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Adaptive Resource Allocation in Multiuser OFDM
Systems With Proportional Rate Constraints

Zukang Shen, Student Member, IEEE, Jeffrey G. Andrews, Member, IEEE,
and Brian L. Evans, Senior Member, IEEE

Abstract—Multiuser orthogonal frequency division multiplex-
ing (MU-OFDM) is a promising technique for achieving high
downlink capacities in future cellular and wireless local area
network (LAN) systems. The sum capacity of MU-OFDM is max-
imized when each subchannel is assigned to the user with the
best channel-to-noise ratio for that subchannel, with power subse-
quently distributed by water-filling. However, fairness among the
users cannot generally be achieved with such a scheme. In this
paper, a set of proportional fairness constraints is imposed to
assure that each user can achieve a required data rate, as in
a system with quality of service guarantees. Since the optimal
solution to the constrained fairness problem is extremely compu-
tationally complex to obtain, a low-complexity suboptimal algo-
rithm that separates subchannel allocation and power allocation
is proposed. In the proposed algorithm, subchannel allocation is
first performed by assuming an equal power distribution. An opti-
mal power allocation algorithm then maximizes the sum capacity
while maintaining proportional fairness. The proposed algorithm
is shown to achieve about 95% of the optimal capacity in a two-
user system, while reducing the complexity from exponential to
linear in the number of subchannels. It is also shown that with the
proposed resource allocation algorithm, the sum capacity is dis-
tributed more fairly and flexibly among users than the sum
capacity maximization method.

Index Terms—Channel capacity, dynamic resource allocation,
multiuser OFDM, proportional fairness, water-filling.

I. INTRODUCTION

O RTHOGONAL frequency division multiplexing (OFDM)

is a promising technique for the next generation of

wireless communication systems [1], [2]. OFDM divides the

available bandwidth into N orthogonal subchannels. By adding

a cyclic prefix (CP) to each OFDM symbol, the channel appears

to be circular if the CP length is longer than the channel length.

Each subchannel can, thus, be modeled as a time-varying gain

plus additive white Gaussian noise (AWGN). Besides the im-

proved immunity to fast fading [3] brought by the multicarrier

property of OFDM systems, multiple access is also possible,

because the subchannels are orthogonal to each other.

Multiuser OFDM (MU-OFDM) adds multiple access to

OFDM by allowing a number of users to share an OFDM sym-
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bol. Two classes of resource allocation schemes exist, namely:

1) fixed resource allocation [4]; and 2) dynamic resource allo-

cation [5]–[8]. Fixed resource allocation schemes, such as time

division multiple access (TDMA) and frequency division mul-

tiple access (FDMA), assign an independent dimension, e.g.,

time slot or subchannel, to each user. A fixed resource alloca-

tion scheme is not optimal, since the scheme is fixed regardless

of the current channel condition. On the other hand, dynamic

resource allocation allocates a dimension adaptively to the users

based on their channel gains. Due to the time-varying nature of

the wireless channel, dynamic resource allocation makes full

use of multiuser diversity to achieve higher performance.

Two classes of optimization techniques have been proposed

in the dynamic multiuser OFDM literature, namely: 1) margin

adaptive (MA) [5]; and 2) rate adaptive (RA) [6], [7]. The MA

objective is to achieve the minimum overall transmit power

given the constraints on the users’ data rates or bit error rates

(BER). The RA objective is to maximize each user’s error-

free capacity with a total transmit power constraint. These op-

timization problems are nonlinear and, hence, computationally

intensive to solve. In [8], the nonlinear optimization problems

were transformed into a linear optimization problem with inte-

ger variables. The optimal solution can be achieved by integer

programming. However, even with integer programming, the

complexity increases exponentially with the number of con-

straints and variables.

Two RA optimization problems have been proposed by re-

searchers. Recently, Jang and Lee proposed the rate maximiza-

tion problem [6]. In [6], they proved that the sum capacity is

maximized when each subchannel is assigned to the user with

the best subchannel gain and power is then distributed by the

water-filling algorithm. However, fairness is not considered in

[6]. When the path loss differences among users are large, it is

possible that the users with higher average channel gains will be

allocated most of the resources, i.e., subchannels and power, for

a significant portion of time. The users with lower average chan-

nel gains may be unable to receive any data, since most of the

time the subchannels will be assigned to users with higher chan-

nel gains. In [7], Rhee and Cioffi studied the max–min problem,

where by maximizing the worst user’s capacity, it is assured that

all users achieve a similar data rate. However, the max–min op-

timization problem can only provide maximum fairness among

the users. In most wireless systems of interest, different users

require different data rates, which may be accommodated by

allowing users to subscribe to different levels of service.

In [9], Viswanath et al. discussed long-term proportional fair-

ness resource allocation with “dumb” antennas. They pointed

1536-1276/$20.00 © 2005 IEEE
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Fig. 1. Multiuser OFDM system block diagram.

out that in multiuser systems, channel fading can be exploited

as a source of randomness, i.e., multiuser diversity. However, in

some scenarios, due to the limited scatters in the environment

and slow channel variation, the dynamic range of channel

fluctuation in the time scale of interest may be small.

