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Abstract—This paper describes an analog-to-digital converter
(ADC) array for an implantable neural sensor which digitizes
neural signals sensed by a microelectrode array. The ADC array
consists of 96 variable resolution ADC base cells. The resolution of
each ADC cell in the array is varied according to neural data con-
tent of the signal from the corresponding electrode. The resolution
adaptation algorithm is essentially to periodically recalibrate the
required resolution and this is done without requiring any addi-
tional ADC cells. The adaptation implementation and results are
described. The base ADC cell is implemented using a successive
approximation charge redistribution architecture. The choice of
architecture and circuit design are presented. The base ADC has
been implemented in 0.13 m CMOS as a 100 kS/s SAR ADC
whose resolution can be varied from 3 to 8 bits with corresponding
power consumption of 0.23 W to 0.90 W achieving an ENOB
of 7.8 at the 8-bit setting. The energy per conversion step figure
of merit is 48 fJ/step at the 8-bit setting. Resolution adaptation
reduces power consumption by a factor of 2.3 for typical motor
neuron signals while maintaining an effective 7.8-bit resolution
across all channels.

Index Terms—Adaptive signal acquisition, analog–digital con-
version, neural prosthesis, ultra low power.

I. INTRODUCTION

E
ACH YEAR, hundreds of thousands of people suffer from

neurological injuries and disorders, resulting in the per-

manent loss of motor function. In a correctly functioning ner-

vous system, signals are sent from the brain to muscles in order

to control movement. In most cases of paralysis, both the driving

neurons and the muscles, which control the limbs, are fully func-

tional, but there is a disconnect in the nervous system’s com-

munication link between the two. Therefore, if the gap in the

communication link is artificially bridged, the paralysis may be

overcome. This concept is illustrated in Fig. 1 where a micro-

electrode array and integrated circuit (IC) are implanted above

the motor cortex. Motor neuron signals are sensed by the elec-

trodes and processed by an IC, which we call the implantable
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Fig. 1. Neuroprosthetic application.

prosthetic processor (IPP), to decode the intended movement.

That intended movement is transmitted out of the body to an

external controller, which may control prosthetic limbs or ar-

tificial actuators. A critical portion of this process is the brain

interface (i.e., sensing and reading out the neural signals).

Neural signals are essentially voltage spike trains. Neural

information is encoded in the variable timing between these

spikes. Implanted electrodes are used to sense the neural sig-

nals. For a variety of fabrication and clinical reasons, electrodes

cannot be oriented to sense individual neurons. Rather, each

electrode typically senses signals from more than one neuron. In

order to extract the underlying information, the signals sensed

by each electrode must be decomposed into signals from indi-

vidual neurons. To do this, the signals are first converted to the

digital domain and then “spike sorted.” The sorted spikes are

then decoded to identify intended movements. Our proposed

implantable prosthetic processor (IPP) [1], therefore, com-

prises the following major building blocks: preamplification

[2]; a variable-resolution analog-to-digital converter (ADC)

array [3]; a digital spike sorter [4], [5]; a maximum-likelihood

neural decoder [6]; a wireless data transceiver; and an adaptive

millimeter-sized power receiver [7], [8]. A block diagram of

the IPP, together with the electrode array and power receiving

antenna, is illustrated in Fig. 2. The overall compression factor

attained by employing the IPP is on the order of , trans-

lating raw neural data at a rate of 80 Mb/s to less than 20 b/s,

indicating the intended movement. Low power is essential for

supply considerations and heat dissipation in the surrounding

tissue, and it guides every aspect of the design. The total power

budget of the IPP is limited to 1 mW, leaving a target of less

than 1 W for each ADC cell.

This paper is organized as follows: Section II explains the

motivation for, and algorithm to realize, ADC resolution adapta-
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Fig. 2. Block diagram of implantable prosthetic processor.

tion. Next, Section III discusses lower bounds on how the power

efficiency of various ADC architectures varies with resolution

and uses this to determine the charge redistribution successive

approximation (CR-SAR) ADC architecture as the most suit-

able for the implanted prosthetic processor. Section IV describes

the circuit design of a variable resolution CR-SAR, and Sec-

tion V presents the measured performance of the ADC imple-

mented in 0.13- m CMOS.

