduced and the stress on the

actuator will become important. Equation (18) also implies

that serious problems will occur if B(z−1) has complex

zeros close to the unit circle (stable or unstable zeros) at

frequencies where an important attenuation of disturbances is

required. It is mandatory to avoid attenuation of disturbances

at these frequencies.

Since on one hand we would not like to react to very high

frequency disturbances and on the other hand we would like

to have a good robustness it is often wise to open the loop at

0.5 fs ( fs is the sampling frequency) by introducing a fixed

part in the controller HR(q−1) = 1+q−1 (for details see [26]

and section II).

IV. DIRECT ADAPTIVE CONTROL FOR DISTURBANCE

ATTENUATION

The objective is to find an estimation algorithm which

will directly estimate the parameters of the internal model

in the controller in the presence of an unknown disturbance

(but of known structure) without modifying the closed loop

poles. Clearly, the Q-parametrization is a potential option

since modifications of the Q polynomial will not affect the

closed loop poles. In order to build an estimation algorithm it

is necessary to define an error equation which will reflect the

difference between the optimal Q polynomial and its current

value.
In [30], such an error equation is provided and it can

be used for developing a direct adaptive control scheme.
This idea has been used in [31], [2], [3], [22]. Using the
Q-parametrization, the output of the system in the presence
of a disturbance can be expressed as:

y(t) =
A(q−1)[S0(q

−1)−q−d B(q−1)Q(q−1)]

P(q−1)
·

Np(q
−1)

Dp(q−1)
·δ(t)

=
S0(q

−1)−q−d B(q−1)Q(q−1)

P(q−1)
·w(t) , (19)

where w(t) is given by (see also figure 2):

w(t) =
A(q−1)Np(q

−1)

Dp(q−1)
·δ(t)

= A(q−1) · y(t)−q−d ·B(q−1) ·u(t) . (20)

In the time domain, the internal model principle can be in-
terpreted as finding Q such that asymptotically y(t) becomes
zero. Assume that one has an estimation of Q(q−1) at instant
t, denoted Q̂(t,q−1). Define ε0(t +1) as the value of y(t +1)
obtained with Q̂(t,q−1). Using (19) one gets:

ε0(t +1) =
S0(q

−1)

P(q−1)
·w(t +1)−

q−dB∗(q−1)

P(q−1)
Q̂(t,q−1) ·w(t) . (21)

One can define now the a posteriori error (using Q̂(t +
1,q−1)) as:

ε(t +1) =
S0(q

−1)

P(q−1)
·w(t +1)−

q−dB∗(q−1)

P(q−1)
Q̂(t +1,q−1) ·w(t) . (22)

Replacing S0(q
−1) from the last equation by (17) one

obtains

ε(t +1) = [Q(q−1)− Q̂(t +1,q−1)] ·
q−dB∗(q−1)

P(q−1)
·w(t)+ v(t +1) , (23)

where

v(t) =
S′(q−1)Dp(q

−1)

P(q−1)
·w(t) =

S′(q−1)A(q−1)Np(q
−1)

P(q−1)
·δ(t)

is a signal which tends asymptotically towards zero.

Define the estimated polynomial Q̂(t,q−1) as: Q̂(t,q−1) =
q̂0(t)+ q̂1(t)q

−1 + . . .+ q̂nQ
(t)q−nQ and the associated esti-

mated parameter vector : θ̂(t) = [q̂0(t) q̂1(t) . . . q̂nQ
(t)]T . De-

fine the fixed parameter vector corresponding to the optimal

value of the polynomial Q as: θ = [q0 q1 . . .qnQ
]T . Denote:

w2(t) =
q−dB∗(q−1)

P(q−1)
·w(t) (24)

and define the following observation vector:

φT (t) = [w2(t) w2(t −1) . . . w2(t −nQ)] . (25)

Equation (23) becomes

ε(t + 1) = [θT − θ̂T (t + 1)] ·φ(t)+ v(t + 1) . (26)

One can remark that ε(t) corresponds to an adaptation error

([24]).