In this paper, we formulate a new optimization problem

that balances the tradeoff between capacity and fairness. The

objective function is still the sum capacity, but proportional

fairness is assured by imposing a set of nonlinear constraints

into the optimization problem. The definition of fairness is

borrowed from the networking literature. In contrast to [9],

where large channel fluctuations are intentionally created with

“dumb” antennas for long-term proportional fairness resource

allocation, this paper proposes an algorithm to maintain pro-

portional rates among users for each channel realization, which

ensures the rates of different users to be proportional in any

time scale of interest. By formulating the problem this way, it

will be shown that a high capacity for all users (even those with

poor channel gains) can be achieved with low computational

complexity.

This paper is organized as follows. Section II introduces the

multiuser OFDM system model and presents the optimization

objective function. In Section III, the optimal multiuser sub-

channel and power allocation is developed, and two approaches

are discussed. In Section IV, the suboptimal algorithm is pro-

posed, where subchannel and power allocations are carried

out sequentially. Simulation results are presented in Section V

and conclusions are drawn in Section VI. The Matlab simula-

tion codes are available at 〈http://www.ece.utexas.edu/~bevans/

projects/ofdm/software〉.

II. SYSTEM MODEL

A multiuser OFDM system is shown in Fig. 1. In the base

station, all channel information is sent to the subchannel and

power allocation algorithm through feedback channels from

all mobile users. The resource allocation scheme made by the

algorithm is forwarded to the OFDM transmitter. The transmit-

ter then selects different numbers of bits from different users

to form an OFDM symbol. The resource allocation scheme is

updated as fast as the channel information is collected. In this

paper, perfect instantaneous channel information is assumed to

be available at the base station, and only the broadcast scenario

is studied. It is also assumed that the subchannel and bit

allocation information is sent to each user by a separate channel.

Throughout this paper, we assume a total of K users in

the system sharing N subchannels, with total transmit power

constraint Ptotal. Our objective is to optimize the subchannel

and power allocation in order to achieve the highest sum error-

free capacity under the total power constraint. We use the

equally weighted sum capacity as the objective function, but we

introduce the idea of proportional fairness into the system by

adding a set of nonlinear constraints. The benefit of introducing

proportional fairness into the system is that we can explicitly

control the capacity ratios among users, and generally ensure

that each user is able to meet his target data rate, given sufficient

total available transmit power.

Mathematically, the optimization problem considered in this

paper is formulated as

max
pk,n,ρk,n

K∑

k=1

N∑

n=1

ρk,n

N
log2

(
1 +

pk,nh2
k,n

N0
B
N

)

subject to

K∑

k=1

N∑

n=1

pk,n ≤ Ptotal

pk,n ≥ 0 for all k, n

ρk,n = {0, 1} for all k, n

K∑

k=1

ρk,n = 1 for all n

R1 : R2 : . . . : RK = γ1 : γ2 : . . . : γK (1)
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where K is the total number of users, N is the total number of

subchannels, N0 is the power spectral density of AWGN, B and

Ptotal are the total available bandwidth and power, respectively,

pk,n is the power allocated for user k in the subchannel n, hk,n

is the channel gain for user k in subchannel n, and ρk,n can only

be either 1 or 0, indicating whether subchannel n is used by user

k or not. The fourth constraint shows that each subchannel can

only be used by one user. The capacity for user k, denoted as

Rk, is defined as

Rk =

N∑

n=1

ρk,n

N
log2

(
1 +

pk,nh2
k,n

N0
B
N

)
. (2)

Finally, {γi}
K
i=1 is a set of predetermined values that are used

to ensure proportional fairness among users.

The fairness index is defined as

F =

(
K∑

k=1

γk

)2

K
K∑

k=1

γ2
k

(3)

with the maximum value of 1 to be the greatest fairness case

in which all users would achieve the same data rate. When

all γi terms are equal, the objective function in (1) is similar

to the objective function of the max–min problem [7], since

maximizing the sum capacity while making all Rk terms

equal is equivalent to maximizing the worst user’s capacity.

Hence, [7] is a special case of the proposed constrained-fairness

problem.

III. OPTIMAL SUBCHANNEL ALLOCATION

AND POWER DISTRIBUTION

The optimization problem in (1) is generally very hard to

solve. It involves both continuous variables pk,n and binary

variables ρk,n. Such an optimization problem is called a mixed

binary integer programming problem. Furthermore, the non-

linear constraints in (1) increase the difficulty in finding the

optimal solution, because the feasible set is not convex.

In a system with K users and N subchannels, there are

KN possible subchannel allocations, since it is assumed that

no subchannel can be used by more than one user. For a

certain subchannel allocation, an optimal power distribution

can be used to maximize the sum capacity, while maintaining

proportional fairness. The optimal power distribution method

is derived in the next section. The maximum capacity over all

KN subchannel allocation schemes is the global maximum, and

the corresponding subchannel allocation and power distribution

is the optimal resource allocation scheme. However, it is pro-

hibitive to find the global optimizer in terms of computational

complexity. A suboptimal algorithm is derived in this paper

to reduce the complexity significantly while still delivering

performance close to the global optimum.