II. ADAPTIVE RESOLUTION ADC ARRAY

A. Variation of ADC Power With Resolution

Let us first consider how power consumption varies with res-

olution for some popular ADC architectures. Comparator power

consumption dominates in flash ADC architectures and an -bit

flash ADC requires comparators. Power dissipated in

the digital-to-analog converter (DAC) dominates in successive

approximation architectures and in an -bit charge redistribu-

tion-based successive approximation ADC, the sub-DAC capac-

itance is proportional to . Similarly, for an -bit sigma- delta

ADC, the required oversampling ratio is proportional to

where varies based on the order and noise charac-

teristics but is a constant for a given architecture. Therefore, in

these cases, and in other ADC architectures, power consump-

tion increases exponentially with increasing resolution, to the

first order. There are usually necessary ancillary circuits, such

as the control logic, whose power consumption is subexponen-

tial in resolution but nevertheless, the ADC power consumption

is a very strong increasing function of resolution. This means

that digitizing more bits than necessary wastes a lot of power.

B. Neural Signal-Processing Considerations

1) Sensing Limitations of Electrode Array: In the IPP ap-

plication a 100-electrode array is implanted and 96 electrodes

are used to sense voltage signals generated by neurons, specifi-

cally action potentials, while the four remaining electrodes serve

to generate a reference potential. We use 96 ADCs, one per

electrode, in order not to discard the spatial resolution offered

by the electrode array. For a variety of fabrication and clin-

ical reasons, electrodes cannot be oriented to sense individual

neurons, rather, the electrodes are spaced 400 m apart in a

square grid. Fig. 3 illustrates four neurons close to the tip of

Fig. 3. Neurons and electrodes.

Fig. 4. Information is encoded in timing between spikes, not in spike shape.

an electrode, highlighting the fact that neurons do not occur

in a square grid, and that the distance between them is typi-

cally considerably less than 400 m. Correspondingly, the neu-

rons whose potential an electrode senses can be at different dis-

tances, leading to different signal strengths and, thus, different

signal-to-noise ratios (SNRs). Furthermore, each electrode typi-

cally senses signals from multiple neurons which need to be dis-

tinguished. Therefore, the resolution required in digitizing the

signal from each electrode is not uniform across all electrodes.

The standard analog approach would be to ask what the smallest

voltage is that we must resolve, and to run each ADC at that

resolution all of the time. This paper investigates whether ADC

resolutions can be adapted to save power, without reducing in-

formation throughput. To answer this question, we need to look

at the neural signals and the IPP system in greater detail and un-

derstand what dictates the resolution requirement.

2) Characteristics of Sensed Neural Signals: For the pur-

poses of this paper, we are concerned with the neural signals

known as action potentials, which are generated by individual

neurons only, and not with signals which manifest at larger ge-

ometry scales, such as local field potential. Essentially, each

neuron generates a train of voltage spikes. With the spikes from

a particular neuron, the information is in the timing between

those spikes, not in the shape or amplitude of the spike, as shown

in Fig. 4.

Fig. 5 illustrates signal characteristics which are important to

understand in order to develop methods which determine the re-

quired resolution. Fig. 5(a) shows a typical neural voltage spike.

In applications where only one signal source contributes to the

sensed signal, we can either use a 1-b ADC and fast automatic

gain control in the preamplifier stage, or a fixed gain pream-

plifier and use SNR and dynamic range to determine the re-

quired ADC resolution. Frequently, as many as six neurons may

contribute spikes to the signal sensed by a single electrode and

the subsequent signal processing must be able to differentiate

the spikes from each neuron, in these cases, a 1-b ADC would

certainly discard information representing spikes from different

neurons identically in the digital domain. Fig. 5(b) shows the

overlay of many spikes from three different neurons sensed by

a single electrode. This suggests that in order to allow differen-

tiation of these spikes, ADC resolution should be determined by

considering relative signal amplitudes or signal-to-signal ratios



122 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 5, NO. 2, APRIL 2011

Fig. 5. (a) Signal and noise on a single spike signal (after HPF). (b) Multiple
spikes with different magnitudes. (c) Spikes with a similar magnitude but dif-
ferent shape.

(SSRs) in addition to SNRs. If neural spikes were sorted solely

according to signal amplitude, then SSRs and SNRs would be

sufficient to determine the required ADC resolution.