From equation (21) one obtains the a priori adaptation

error:

ε0(t + 1) = w1(t + 1)− θ̂T(t)φ(t) ,

with

w1(t + 1) =
S0(q

−1)

P(q−1)
·w(t + 1) ; (27)

w2(t) =
q−dB∗(q−1)

P(q−1)
·w(t) ; (28)

w(t + 1) = A(q−1) · y(t + 1)−q−dB∗(q−1) ·u(t) ,(29)

where B(q−1)u(t + 1) = B∗(q−1)u(t).

The a posteriori adaptation error is obtained from (22):

ε(t + 1) = w1(t + 1)− θ̂T(t + 1)φ(t) .



For the estimation of the parameters of Q̂(t,q−1) the

following parameter adaptation algorithm is used ([24]):

θ̂(t + 1) = θ̂(t)+ F(t)φ(t)ε(t + 1) ; (30)

ε(t + 1) =
ε0(t + 1)

1 +φT (t)F(t)φ(t)
; (31)

ε0(t + 1) = w1(t + 1)− θ̂T(t)φ(t) ; (32)

F(t + 1) =
1

λ1(t)



F(t)−
F(t)φ(t)φT (t)F(t)

λ1(t)
C) +φT (t)F(t)φ(t)



 .(33)

1 ≥ λ1(t) > 0;0 ≤ λ2(t) < 2 (34)

where λ1(t),λ2(t) allow to obtain various profiles for the

evolution of the adaption gain F(t) (for details see [24], [26]

and section VI).

In order to implement this methodology for disturbance

rejection (see figure 2), it is supposed that the plant model
z−dB(z−1)

A(z−1)
is known (identified) and that it exists a controller

[R0(z
−1),S0(z

−1)] which verifies the desired specifications in

the absence of the disturbance. One also supposes that the

degree nQ of the polynomial Q(z−1) is fixed, nQ = nDp −1,

i.e. the structure of the disturbance is known.

The following procedure is applied at each sampling time

for adaptive operation:

1) Get the measured output y(t + 1) and the applied

control u(t) to compute w(t + 1) using (29).

2) Compute w1(t +1) and w2(t) using (27) and (28) with

P given by (15).

3) Estimate the Q-polynomial using the parametric adap-

tation algorithm (30) - (33).
4) Compute and apply the control (see figure 2):

S0(q
−1) ·u(t +1) = −R0(q

−1) ·y(t +1)− Q̂(t,q−1) ·w(t +1) . (35)

For the self tuning operation of the adaptive scheme, the

estimation of the Q- polynomial starts once the level of the

output is over a defined threshold. A parameter adaptation

algorithm (30)-(33) with decreasing adaption gain is used

and the estimation is stopped when the adaption gain is

below a pre-specified level4. During estimation of the new

parameters, the controller is kept constant. The controller is

updated once the estimation phase is finished. For a stability

analysis of this scheme see [22].

V. INDIRECT ADAPTIVE CONTROL FOR DISTURBANCE

ATTENUATION

Indirect adaptive control for the attenuation of unknown

disturbances consists in two steps: (1) Identification of the

disturbance model; (2) Computation of a digital controller

using the identified disturbance model as internal model.

Details on this approach can be found in [22].

4The magnitude of the adaptation gain gives an indication upon the
variance of the parameter estimation error - see for example [24].
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VI. APPLICATION 1 - ADAPTIVE REJECTION OF NARROW

BAND DISTURBANCES ON AN ACTIVE SUSPENSION

A. The active suspension

The structure of the system (the active suspension) used

in this paper is presented in figure 3. Two photos of the

system are presented in figure 4 (Courtesy of Hutchinson

Research Center and Laboratoire d’Automatique de Greno-

ble). It consists of the active suspension, a load, a shaker

and the components of the control scheme. The mechanical

construction of the load is such that the vibrations produced

by the shaker, fixed to the ground, are transmitted to the

upper side of the active suspension. The active suspension

is based on a hydraulic system allowing to reduce the over-

pressure at the frequencies of the vibration modes of the

suspension.