An alternative approach [5]–[7] to make the optimization

problem in (1) easier to solve is to relax the constraint that

subchannels can only be used by one user. Thus, ρk,n is

reinterpreted as the sharing factor of user k to subchannel n,

which can be any value on the half-open interval of (0,1]. The

optimization in (1) can be transformed into

min
pk,n,ρk,n

−

K∑

k=1

N∑

n=1

ρk,n

N
log2

(
1 +

pk,nh2
k,n

ρk,nN0
B
N

)

subject to

K∑

k=1

N∑

n=1

pk,n ≤ Ptotal

pk,n ≥ 0 for all k, n

ρk,n ∈ (0, 1] for all k, n

K∑

k=1

ρk,n = 1 for all n

R1 : R2 : . . . : RK = γ1 : γ2 : . . . : γK . (4)

That is, the original maximization problem is transformed into

a minimization problem. In the third constraint in (4), ρk,n

is not allowed to be zero, since the objective function is not

defined for ρk,n = 0. However, when ρk,n is arbitrarily close

to 0, (ρk,n/N) log2(1 + (pk,nh2
k,n)/(ρk,nN0(B/N))) also ap-

proaches 0. Thus, the nature of the objective function remains

unchanged by excluding the case ρk,n = 0.

A desirable property of the objective function in (4) is that

it is convex on the set defined by the first two constraints.

The convexity is shown in Appendix I. However, the nonlin-

ear equality constraints make the feasible set nonconvex. In

general, such optimization problems require linearization of the

nonlinear constraints. The linearization procedure may lead the

solution slightly off the feasible set defined by the nonlinear

constraints. There is always a tradeoff between satisfaction of

the constraints and improvement of the objective. Furthermore,

it is still computationally complex to find the optimal solution.

For these reasons, we propose a suboptimal technique in the

next section.

IV. SUBOPTIMAL SUBCHANNEL ALLOCATION

AND POWER DISTRIBUTION

Ideally, subchannels and power should be allocated jointly

to achieve the optimal solution in (1). However, this poses a

prohibitive computational burden at the base station in order to

reach the optimal allocation. Furthermore, the base station has

to rapidly compute the optimal subchannel and power alloca-

tion as the wireless channel changes. Hence, low-complexity

suboptimal algorithms are preferred for cost-effective and

delay-sensitive implementations. Separating the subchannel

and power allocation is a way to reduce the complexity, because

the number of variables in the objective function is almost

reduced by half. Section IV-A discusses a subchannel allocation

scheme. Section IV-B presents the optimal power distribution

given a certain subchannel allocation.
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A. Suboptimal Subchannel Allocation

In this section, we discuss a suboptimal subchannel algo-

rithm based on [7]. In the suboptimal subchannel allocation

algorithm, equal power distribution is assumed across all sub-

channels. We define Hk,n = (h2
k,n/N0(B/N)) as the channel-

to-noise ratio for user k in subchannel n and Ωk is the set

of subchannels assigned to user k. The algorithm can be

described as

1) Initialization

a) Set Rk = 0, Ωk = ∅ for k = 1, 2, . . . ,K and A =
{1, 2, . . . , N}.

2) For k = 1 to K,

a) find n satisfying |Hk,n| ≥ |Hk,j | for all j ∈ A;

b) let Ωk = Ωk ∪ {n}, A = A − {n} and update Rk

according to (2).

3) While A �= ∅,

a) find k satisfying Rk/γk ≤ Ri/γi for all i, 1 ≤ i ≤ K;

b) for the found k, find n satisfying |Hk,n| ≥ |Hk,j | for

all j ∈ A;

c) for the found k and n, let Ωk = Ωk ∪ {n}, A = A −
{n} and update Rk according to (2).

The principle of the suboptimal subchannel algorithm is for

each user to use the subchannels with high channel-to-noise

ratio as much as possible. At each iteration, the user with

the lowest proportional capacity has the option to pick which

subchannel to use. The subchannel allocation algorithm is sub-

optimal, because equal power distribution in all subchannels is

assumed. After subchannel allocation, only coarse proportional

fairness is achieved. The goal of maximizing the sum capacity

while maintaining proportional fairness is achieved by the

power allocation in the next section.

B. Optimal Power Distribution for a Fixed Subchannel

Allocation

To a certain determined subchannel allocation, the optimiza-

tion problem is formulated as

max
pk,n

K∑

k=1

∑

n∈Ωk

1

N
log2

(
1 +

pk,nh2
k,n

N0
B
N

)

subject to

K∑

k=1

∑

n∈Ωk

pk,n ≤ Ptotal

pk,n ≥ 0 for all k, n

Ωk are disjoint for all k

Ω1 ∪ Ω2 ∪ . . . ∪ ΩK ⊆ {1, 2, . . . , N}

R1 : R2 : . . . : RK = γ1 : γ2 : . . . : γK (5)

where Ωk is the set of subchannels for user k, and Ωk and Ωl

are mutually exclusive when k �= l.

The optimization problem in (5) is equivalent to finding the

maximum of the following cost function

L =
K∑

k=1

∑

n∈Ωk

1

N
log2(1 + pk,nHk,n)

+ λ1

(
K∑

k=1

∑

n∈Ωk

pk,n − Ptotal

)

+

K∑

k=2

λk

(
∑

n∈Ω1

1

N
log2(1 + p1,nH1,n)

−
γ1

γk

∑

n∈Ωk

1

N
log2(1 + pk,nHk,n)

)
(6)

where {λi}
K
i=1 are the Lagrangian multipliers. We differentiate

(6) with respect to pk,n and set each derivative to 0 to obtain

∂L

∂p1,n

=
1

N ln 2

H1,n

1 + H1,np1,n

+ λ1 +

K∑

k=2

λk

1

N ln 2

H1,n

1 + H1,np1,n

= 0 (7)

∂L

∂pk,n

=
1

N ln 2

Hk,n

1 + Hk,npk,n

+ λ1 − λk

γ1

γk

1

N ln 2

Hk,n

1 + Hk,npk,n

= 0 (8)

for k = 2, 3, . . . ,K and n ∈ Ωk.