However, Fig. 5(c) shows an overlay of spikes from two neu-

rons which are very similar in amplitude, recorded by the same

electrode. Required resolution estimation methods, based solely

on SNR and/or SSR, would assume these spikes came from the

same source, so that very low resolution would be deemed ade-

quate and the subsequent spike sorting would be unable to dis-

tinguish these spikes. In order to allow differentiation of these

spikes, the resolution assignment criteria must be equivalent to

the sorting criteria in the downstream signal processing. This

is most efficiently accomplished by using feedback from the

real-time spike sorter to determine the resolution of each ADC

cell.

3) Spike Sorter Basics: The spike sorter signal processing

classifies each spike as originating from a specific neuron using

principal component analysis (PCA). The spike sorter consists

of a real-time spike sorter and a training block, as illustrated in

Fig. 6. The parameters of the PCA sorter are retrained every 12

h to prevent errors due to drift of the electrodes, cell growth,

etc. Since the subsequent signal processing assumes that the

variation of the signal sources and characteristics over a 12-h

period are negligible, and since the required ADC resolution is

dependent on the PCA parameters estimated in the PCA training

phase, the required ADC resolution is estimated every 12 h also.

The real-time spike sorter power consumption is estimated to be

1.4 W [5].

C. Resolution Adaptation Algorithm

Let be the resolution for the th ADC cell. During the ADC

training phase, each spike that is received is digitized at 8-b res-

olution. The first spike sorter classifies the spike as having orig-

inated in a particular neuron using the 8-b representation of the

spike which we know to be sufficiently accurate. Five additional

real-time spike sorters are used to digitize 7 through 3 b repre-

sentations of the signal. The resulting classification for each res-

olution is compared to the 8-b classification and if it is different,

we say that a misclassification has occurred. The training phase

is run for a very large number of spikes and at the end, mis-

classification rates are calculated for each possible resolution

by dividing the total number of misclassifications by the number

Fig. 6. Spike sorter consists of two major components: 1) real-time spike sorter,
which runs continuously, and 2) spike sorter training, which must be run every
12 h.

Fig. 7. Resolution determination and assignment method.

of spikes misclassifications . The

lowest resolution for which the misclassification rate

is less than the maximum-allowable misclassification rate

is chosen to be the ADC’s resolution.

Resolution estimation uses five extra spike sorts for each

electrode in a time window that is equal to the training period of

the spike sorter, which is 120 s every 12 h. Since the real-time

spike sorter consumes 1.4 W, this gives a power overhead for a

resolution estimation of 20 nW per channel, or 5% of the ADC

power with optimally assigned resolutions. The extra spike

sorters are muliplexed across the channels for each training

phase and so do not contribute a significant area overhead.

This method does not interrupt the throughput as 8-b data

are available throughout the calibration phase. Fig. 8 shows a

sample resolution assignment for typical neural data from the

motor cortex of a rhesus monkey with 1%. The spike

sorter itself has a spike misclassification rate of approximately

5% based on measured neural data, so choosing 1%

does not materially compromise performance. We see that a
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Fig. 8. Histogram of chosen ADC resolutions over 96 channels of measured
neural data.

broad range of resolutions is assigned, clearly not all channels

need full resolution all of the time. Therefore, an adaptive res-

olution ADC array has the potential to help reduce power con-

sumption.

III. ADC CELL ARCHITECTURE

The potential efficiency improvement of the adaptive resolu-

tion ADC array will only be realized if the power overhead due

to resolution adaptation is low compared to the power savings

achieved. Regardless of how well the resolution adaptation per-

forms, the results will be unconvincing and the ADC array will

not be useful unless we build a state-of-the-art ADC, at least as

power efficient as the previous work, with which to demonstrate

the adaptive resolution technique. Therefore, choosing the ADC

architecture, which is the most power efficient in this bandwidth

and resolution space, is fundamental to this work. We do so by

investigating theoretical lower bounds on ADC power consump-

tion. The Appendix describes reported lower bounds on power

consumption of matching-limited flash and pipeline ADC archi-

tectures while a theoretical power bound for charge redistribu-

tion successive approximation (CR-SAR) ADCs is derived in

this section. All of these are plotted in Fig. 9.

A. Charge Redistribution Successive Approximation ADC

Successive approximation (SAR) ADCs are often used to

realize low-to-moderate speed and medium-to-high resolution

converters [9]. The fact that an SAR does not need any linear

circuits, thus obviating the need for high bias currents makes it

a very attractive architecture for ultra-low-power applications.