The controller will act upon the piston (through a power

amplifier) in order to reduce the residual force. The sampling

frequency is 800Hz. The equivalent control scheme is shown

in figure 5. The system input, u(t) is the position of the

piston (see figures 3, 5), the output y(t) is the residual force

measured by a force sensor. The transfer function (q−d1
C

D
),

between the disturbance force, up, and the residual force y(t)
is called primary path. In our case (for testing purposes), the

primary force is generated by a shaker controlled by a signal

given by the computer. The plant transfer function (q−d B

A
)

between the input of the system, u(t), and the residual force

is called secondary path. The input of the system being a

position and the output a force, the secondary path transfer

function has a double differentiator behavior.

The control objective is to reject the effect of unknown

narrow band disturbances on the output of the system ( the

residual force). The system has to be considered as a ”black

box”.

B. Results obtained on the active suspension

For the active suspension the disturbance will be a time-

varying frequency sinusoid, so we shall consider nDp = 2 and

nQ = nDp −1 = 1.

The identification procedure in open and closed-loop op-

eration for the active suspension is discussed in detail in

[23], [21], [1]. The frequency characteristic of the identified



Fig. 4. Active suspension system (photo)
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primary path model (open-loop identification), between the

signal up sent to the shaker in order to generate the distur-

bance and the residual force y(t), is presented in figure 6. The

first vibration mode of the primary path model is near 32Hz.

The frequency characteristic of the identified secondary

path model (closed-loop identification), is presented also in

figure 6. This model has the following complexity: nB = 14,

nA = 16, d = 0. The identification has been done using as

excitation of the piston a PRBS (Pseudo Random Binary

Sequence) with frequency divider p = 4 (for details on the

PRBS signals see [26]). There exist several very low damped

vibration modes on the secondary path, the first one being at

31.8Hz with a damping factor 0.07. The identified model

of the secondary path has been used for the design and

implementation of the controller.

The central controller (without the internal model of the

disturbance) has been designed using the pole placement

method and the secondary path identified model. The result-

ing nominal controller has the following complexity: nR =
14, nS = 16 and it satisfies the imposed robustness constraints

on the sensitivity functions(for the design methodology

see[26])5.

In order to evaluate the performances of direct and indirect

methods in real time, time-varying frequency sinusoidal

5Any design method allowing to satisfy these constraints can be used.
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disturbances between 25 and 47Hz have been used (the first

vibration mode of the primary path is near 32Hz).

For both direct and indirect adaptive control methods, two

protocols have been defined.

• Protocol 1 : Self-tuning operation

The system operates in closed loop with a frozen

controller. As soon as a change of the disturbance is

detected (by measuring the variance of the residual

output), the estimation algorithm is started with the

last frozen controller in operation. When the algorithm

converges (a criterion has to be defined - see below), a

new controller is computed and applied to the system.

The adaptation algorithm is stopped and one waits for

a change of frequency.

• Protocol 2 : Adaptive operation

The estimation algorithm works permanently (once the

loop is closed) and the controller is recomputed at each

sampling. The adaptation gain in this case does not tend

asymptotically to zero.

• Start up: For comparison purpose the system is started

in open-loop for both protocols. After 5 seconds (4000

samples) a sinusoidal disturbance of 32Hz is applied

on the shaker. The model of the disturbance is es-

timated and an initial controller is computed (same

initial controller for both direct and indirect adaptive

control). In the case of the self-tuning operation the

adaptation algorithm is stopped while in the case of the

adaptive operation the adaptation algorithm continues to

be active.

After the start up ends, every 15 seconds (8000 samples)

sinusoidal disturbances of different frequency are applied

(32Hz, 25Hz,32Hz,47Hz,32Hz).

a) Protocol 1 : Self-tuning operation. Real time exper-

imental results: The measured residual force obtained in

self-tuning operation with the direct adaptation method is

presented in figure 7 and with the indirect adaptation method

in figure 8 . We note in general a faster convergence speed of

the direct adaptive control scheme compared to the indirect
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Fig. 7. Time domain results with the direct adaptation method in self-tuning
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Fig. 8. Time domain results with the indirect adaptation method in self-
tuning operation

one (except for 47Hz).