1) Power Distribution for a Single User: In this section,

the optimal power distribution strategy for a single user k is

derived.

From either (7) or (8), we may obtain

Hk,m

1 + Hk,mpk,m

=
Hk,n

1 + Hk,npk,n

(9)

for m, n ∈ Ωk and k = 1, 2, . . . ,K. Without loss of gener-

ality, we assume that Hk,1 ≤ Hk,2 ≤ · · · ≤ Hk,Nk
for k =

1, 2, . . . , K and Nk is number of subchannels in Ωk. Thus, (9)

can be rewritten as

pk,n = pk,1 +
Hk,n − Hk,1

Hk,nHk,1

(10)

for n = 1, 2, . . . , Nk and k = 1, 2, . . . ,K. Equation (10) shows

that the power distribution for a single user k on subchannel

n. More power will be put into the subchannels with higher

channel-to-noise ratio. This is the water-filling algorithm [13]

in frequency domain.

By defining Pk,tot as the total power allocated for user k and

using (10), Pk,tot can be expressed as

Pk,tot =

Nk∑

n=1

pk,n = Nkpk,1 +

Nk∑

n=2

Hk,n − Hk,1

Hk,nHk,1

(11)

for k = 1, 2, . . . ,K.



2730 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 6, NOVEMBER 2005

2) Power Distribution Among Users: Once the set

{Pk,tot}
K
k=1

is known, power allocation can be determined by

(10) and (11). The total power constraint and capacity ratio

constraints in (5) are used to obtain {Pk,tot}
K
k=1

. With (9) and

(11), the capacity ratio constraints can be expressed as

1

γ1

N1

N

(
log2

(
1 + H1,1

P1,tot − V1

N1

)
+ log2 W1

)

=
1

γk

Nk

N

(
log2

(
1 + Hk,1

Pk,tot − Vk

Nk

)
+ log2 Wk

)

(12)

for k = 2, 3, . . . ,K, where Vk and Wk are defined as

Vk =

Nk∑

n=2

Hk,n − Hk,1

Hk,nHk,1

(13)

and

Wk =

(
Nk∏

n=2

Hk,n

Hk,1

) 1

Nk

(14)

for k = 1, 2, . . . ,K.

Adding the total power constraints

K∑

k=1

Pk,tot = Ptotal (15)

there are K variables {Pk,tot}
K
k=1

in the set of K equations

in (12) and (15). Solving the set of functions provides the

optimal power allocation scheme. The equations are, in general,

nonlinear. Iterative methods, such as the Newton–Raphson or

quasi-Newton methods [15], can be used to obtain the solu-

tion, with a certain amount of computational effort. In the

Newton–Raphson method, the computational complexity pri-

marily comes from finding the update direction. In Appendix II,

the computational complexity of each iteration is shown to be

O(K). Under certain conditions, the optimal or near-optimal

solution to the set of nonlinear equations can be found in one

iteration. Two special cases are analyzed as follows.

1) Linear case: If N1 : N2 : . . . : NK = γ1 : γ2 : . . . : γK ,

then the set of equations, i.e., (12) and (15), can be

transformed into a set of linear equations by




1 1 . . . 1
1 a2,2 . . . 0
...

...
. . .

...

1 0 . . . aK,K







P1,tot

P2,tot

...

PK,tot


 =




Ptotal

b2

...

bK


 (16)

where

ak,k = −
N1

Nk

Hk,1Wk

H1,1W1

(17)

bk =
N1

H1,1W1

(
Wk − W1 +

H1,1V1W1

N1

−
Hk,1VkWk

Nk

)
(18)

for k = 2, 3, . . . ,K. The matrix of {ai,i}
K
i=2

in (16) has

nonzero elements only on the first row, the first column,

and the main diagonal. By substitution, the solution to

(16) can be obtained with a computational complexity of

O(K).
2) High channel-to-noise ratio case: In adaptive modula-

tion, the linear condition rarely happens and the set of

equations remains nonlinear, which requires considerably

more computation to solve. However, if the channel-

to-noise ratio is high, approximations can be made to

simplify the problem.

First, consider (13), in which Vk could be relatively

small compared to Pk,tot if the channel-to-noise ratios are

high. Furthermore, if adaptive subchannel allocation is

used, the best subchannels will be chosen, and they have

relatively small channel gain differences among them.

Thus, the first approximation is Vk = 0.

Second, assuming that the base station could provide a

large amount of power and the channel-to-noise ratio is

high, the term Hk,1Pk,tot/Nk is much larger than 1.

With the above two approximations, (12) can be re-

arranged and simplified to be

(
H1,1W1

N1

)N1

γ1

(P1,tot)
N1

γ1 =

(
Hk,1Wk

Nk

)Nk
γk

(Pk,tot)
Nk
γk

(19)

where k = 2, 3, . . . ,K.

Substituting (19) into (15), a single equation with the

variable P1,tot can be derived as

K∑

k=1

ck(P1,tot)
dk − Ptotal = 0 (20)

where

ck =





1, if k = 1
(

H1,1W1

N1

)N1γk
Nkγ1

Hk,1Wk

Nk

, if k = 2, 3, . . . ,K
(21)

and

dk =

{
1, if k = 1
N1γk

Nkγ1

, if k = 2, 3, . . . ,K. (22)

Numerical algorithms, such as Newton’s root-finding

method [14] or the false position method [14], can be

applied to find the zero of (20).