An approximate lower bound for CR-SAR power consumption

is derived here. Energy dissipation of the capacitor array (1)

has been derived as a function of the minimum capacitance in

the binary weighted charge redistribution sub-DAC, and

the full-scale voltage [10].

bit (1)

Fig. 9. Theoretical matching-limited ADC power bounds versus resolution in
a typical 0.13-�m CMOS process.

which easily translates to power dissipation

(2)

The successive approximation register logic consists of two

shift registers, each containing flip-flops. A rough estimate

of the SAR power consumption can be found by assuming that

all of the flip-flops are asynchronous settable and resettable and

contain 2 NOR gates, 2 nand and 2 inverters [11], approximately

equivalent to 5 nand gates. Further, assuming that all of these

gates switch at frequency , where is the signal band-

width, then we have a close upper bound on the SAR dynamic

power consumption as given

(3)

The comparator power consumption can be estimated as

(4)

using the comparator power bound formula from (15) and recog-

nizing that 1) the SAR has only one comparator and 2) the com-

parator switching rate increases by a factor with respect to the

comparator in a flash ADC. These power bounds are combined

to give an estimate on the power consumption of a CR-SAR

ADC

(5)

Equations (2)–(4), together, with process constants for a typical

0.13- m process are substituted into (5) to generate curve CR

SAR in Fig. 9.

B. Choice of Base-Cell Architecture

Fig. 9 shows that the CR-SAR architecture is more power

efficient than pipeline or flash ADC architectures over a wide

range of resolutions. This begs the question: Why are CR-SAR
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Fig. 10. Variable resolution SAR ADC cell.

ADCs not used for more applications? The answer is two-fold:

1) the capacitor array area increases exponentially with reso-

lution, although there are ongoing attempts to overcome this

obstacle [12] and 2) the CR-SAR is less suited to high-speed,

high-resolution applications because the time to charge and dis-

charge the capacitor array can be prohibitively large. The funda-

mental reason for the long charging times is that the minimum

size capacitor in the charge redistribution DAC must be large

enough to ensure that the mismatch between capacitors in the

array is low enough to give the required resolution. Capacitor

mismatch is technology dependent. Neither of these disadvan-

tages of CR-SAR ADCs are an issue in this application which

has low speed, 100 kSamples/s, and moderate resolution of 3

to 8 b. Furthermore, this capacitance mismatch is a function

of the minimum linewidth and so CR-SAR ADC power effi-

ciency improves with technology shrinkage. Fig. 9 shows that

the CR-SAR architecture is most power efficient in the 6- to 8-b

range, whereas flash ADCs may be more efficient at lower res-

olutions. The power consumption at the higher resolutions will

dominate, so based on the theoretical analysis, we choose the

CR-SAR architecture.

IV. VARIABLE RESOLUTION CR-SAR ADC

The operation and design of fixed resolution charge redis-

tribution successive approximation (CR-SAR) ADCs were ex-

plained previously in the literature [13]. The fixed resolution

CR-SAR ADC is modified to give a variable resolution con-

verter as shown in Fig. 10. The larger capacitors are switched

out for lower resolution, and the logic in the successive approx-

imation register is reconfigured for lower resolution operations.

Five select signals are used to control the reso-

lution. For each 1-b reduction in resolution, the total capacitance

and, hence, the power dissipation in the capacitor array halves

while the logic power scales linearly with resolution. In this sec-

tion, we discuss the design of each subcircuit in Fig. 10.

A. Variable Resolution Capacitor Array

The largest capacitors are switched out to reduce resolution

as illustrated in Fig. 10. The switches are placed on both sides of

the capacitors. The parasitic capacitances at the top and bottom

plates are appreciable and significant power would be dissipated

in charging and discharging them without the double switches,

degrading the efficiency at lower resolutions.

In [14], Lin derives the maximum-allowable capacitor mis-

match as a function of the desired resolution

(6)

where is the atch in capacitance of two nominally

identical capacitors relative to their nominal value. So for 8-b

resolution, we require

(7)

Equation (6) is approximately equal to for 3,

which is the first-order estimate of the required accuracy.