For the self-tuning protocol, the spectral densities of

the residual force obtained in open and in closed loop,

respectively, using the direct adaptation scheme (after the

algorithm converges) are presented in figure 9. The results

are given for the three frequencies used: 25, 32 and 47 Hz.

We remark that the attenuations are larger than 49 dB for all

the frequencies. Similar results are obtained with the indirect

adaptation algorithm. For details see [9].

In self-tuning operation, one uses an adaptation gain F(t)
with variable forgetting factor, with λ0 = 0.97 and the

initial forgetting factor λ1(0) = 0.97 (the forgetting factor

is given by λ1(t) = λ0λ1(t − 1)+ 1− λ0, with 0 < λ0 < 1).

For the variable forgetting factor the adaptation gain tends

asymptotically towards zero. The convergence criterion has

been fixed as a threshold on the trace value of the adaptation

gain matrix. For details see [9].
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Fig. 9. Spectral densities of the residual force in open and in closed loop,
with the direct adaptation method in self-tuning operation

The detection of a change of frequency is done using

the variance of the measured residual force computed on

a sliding window of 50 samples.

b) Protocol 2 : Adaptive operation. Real time exper-

imental results: The measured residual force obtained in

adaptive operation is presented in figure 10 for the direct

adaptation method and in figure 11 for the indirect adaptation

method. An adaptation gain with variable forgetting factor

combined with a constant trace ([24], [26]) has been used

in order to be able to track automatically the changes of

disturbance characteristics. The low level threshold of the

trace has been fixed at 3 ·10−9 for the direct algorithm and at

5 ·10−7 for the indirect one (note that in the indirect adaptive

scheme there are more parameters to estimate than in the

direct adaptive scheme). The attenuation obtained with the

indirect adaptive scheme in adaptive operation is less good

than in the self tuning operation and less good than the one

obtained with the direct adaptive scheme. We note that the

direct adaptive control scheme in adaptive operation gives

better results than in self tuning operation (compare figures

7 and 10).

The spectral densities of the residual force for the direct

adaptive scheme (after the algorithm converges) are similar

with those obtained in self-tuning operation (see [9]).

According to the real time results presented above, one can

conclude that the direct adaptive control scheme gives better

results than the indirect adaptive control scheme, from the

point of view of the convergence speed and performance. In

addition the direct adaptation scheme is much simpler than

the indirect one in terms of number of operations.

c) Direct adaptive control scheme under the effect of

sinusoidal disturbances with continuously time varying fre-

quency: Consider now that the frequency of the sinusoidal

disturbance varies continuously and let’s use a chirp dis-

turbance signal (linear swept-frequency signal) between 25

and 47Hz. The tests have been done as follows: Start up in

closed loop at t = 0 with the central controller. Once the loop
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Fig. 10. Time domain results with the direct adaptation method in the
adaptive case (trace = 3 ·10−9)
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Fig. 11. Time domain results with the indirect adaptation method in the
adaptive case (trace = 5 ·10−7)

is closed, the adaptation algorithm works permanently and

the controller is updated (direct approach) at each sampling

instant. After 5 seconds a sinusoidal disturbance of 25 Hz

(constant frequency) is applied on the shaker. From 10 to 15

seconds a chirp between 25 and 47 Hz is applied. After 15

seconds a 47 Hz (constant frequency) sinusoidal disturbance

is applied and the tests are stopped after 18 seconds. The

time-domain results obtained in open and in closed-loop

(direct adaptive control) are presented in figure 12. We can

remark that the performances obtained are very good.

d) Adaptation transients for direct adaptive control:

Figure 13 illustrates the adaptation transients on the input

and output when a step change of the frequency of the

disturbance occurs from 20Hz to 32 Hz respectively. One

notes that the convergence of the output requires less than

0.25s This corresponds roughly to 6 periods for 32Hz. Same

duration of the adaptation transient are obtained for the other
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Fig. 13. Adaption transient in the direct adaptive control scheme for a step
change of the disturbance frequency from 32Hz to 20Hz

frequencies step changes. These results have to be compared

with the transients results given in [8], [28], [2], [3].