C. Existence of Power Allocation Scheme

1) Solution to Single-User Power Allocation: For a certain

user k, there is no power allocation if Vk > Pk,tot. This situ-

ation could happen when a subchannel is allocated to a user

who does not have a high channel gain in that subchannel.

The greedy water-filling algorithm would rather stop using this

subchannel. In case this situation happens, the set of Ωk, as well

as the corresponding values of Nk, Vk, and Wk, needs to be

updated and the power allocation algorithm presented in this

paper should again be executed, as shown in Fig. 2.
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Fig. 2. Proposed resource allocation algorithm.

2) Solution to Multiuser Power Allocation: In case that

the channel-to-noise ratio is high, there is one and only one

solution to (20), since every item in the summation monoton-

ically increases and (20) achieves different signs at P1,tot = 0
and P1,tot = Ptotal. A numerical algorithm can be used to

find the solution to (20). The complexity of finding the so-

lution will primarily rely on the choice of the numerical al-

gorithm and the precision required in the results. After P1,tot

is found, {Pk,tot}
K
k=2

can be calculated using (19). Then the

overall power allocation scheme can be determined by (10)

and (11).

In general, it can be proven that there must be an optimal

subchannel and power allocation scheme that satisfies the pro-

portional fairness constraints and the total power constraint.

Furthermore, the optimal scheme must utilize all available

power. Several facts lead to the above conclusion. First, to a

certain user, the capacity of the user is maximized if the water-

filling algorithm is adopted. Furthermore, the capacity function

is continuous with respect to the total available power to that

user. In other words, Rk(Pk,tot) is continuous with Pk,tot.

Second, if the optimal allocation scheme does not use all avail-

able transmit power, there is always a way to redistribute the

unused power among users while maintaining the capacity ratio

constraints, since Rk(Pk,tot) is continuous with Pk,tot for all

k. Thus, the sum capacity is further increased. In Appendix II,

we describe the Newton–Raphson method to find Pk,tot, with-

out considering the constraints on Pk,tot, i.e., Pk,tot > Vk for

k = 1, 2, . . . ,K. If the Newton–Raphson method returns a

nonfeasible Pk,tot, the set Ωk and the associated Nk, Vk, and

Wk would need to be updated. The Newton–Raphson method

should be performed until all Pk,tot > Vk.

D. Complexity Analysis

The best subchannel allocation scheme can be found by ex-

haustive search; i.e., for each subchannel allocation, one would

Fig. 3. Performance comparison of optimal and suboptimal algorithms,
with two users and ten subchannels. AWGN power spectral density is
−70 dB · W/Hz. Total available bandwidth and transmit power are 1 MHz and
1 W, respectively.

run the optimal power allocation algorithm in Fig. 2, which

has the computational complexity of O(K). The subcarrrier

allocation that gives the highest sum capacity is the optimum.

In a K-user N -subchannel system, it is prohibitive to find

the global optimum, since there are KN possible subchannel

allocations. The complexity of the proposed algorithm consists

of two parts, namely 1) subchannel allocation with the com-

plexity of O(KN) and 2) power allocation of O(K). Hence,

the complexity of the proposed method is approximately on the

order of KN times less than that of the optimal, because the

power allocation is only executed once. The proposed method

is described by Fig. 2.

V. NUMERICAL RESULTS

In this section, we present simulation results to show the

performance of the proposed resource allocation algorithm. We

also show the tradeoff between sum capacity and the fairness

constraints.

In all simulations presented in this section, the wireless

channel is modeled as a frequency-selective channel consist-

ing of six independent Rayleigh multipaths. Each multipath

component is modeled by Clarke’s flat fading model [12]. It is

assumed that the power delay profile is exponentially decaying

with e−2l, where l is the multipath index. Hence, the relative

power of the six multipath components are [0, −8.69, −17.37,

−26.06, −34.74, −43.43] dB. The total available bandwidth

and transmit power are 1 MHz and 1 W, respectively.

A. System With Two Users and Ten Subchannels

Fig. 3 shows the sum capacity versus γ1/γ2, from which

the fairness index as defined in (3) can be calculated. Both the

suboptimal results and the optimal results are plotted. A small

number of users and subchannels are used in order to reduce the

time to find the optimal solution. The sum capacities shown in

Fig. 3 are averaged over 200 channel realizations. In Fig. 3, we
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can see that the sum capacity is not very sensitive to the fairness

constraint ratio γ1/γ2 when there is no path loss difference

between the two users. However, when there exists path loss

difference, e.g., 10 dB, the sum capacity varies greatly with

the fairness constraint ratio. For example, when the averaged

channel power of user 1, denoted as E(ch1), is 10 dB higher

than average channel power of user 2, denoted as E(ch2), the

sum capacity reduces as γ1/γ2 decreases. The reason is that as

γ1/γ2 decreases, more priority is assigned to user 2. Hence,

user 2 will be assigned most of the available resources, i.e.,

power and bandwidth, which, consequently, lowers the sum

capacity, since the average channel power of user 2 is 10 dB

lower than user 1.

In Fig. 3, the proposed method achieves about 95% of

the optimal performance in a two-user ten-subchannel system.