The standard deviation of the ratio of capacitance mismatch

between metal-insulator-metal (MiM) capacitors to their nom-

inal capacitance value is given by

(8)

where is approximately constant for the process and

and are the width and length of the capacitor. Reference [15]

reports that % m is typical for 0.13- m CMOS

but this varies across processes. We restrict our design to using

particular foundry recommended capacitor structures, overde-

sign for capacitor mismatch by a factor of two from this the-

oretical value, to accommodate variation and additional errors

due to routing mismatch. Ultimately, we choose 4 m 4 m

for the minimum size capacitor in the array which gives a ca-

pacitance of 20 fF. This is the unit capacitance in Fig. 10.

MiM capacitors were used since they offer high capacitance

per unit area and are inherently linear. In the variable resolution

structure, the top plates of the capacitors are not connected to

a single node; they must each connect to MOS devices. Tech-

nology layout constraints on interconnect and vias close to MiM

caps and the use of top and bottom-plate switches prevent use of

a single array capacitance as is usually employed in fixed reso-

lution SAR ADCs. Instead, some separation is required between

each capacitor which leads to a greater array area than in a fixed

resolution converter. Nevertheless, a common centroid structure

is achieved for the entire array which should improve the mis-

match beyond the values mentioned before.

The power overhead for reconfigurability in the capacitor

array is determined by 10 additional AND gates, whose state is

changed, at most, once every 12 h (when the ADC and spike

sorter training phases are run) and so consumes negligible

power.

B. Reference Switch and Top Plate Switches

The switch connecting 0.5 to is called the reference

switch. During the sample phase, the reference switch is closed,

and the bottom plates of the capacitor array are connected to

. The hold phase is reached by opening the reference switch

and then switching the bottom plates to ground. The voltage at

the top plate of the array capacitance at the end of the hold phase

is given by

(9)
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Fig. 11. Leakage currents of min size NMOS; � �0.6 V, � � �0.6 V.

where is the leakage current from the top plate and is

the time from the beginning of the hold phase to the first switch

of the decision phase. Assuming that 1.2 V, the top plate

voltage varies from 0.6 V to 0.6 V as varies from 0 V

to 1.2 V. If the reference switch is realized using a pass gate

switch in which the applied gate and substrate voltages are 0 V

or , then for 1.2 V, V during hold

mode (i.e., the gate is partially ON when it should be OFF. This

results in substantial leakage to the top plate A,

as shown by the rightmost point of the solid black curve in

Fig. 11. This causes a large signal-dependent error. Therefore,

the NMOS gate is driven with 0.6 V to turn the

switch off.

then becomes 41 nA, dominated by leakage current

across the diode which has a forward bias of 0.6

V, as shown by the leftmost point of the “ at the ”

curve in Fig. 11. Since s, the resulting error in

the top plate voltage is therefore given by

(10)

which is still an order of magnitude or more too large. The cause

of this error is that we use fine geometry CMOS to accommodate

the DSP required by the IPP. One side effect of this is high

substrate doping, giving a bulk-source diode with low junction

potential and, thus, high leakage current. Furthermore, this is a

slow speed application and, thus, a given leakage translates to

larger voltage error. This error would not be noticed by those

who use the SAR ADC architecture in older CMOS processes

or those working at faster speeds in this process. One tactic at

this point is to reduce the hold time, but that requires much finer

clock phases and greater power consumption to generate them.

Our solution comes from the fact that fine geometry processes

offer a deep N-well and we can take advantage of that to iso-

late and bias the bulk of the reference switch NMOS to below

0.6 V. This reduces the leakage to 1.7 nA as given by the

leftmost point on the “ at ” curve in Fig. 11. The

source-bulk diode leakage is now negligible. 1.7 nA

gives 0.05 LSB, no longer impairing the

ADC performance. Similarly, the bulks of the NMOS sides of

Fig. 12. Charge pump to generate the negative voltage.

the top plate switches are tied to 0.6 V to prevent leakage to

the substrate when the for that switch is low. Since the drain

of that NMOS is then floating, there is negligible drain-to-source

leakage and no need to drive that gate with 0.6 V.

We must generate this negative voltage on-chip. Fig. 12

shows a simple single-stage charge pump used to generate a

voltage of 0.7 V [16]. The generated voltage

is applied to the bulk of the NMOS transistors in the top plate

switches and the reference switch. The gate voltage for the

NMOS in the reference switch is generated by passing the

sample signal through a pair of inverters, the second of which

has 1.2 V and connected to the charge-pump output.