VII. APPLICATION 2 - ADAPTIVE REJECTION OF

MULTIPLE NARROW BAND DISTURBANCES ON AN ACTIVE

VIBRATION CONTROL SYSTEM USING AN INERTIAL

ACTUATOR

A. The inertial actuator

In this application a different technological approach is

used for suppressing the effect of vibrational disturbances.

Instead of using an active suspension, one uses an inertial

actuator which will create vibrational forces to counteract

the effect of vibrational distrubances (inertial actuators use

a similar principle as loudspeakers). The structure of the

system is described in figure14. It consists on a standard

passive damper and an inertial actuator fixed to the chassis

where the vibrations should be attenuated. The testing setting

is exactly the same as for the active suspension (see figure



Fig. 14. Active vibration control using an inertial actuator (scheme)

4).

The controller will act on the inertial actuator (through a

power amplifier) in order to reduce the residual force. The

equivalent control scheme is shown in figure 5. The system

input is the position of the mobile part of the actuator. Like

for the active suspension, the secondary path has a double

differentiator behavior. The system has to be considered as

a ”black box” and the control objectives are similar to those

for the active suspension; The sampling frequency is 800Hz.

B. Results obtained with the inertial actuator

The performance of the system for rejecting multiple

unknown time varying narrow band disturbances will be

illustrated using the direct adaptive control scheme presented

in section IV. Since two simultaneous time varying frequency

sinusoids will be considered as disturbances , one should take

nDp = 4 and nQ = nDp −1 = 3

Same procedure for system identification in open and closed

loop, as for the active suspension, has been used. The

frequency characteristics of the primary path (identification

in open loop) and of the secondary path (identification in

closed loop)are shown in Figure 15. The secondary path has

the following complexity: nB = 12, nA = 10, d = 0. The

identification has been done using as excitation a PRBS

( with frequency divider p = 2 and N = 9). There exist

several low damped vibration modes in the secondary path,

the first vibration mode is at 51.58Hz with a damping of

0.023 and the second at 100.27Hz with a damping of 0.057.

Only the ”adaptive ”operation regime has been considered for

the subsequent results. Figure 16shows the spectral densities

of the residual force obtained in open loop and in closed

loop using the direct adaptation scheme (after the adaptation

algorithm has converged). The results are given for the

simultaneous applications of two sinusoidal disturbances

(70Hz and 100Hz). One can remark a strong attenuation of

the disturbances (larger than 45dB).

Time domain results obtained with direct adaptation

scheme in ”adaptive” operation regime are shown in

Figure17. The disturbances are applied at 1s (the loop has

already been closed) and step changes of their frequencies

occur every 3s.
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Figure 18 shows the corresponding evolution of the

parameters of the polynomial Q. The convergence of the

output requires less than 0.4s in the worst case.
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Fig. 18. Evolution of the parameters of the polynomial Q during adaptation

VIII. CONCLUSIONS

It was shown in this paper that the use of the internal

model principle combined with the adaptation of the inter-

nal model implemented in a Youla - Kucera parametrized

controller allows a very good rejection of the unknown time

varying narrow band disturbances without requiring the use

of an additional transducer. Two adaptive approaches (direct

and indirect adaptation) have been presented and tested

comparatively.

The results obtained in real time on active vibration

control (using an active suspension or an inertial actuator)

lead us to conclude that the direct adaptive control scheme

provides better performance and is simpler than the indirect

adaptive control scheme.

A similar approach has been used successfully on a chem-

ical reactor and for noise cancellation in ducts. Extensions

to the multivariable case have been recently done[15]
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