Although in a real cellular or wireless local area network

(LAN) system, the number of users and subchannels is much

larger, we still expect the proposed method to perform close

to the optimum, because the subchannel allocation algorithm is

designed to utilize the subchannels with large channel-to-noise

ratio as much as possible, and the power distribution is always

optimal for any determined subchannel allocation.

B. Comparison With the Method in [7]

The objective in [7] is to maximize the minimum user’s

capacity. By setting γ1 : γ2 : . . . : γK = 1 : 1 : . . . : 1, the ob-

jective of the optimization problem in (1) is identical to the

one in [7], since the worst user’s capacity is maximized when

all users have the same capacity and the sum capacity is

maximized. Hence, the problem in [7] is a special case of the

framework presented in this paper. In this section of simula-

tions, the worst user’s capacity is compared. In [7], a suboptimal

algorithm is proposed to achieve near-optimal capacity using

adaptive subchannel allocation, but an equal power distribution

is assumed. When the number of users increases, the equal

power distribution does not equalize every user’s capacity. By

transferring power from the users with high capacity to the

users with low capacity, the worst user’s capacity could even

be increased. For the purpose of comparison, we use the subop-

timal algorithm in [7], which is a special case of the sub-

channel allocation algorithm in this paper, to allocate the

subchannels first and then apply the optimal power alloca-

tion scheme proposed in this paper. Both of these adaptive

schemes are compared with the fixed TDMA resource alloca-

tion scheme.

The wireless channel is modeled as before, and the total

transmit power available at the base station is 1 W. The power

spectral density of AWGN is −80 dB · W/Hz, and the total

bandwidth is 1 MHz, which is divided into 64 subchannels.

The maximum path loss difference is 40 dB, and the user

locations are assumed to be uniformly distributed. In this part

of the simulation, the subchannel SNR is high, hence, the power

allocation algorithm can be reduced to the high channel-to-

noise case discussed in Section IV-B2.

Fig. 4 shows the capacity versus number of users in an

OFDM system. In Fig. 4, it can be seen that adaptive resource

allocation can achieve significant capacity gain over nonadap-

Fig. 4. Minimum user’s capacity in multiuser OFDM versus number of users.
The total power available at the base station is 1 W. The power spectral density
of AWGN is −80 dB · W/Hz. The overall bandwidth is 1 MHz, which is
divided into 64 subchannels. This plot shows the capacity gain of optimal power
allocation over equal power distribution, as well as the capacity gain of adaptive
resource allocations over a static TDMA system.

tive TDMA. In addition, the adaptive scheme with optimal

power allocation achieves even higher capacity than the scheme

with equal power distribution. Notice that this capacity gain

is purely from the optimal power allocation algorithm, since

both adaptive resource allocation algorithms adopt the same

subchannel allocation. Fig. 4 also shows that the capacity gain

over TDMA increases when the number of users increases. This

can be explained by multiuser diversity: The more users in the

system, the lower the probability that a given subchannel is in

a deep fade for all users. In a system of 16 users, the adaptive

scheme with the proposed optimal power allocation achieves

17% more capacity gain than the scheme with equal power

distribution, when compared to fixed TDMA.

C. Comparison With the Method in [6]

In this subsection, we compare the sum capacity achieved

by the proposed algorithm with the method in [6]. The sim-

ulation parameters are the same as the previous section, i.e.,

the total available bandwidth is 1 MHz, the total transmit

power at the base station is 1 W, the AWGN power density is

−80 dB · W/Hz, and the number of subchannels is N = 64.

In Fig. 5, we show the sum capacity of our proposed resource

allocation algorithm in an eight-user OFDM system versus

different fairness constraints, which are defined in Table I. The

average channel power of user 2 to user 8 is the same, while the

average channel power of user 1 is 10 dB higher than the other

seven users. In Fig. 5, we also show that

1) the sum capacity achieved by the method in [6];

2) the capacity achieved by a static TDMA system, in which

each user is allocated an equal share of time slots and

equal transmit power;

3) the capacities of two types of single-user systems, one for

the user with high average channel power, and the other

for those with low average channel power.
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Fig. 5. Ergodic sum capacity of multiuser OFDM systems versus various
Γ-sets. The total transmit power is 1 W. The total bandwidth is 1 MHz,
which is divided into 64 subchannels. The AWGN noise power density is
−80 dB · W/Hz. The number of users is 8. The average channel power is
E(ch1) = 10E(chk) for k = 2, . . . , 8. The rate constraints are γ1 = 2m and
γk = 1 for k �= 1, where m is the Γ-set index.

All sum capacities shown in Fig. 5 are ergodic capacities

averaged over 5 × 104 channel realizations. It can be seen that

the sum capacity maximization method in [6] achieves the

maximum sum capacity, because all resources are allocated to

the users with the best channel gains. The capacity achieved

by the proposed algorithm varies as the rate constraint changes.

As more priority is allocated to user 1, i.e., as the Γ-set index

increases, higher sum capacity is achieved. This is reasonable,

since user 1 has higher average channel gain and, hence, can

more efficiently utilize the resources.

Fig. 6 shows the normalized ergodic capacity distribution

among users for Γ-set index 3 in Table I, where γ1 = 8 and

γ2 = γ2 = · · · = γ8 = 1. With the proposed subchannel and

power allocation algorithm, the capacity is distributed very well

among users according to the rate constraints. However, for

the capacity maximization method in [6], user 1 gets most of

the resources and, hence, achieves a significant part of the sum

capacity. Static TDMA tends to allocate similar capacity to each

user, since all users get the same opportunity to transmit. Notice

that the capacity distribution of the method in [6] and static

TDMA cannot be changed by varying the Γ-set values, because

there is no fairness control mechanism in these systems.