All of the switches shown in Fig. 10 are implemented as pass

gates to reduce charge injection. This strategy, coupled with the

fact that the gates are loaded on one side by low impedances

(i.e., and ground), ensures charge injection onto the

capacitor array is negligible.

C. Comparator

The comparator is realized by using a simple resettable latch,

as discussed in [17] and shown in Fig. 13. Low comparator

power requires low tail current, but that tail current must be

large enough to discharge the load capacitance in the time avail-

able. The load capacitance is dominated by the comparator’s

intrinsic capacitance, not by the buffer. Therefore, minimizing

comparator power dissipation demands small of the input

and latch devices. Conversely, low mismatch and low

noise require large of the input devices. Noise simulations

were used to find an acceptable tradeoff and suggested a min-

imum acceptable bias current of 100 nA. This current level re-

sults in a slew limited output and the “low” output of the latch

stage only reaches 0.8 V in the available time (while the high

output reaches 1.2 V). Increasing the tail current would

give close to full CMOS output swing, but at an unacceptable

power cost. Instead, we accept an output swing of 0.8 V to 1.2

V and increase that to the full CMOS swing using two buffers

with staggered thresholds. The first buffer in Fig. 13 uses a core

PMOS and input/output (I/O) NMOS. Core devices have lower

than I/0 devices so this, together with device sizing, moves

the switching point close to the midrange of the signal swing of

approximately 1.0 V. The second buffer is sized to switch at 0.7

V and sharpens the edge before passing the signal to the SAR

logic.

D. Successive Approximation Register

The successive approximation register is based on the work

of [18]. In order to accommodate resolution variation, a stage

is powered down for each 1-b reduction in resolution, elimi-

nating leakage in that stage. Custom digital design, optimized
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Fig. 13. Comparator schematic.

Fig. 14. Timing generation circuits.

for low-speed and low-power performance, is used for all logic

circuits which are implemented using 2.5-V I/O transistors to

minimize leakage. The set, reset, and input signals of the first

flip-flop in the upper register must be reconfigured for each res-

olution setting and so ten 2-b muxes must be added. This results

in negligible power and area overhead.

E. Timing Generation

All timing signals are derived on-chip from a single 1-MHz

master clock signal as shown in Fig. 14. The comparator reset

signal is a 0.2- s-wide pulse with a 1- s period. It is generated

from the clock by using two variable delay stages and a NAND

gate. The sample and SAR reset signals both have a 10- s pe-

riod. A 5-b Johnson counter is used to divide the master clock

frequency down to a 200-kHz clock signal, two phases of which

are added and passed through variable delay stages to generate

the sample and SAR reset signals.

A schematic of the variable delay stage is shown in the inset

in Fig. 14. The delay between a positive input edge and the sub-

sequent positive output edge is controlled by the RC time con-

stant of the first half of discharging node A. That is, in turn,

controlled by the current in M4. Similarly, the delay between

a negative input edge and the subsequent negative output edge

is controlled by the current in M8. The control currents are set

once, during the initial testing of each device, prior to deploy-

ment as follows. The nominal value of and for each delay

Fig. 15. Measured differential and integral nonlinearities versus output code at
the 8-b resolution setting.

is designed with additional 3-b fine tuning of these currents

which allows delays to be set accurately within s. The

clock signals are probed, and the delay is tuned to the correct

value by varying the external control bits for each delay element

which control binary-weighted current sources which fine-tune

the variable current sources in Fig. 14. Once the correct current

has been determined in the initial testing phase, the current need

not be retuned since the maximum possible variation in delay

due to temperature and supply variations is much less than the

required s accuracy.

V. MEASURED PERFORMANCE

The testing of the base ADC was carried out according to [19]

and [20]. Fig. 15 shows the measured integral nonlinearity (INL)

and differential nonlinearity (DNL) at the 8-b resolution setting.

Both are well within 0.5 LSB. Spikes in the plots are visible

at codes 63, 127, and 191, corresponding to nonidealities due to

the capacitance of the routing to the C and C capacitances.

Of course, INL and DNL look even better at the lower resolution

settings.