Since the problem formulation in (1) is to allocate resources

to satisfy the rate constraints strictly for each channel real-

ization, we define a quantity to measure how well the rate

constraints are satisfied. Let Rk,i be the capacity of user k

for a certain channel realization i, R̃k,i = Rk,i/
∑K

k=1 Rk,i be

the normalized capacity for user k, and γ̃k = γk/
∑K

k=1 γk be

the normalized rate constraint. The normalized rate constraint

deviation measure for channel realization i is defined as

Di =

K∑
k=1

|R̃k,i − γ̃k|

max
R̃k,i

K∑
k=1

|R̃k,i − γ̃k|

. (23)

Notice that the denominator in (23) refers to the maxi-

mum deviation over all possible R̃k,i values. It is shown in

Appendix III that

max
R̃k,i

K∑

k=1

|R̃k,i − γ̃k| = 2 − 2min
k

γ̃k. (24)

Table I shows the averaged rate constraint deviations, de-

noted as D =
∑I

i=1 Di/I , where I is the total number of

channel realizations of the eight-user OFDM system. The rate

constraint deviation of the proposed subchannel and power

allocation is orders of magnitude smaller than those achieved

by the method in [6] and the static TDMA. In other words, the

price of maximizing ergodic capacity is that the short-term data

rates vary widely and users may have poor performance over a

certain block of time.

Fig. 7 shows the ergodic sum capacities in a multiuser

OFDM systems with 16 users. The simulation parameters

are the same as those in the previous eight-user system.

The average channel power of the first four users are 10 dB

higher than the rest of 12 users. The Γ-set index and the rate

constraint deviations are shown in Table II. Fig. 8 shows the

normalized average sum capacity distribution among users with

γ1 = · · · = γ4 = 8 and γ5 = · · · = γ16 = 1. It should be noted

that higher sum capacity is achieved by the method in [6] in

this 16-user OFDM system, since more users with high channel

power are in this system, hence, more multiuser diversity.

However, it can be seen from Fig. 8 that the users with lower

average channel power, i.e., users 5–16, get very small portions

of the sum capacity, since in most channel realizations, the

subchannels and power are allocated to the users with larger

subchannel gains.

VI. CONCLUSION

In this paper, we present a resource allocation framework

in MU-OFDM systems to achieve variable proportional rate

constraints. For different rate constraints, i.e., {γk}
K
k=1, differ-

ent proportional rates can be achieved among users. The term

“variable” refers to the facts that the rate constraints can be

configured at the base station and, hence, rate allocation among

users is flexible.

The proposed optimization problem considers maximizing

the sum capacity while maintaining proportional fairness

among users for each channel realization. The algorithm to

find the optimal solution is discussed, and a low complexity

suboptimal algorithm, which reduces complexity from O(KN )
to O(KN), is also proposed. In the suboptimal algorithm,

subchannel and power allocation are carried out separately. The

optimal power allocation to a determined subchannel scheme

is developed. A two-step procedure may be taken to get the

optimal power distribution. First, a set of nonlinear equations

has to be solved in order to get the power distribution among

users. Then to a particular user, the greedy water-filling algo-

rithm is adopted to maximize the capacity. The existence of

power allocation is also discussed.

Simulation results show that the suboptimal algorithm

can achieve above 95% of the optimal performance in a
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TABLE I
RATE CONSTRAINTS (Γ-SETS) AND RATE CONSTRAINT DEVIATIONS FOR FIGS. 5 AND 6, K = 8

Fig. 6. Normalized ergodic sum capacity distribution among users. The
simulation parameters are the same as in Fig. 5. The rate constraint is γ1 = 8
and γ2 = · · · = γ8 = 1.

two-user system. It is also shown that in a system of

16 users, the proposed optimal power allocation achieves 17%

more capacity over fixed TDMA than the max–min method

in [7]. We also show that with the proposed resource allo-

cation algorithm, the sum capacity is distributed more fairly

among users than the sum capacity maximization algorithm

in [6].

APPENDIX I

CONVEXITY OF THE OBJECTIVE FUNCTION IN THE

RELAXED OPTIMIZATION PROBLEM

First, consider the following function

f(ρk,n, pk,n) = ρk,n log2

(
1 +

pk,nHk,n

ρk,n

)
(25)

where Hk,n = h2
k,n/(N0(B/N)).

The Jacobian of f(ρk,n, pk,n) is calculated as

∇f(ρk,n, pk,n)

=

[
log2

(
1 +

pk,nHk,n

ρk,n

)
− 1

ln2

pk,nHk,n

ρk,n+pk,nHk,n

1

ln2

ρk,nHk,n

ρk,n+pk,nHk,n

]
. (26)

Fig. 7. Ergodic sum capacity of multiuser OFDM systems versus various
Γ-sets. The total transmit power is 1 W. The total bandwidth is 1 MHz,
which is divided into 64 subchannels. The AWGN noise power density is
−80 dB · W/Hz. The number of users is 16. The average channel power of
users 1–4 is 10 dB higher than the rest of 12 users. The rate constraints are
γk = 2m for k = 1, . . . , 4 and γk = 1 for k = 5, . . . , 16, where m is the
Γ-set index.

The Hessian of f(ρk,n, pk,n) is calculated as

∇2f(ρk,n, pk,n)

=
1

ln 2

pk,nH2
k,n

(ρk,n + pk,nHk,n)2

[
−

pk,n

ρk,n
1

1 −
ρk,n

pk,n

]
. (27)

Since ρk,n, pk,n, and Hk,n are all positive, it is not difficult to

see that the Hessian of f(ρk,n, pk,n) is negative semidefinite

and, hence, f(ρk,n, pk,n) is concave. Thus, the Hessian of

−f(ρk,n, pk,n) is positive semidefinite and −f(ρk,n, pk,n) is

convex. The objective function in (4) can be expressed as

K∑

k=1

N∑

n=1

1

N
(−f(ρk,n, pk,n)) (28)

and, thus, is a summation of a set of convex functions, which is

also convex.

APPENDIX II

NEWTON–RAPHSON METHOD TO SOLVE THE

NONLINEAR EQUATIONS

In the following, we describe the major steps to find the

power allocation with Newton–Raphson method.
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TABLE II
RATE CONSTRAINTS (Γ-SETS) AND RATE CONSTRAINT DEVIATIONS FOR FIGS. 7 AND 8, K = 16

Fig. 8. Normalized ergodic sum capacity distribution among users. The
simulation parameters are the same as in Fig. 7. The rate constraint is γ1 =
· · · = γ4 = 8 and γ5 = · · · = γ16 = 1.

Denote the variables as

P = [P1,tot P2,tot . . . PK,tot]
+ (29)

where [•]+ represents the operation of matrix transpose.

Furthermore, define a square system of equations g(P) = 0

where

g1(P) =
K∑

k=1

Pk,tot − Ptotal = 0 (30)

and

gk(P)=
N1

N

(
log2

(
1 + H1,1

P1,tot − V1

N1

)
+ log2 W1

)

−
γ1

γk

Nk

N

(
log2

(
1 + Hk,1

Pk,tot − Vk

Nk

)
+ log2 Wk

)

= 0 (31)

for k = 2, . . . , K.

Denote △P as the update direction. The major step in

Newton–Raphson method is to solve the following equation to

find △P

J (P)△P = −g(P) (32)

and update P as

P = P + △P (33)

where

J (P) =




∂g1

∂P1,tot

∂g1

∂P2,tot
. . . ∂g1

∂PK,tot

∂g2

∂P1,tot

∂g2

∂P2,tot
. . . ∂g2

∂PK,tot

...
...

. . .
...

∂gK

∂P1,tot

∂gK

∂P2,tot
. . . ∂gK

∂PK,tot




(34)

is the Jacobian matrix of g(P) evaluated at P.

It is true that the computational complexity is still high,

since, in general, a matrix inversion or LU decomposition has

to be performed in order to get △P each iteration. Fortunately,

the Jacobian matrix of g(P) has a good structure that can be

J (P) =




∂g1

∂P1,tot

∂g1

∂P2,tot
. . . ∂g1

∂PK,tot

∂g2

∂P1,tot

∂g2

∂P2,tot
. . . ∂g2

∂PK,tot

...
...

. . .
...

∂gK

∂P1,tot

∂gK

∂P2,tot
. . . ∂gK

∂PK,tot




=




1 1 . . . . . . 1
H1,1

N ln 2

1

1+H1,1

P1,tot−V1

N1

−γ1

γ2

H2,1

N ln 2

1

1+H2,1

P2,tot−V2

N2

0 . . . 0

...
...

...
. . .

...
H1,1

N ln 2

1

1+H1,1

P1,tot−V1

N1

0 . . . 0 − γ1

γK

HK,1

N ln 2

1

1+HK,1

PK,tot−VK

NK




(35)
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fully utilized to reduce the computational complexity [see (35),

shown at the bottom of the previous page]. Every except the

first row of the Jacobian matrix has only two nonzero entries.

By substitution, △P can be calculated with the complexity of

O(K).

APPENDIX III

CALCULATION OF MAXIMUM DEVIATION

DEFINED IN (23)

Notice that
∑K

k=1 R̃k,i = 1 and
∑K

k=1 γ̃k = 1. Hence, there

must exist some k, such that R̃k,i − γ̃k < 0. Without loss

of generality, assume that R̃k,i − γ̃k < 0 for k = 1, 2, . . . , k∗

and R̃k,i − γ̃k ≥ 0 for k = k∗ + 1, . . . , K, then the objective

function can be written as

K∑

k=1

|R̃k,i − γ̃k|

=

k∗∑

k=1

(
γ̃k − R̃k,i

)
+

K∑

k=k∗+1

(
R̃k,i − γ̃k

)

=

k∗∑

k=1

γ̃k −

K∑

k=k∗+1

γ̃k +

K∑

k=k∗+1

R̃k,i −

k∗∑

k=1

R̃k,i

=

k∗∑

k=1

γ̃k +

K∑

k=k∗+1

γ̃k − 2

K∑

k=k∗+1

γ̃k

+
K∑

k=k∗+1

R̃k,i +
k∗∑

k=1

R̃k,i − 2
k∗∑

k=1

R̃k,i

≤ 1 − 2min
k

γ̃k + 1

= 2 − 2min
k

γ̃k. (36)

Let arg mink γ̃k = kmin, then one maximizer of the objec-

tive function in (24) is R̃k,i = 1 for k = kmin and R̃k,i = 0
otherwise.
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