Fig. 16 shows a discrete Fourier transform (DFT) of mea-

sured digital output at 8-b resolution for a 1-kHz sinusoidal

input based on 8192 samples. The 3rd, 7th, and 9th harmonics

are clearly visible. The effective number of bits (ENOB) is 7.8 b;

the signal-to-noise and distortion ratio (SNDR) is 48.6 dB, the

spurious-free dynamic range (SFDR) is 61.0 dB, and the total

harmonic distortion (THD) is 56.5 dB. The ENOB decreases

to 7.55 b as the signal frequency is increased to 50 kHz, as can

be seen in Fig. 17. The maximum signal bandwidth we expect

is about 15 kHz.

The derivation of power bounds and particularly (15) suggest

that an appropriate figure of merit (FOM) for matching limited

converters is given by (11). This FOM corresponds to energy

dissipation per conversion step and is a widely employed metric

conversion step (11)
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Fig. 16. FFT of the measured digital output for a 1-kHz input at an 8-b setting.

Fig. 17. ENOB versus frequency at an 8-b setting.

where is the sampling rate in the case of a Nyquist rate

converter. This ADC achieves a 48 fJ/conversion step

at the 8-b setting.

The solid curve in Fig. 18 plots the measured ADC power

consumption at each resolution setting, averaged over many

sampled words with the input set to a full-scale sinusoid at a fre-

quency not harmonically related to the sample rate. The dashed

lines are based on simulation and show the power consumption

of the capacitor array, SAR logic, and comparator. We see

that the ADC cell power consumption increases strongly with

resolution from 0.23 W at 3 b to 0.90 W at 8-b resolution.

This compares very favorably with the leading previous work

for this application: 99 W per electrode for 10 output bits

at 15 kSamples/s [21] At low resolutions, comparator power

dominates. If the resolutions of 96 channels are assigned ac-

cording to Fig. 8, then the total power dissipation is 37 W.

The resolution adaptation reduces ADC power consumption by

a factor of 2.3 for this device.

Table I shows a comparison of the performance of the

ADC herein with some of the leading SAR ADCs previously

reported in this resolution and bandwidth space. The ENOB

Fig. 18. Power consumption of the base ADC cell versus resolution.

TABLE I
SUCCESSIVE APPROXIMATION ADC PERFORMANCE COMPARISON

values quoted are those at an input frequency equal to half

the sampling frequency. The FOM used is the energy per

conversion step size, given in (11). We see that our underlying

ADC circuit without resolution adaptation performs a little

more efficiently than the best of its peers, bar one, achieving

an energy per-step-size FOM of 48 fJ and that when resolution

adaptation is included this work performs about three times

more efficiently than the best of its peers, again bar one. That

better performing device is the excellent work reported in [22].

While [22] does run at a ten times greater sampling rate, which

reduces the contribution of the static power to the FOM, that

is only a minor portion of the overall advantage. The primary

reason why [22] performs so much better is through the use of

adiabatic charging of the charge redistribution DAC. Further-

more, [10] uses a novel switching sequence and various other

works use different configurations of split capacitor arrays in

the DAC to reduce DAC power consumption. All three of these

power reduction techniques are independent of the resolution

adaptation technique presented here and so may be combined

with our technique to further reduce power consumption. These

other techniques all focus on reducing DAC power consump-

tion and do not reduce comparator power. Future work could

implement a comparator whose power consumption scales with

resolution which would further increase the energy savings

gained by resolution adaptation.

A microphotograph of the ADC implemented in 0.13- m

CMOS is shown in Fig. 19.
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Fig. 19. Micrograph of the ADC cell on die area � 0.07 mm .

VI. CONCLUSION

This work has shown that a CR-SAR ADC is most appro-

priate for the IPP application, introduced algorithms, and cir-

cuit techniques to adapt the ADC resolution to minimize power

consumption while maintaining maximum IPP accuracy; and

optimized the CR-SAR ADC architecture for slow-speed appli-

cations in short-channel CMOS (as required for our SoC IPP).

The ADC cell was demonstrated in 0.13- m CMOS, and the

measured performance shows an energy per conversion step of

48 fJ/conv step at 100 kSamples/s at the 8-b setting. Further-

more, the adaptive resolution technique, together with the vari-

able resolution ADC, reduces power consumption by 2.3 times

for typical neural data. The device demonstrates dramatically re-

duced power consumption for the digitization of neural signals

compared to the leading previously reported work. The average

ADC cell power consumption is 0.39 W for effective 8-b reso-

lution, giving a projected power consumption of 38 W for the

96-cell ADC array.

The adaptive ADC performance could be improved by

varying the comparator power consumption with resolution as

mentioned in Section V.

APPENDIX

THEORETICAL LOWER BOUNDS ON POWER CONSUMPTION OF

MATCHING-LIMITED ADCS

There has been a considerable amount of work done in esti-

mating theoretical power bounds for process-limited flash and

pipeline ADC architectures. The leading results are explained

and summarized in this Appendix and plotted in Fig. 9.

A. Flash

For this application, which requires low speed and moderate

resolution, performance is likely to be limited by component

matching. It can be shown [27] that the standard deviation of the

threshold voltage mismatch between a pair of nominally iden-

tical transistors with width and length is given by

(12)

where is the threshold voltage mismatch coefficient, a con-

stant for a given technology. In 0.13- m CMOS, is about

4.5 mV m. From the observation that the energy required to

switch a latch pair of transistors from the metastable state to a

fixed state with one- certainty is

(13)

where is the gate–oxide capacitance per-unit area, Pelgrom

[27] derives the minimum ADC energy per step size per pair of

matching critical transistors, to ensure that a least-siginificant bit

(LSB) change in the input is detected when matching limited

Power
(14)

where is the number of bits to be decoded, is the signal

bandwidth, and is chosen to be equal to 10 to allow giving

a confidence interval assuming a Gaussian distribution in

mismatch. Simple algebraic manipulation gives a power bound

for matching-limited flash ADCs with more familiar process

constants

(15)

where is the total number of pairs of matching critical tran-

sistors per comparator and is the total number of compara-

tors. for a flash ADC. Assuming 1,

this gives a lower bound on the power consumption of an 8-b

50-kHz ADC of 0.3 W for minimum-sized (0.2/0.13) devices

and 2 W for devices with a channel area of 1 m in 0.13-

m CMOS. Equation(15) is plotted as the curve Pelgrom Flash

in Fig. 9 using typical process constants for 0.13- m CMOS.

Values obtained by using this formula are lower than those ob-

served in modern low-speed moderate resolution flash ADCs.

This discrepancy arises because 1) the derivation considers in-

trinsic capacitance only. Parasitic capacitors require roughly the

same amount of charge as the intrinsic capacitance and 2) not

only does the depletion charge contribute to the uncertainty of

an LSB, so do W, L dependencies, mobility variations, and so

on. Factoring in these considerations, the power is expected to

be about 10 times the value predicted above. This lower bound

assumes that flash comparators are simple regenerative latches.

This is possible for low-to-moderate resolution if the transistors

are sized large enough, but as shown, this sizing increases power

consumption.

Another approach to finding a lower bound on flash ADC

power consumption is given in [28]. This assumes that the com-

parators operate in a Class A manner and that 1/2 LSB matching

with -confidence is designed. It further assumes com-

ponents, partial supply usage represented by the factor , and

includes additional dynamic switching energy per clock

cycle. The derived lower bound on flash ADC energy consump-

tion is given by

(16)

which corresponds to a power consumption of 7.3 W for 8-b

resolution and a 50-kHz signal bandwidth in 0.13- m CMOS.
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Class A operation may be required for high-resolution or

high-speed flash ADCs wherein offsets must be canceled, but

simple regenerative latches are feasible for moderate and low-

resolution ADCs where large device sizes are more acceptable.

So the lower bound on power consumption for a flash should

be between (15) and (16) for this application. Equation (16) is

plotted as a curve Murmann Flash in Fig. 9 using typical process

constants for 0.13- m CMOS.

B. Pipeline

A lower bound on power consumption of pipeline ADCs

is derived in [28] which uses the power consumption of a

switched-capacitor integrator (17) as a starting point

Integrator (17)

where is Boltzmann’s constant, is the absolute temper-

ature, SNR is the signal-to-noise ratio, is the signal fre-

quency, is the number of time constants required to achieve

the desired settling,1 is a multiplier for to ac-

count for excess circuit noise, quantifies the fraction of supply

voltage used for signal swing and is chosen to be 2/3.2 Refer-

ence [28] presents an algorithm to estimate the power for each

stage of the pipeline ADC relative to that switched-capacitor

stage, taking into consideration the minimum feature size, noise,

and mismatch constraints. The result, using process parameters

for 0.13- m CMOS, is plotted as a curve Murmann Pipeline in

Fig. 9.
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