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Cells switch between various stable genetic programs (attractors) to accommodate environmental conditions. Signal
transduction machineries efficiently convey environmental changes to the gene regulation apparatus in order to express the
appropriate genetic program. However, since the number of environmental conditions is much larger than that of available
genetic programs so that the cell may utilize the same genetic program for a large set of conditions, it may not have evolved
a signaling pathway for every environmental condition, notably those that are rarely encountered. Here we show that in the
absence of signal transduction, switching to the appropriate attractor state expressing the genes that afford adaptation to the
external condition can occur. In a synthetic bistable gene switch in Escherichia coli in which mutually inhibitory operons
govern the expression of two genes required in two alternative nutritional environments, cells reliably selected the ‘‘adaptive
attractor’’ driven by gene expression noise. A mathematical model suggests that the ‘‘non-adaptive attractor’’ is avoided
because in unfavorable conditions, cellular activity is lower, which suppresses mRNA metabolism, leading to larger fluctuations
in gene expression. This, in turn, renders the non-adaptive state less stable. Although attractor selection is not as efficient as
signal transduction via a dedicated cascade, it is simple and robust, and may represent a primordial mechanism for adaptive
responses that preceded the evolution of signaling cascades for the frequently encountered environmental changes.
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INTRODUCTION
Cells alter their gene expression in response to environmental

changes or external signals to switch between coherent genetic

programs in order to produce a phenotypic state, among many

available, that best copes with the new environment. It is

increasingly becoming clear that such genetic programs represent

attractor states: discrete stable states of gene expression patterns

generated by the dynamics of the regulatory interactions between

the genes [1]. Small gene networks with mutual regulation of genes

can generate multiple attractor states (multistability) and have

recently been studied in synthetic [2,3] or in natural gene networks

[4,5]. These studies have elucidated dynamic properties, including

multistability, switch-like behavior, memory effect, oscillation,

and robustness in the presence of molecular noise [2,3,6]. The

presence of multiple attractors has fundamental biological

significance, notably in cell differentiation and sympatric specia-

tion [7–11]. Specifically, individual attractor states have been

suggested to correspond to particular functional cell states or cell

types in metazoan [1,10,12].

Given the existence of distinct, stable gene expression programs

epitomized by the attractor, the question is how cells switch into

the appropriate attractor that is commensurate with the

environmental condition. For instance, if the nutritional situation

requires expression of gene A, how do cells switch into the attrator

state in which A is stably expressed? The existing paradigm is that

cells have evolved a signal transduction machinery to sense the

environmental change and transmit it to the gene regulatory

network. In the simplest case, such as in bacteria, the environ-

mental signal may be a metabolite that directly regulates the

transcriptional complex that controls the operon involved in its

utilization, such as in the case of the lactose operon [13]. In more

complex systems, membrane receptor proteins sense environmen-

tal changes and trigger a cascade of intracellular molecular events

involving ‘‘second messengers’’ or protein modifcation cascades

that lead to concerted changes in the expression of several genes.

Such molecular signal transduction machineries may have evolved

to allow cells to respond rapidly and specifically to frequently

occurring changes in the extracellular environment.

However, since the space of environmental conditions is much

larger than that of cellular response programs, there is not a

program for each condition, and cells need to choose the optimal

program for a given condition. Thus, many environmental condi-

tions map onto the same cellular response. Therefore, it is unlikely

that cells have evolved a specific signal transduction pathway for

every environment it may encounter as in the case of lactose

utilization. In fact, infrequently occurring environmental condi-

tions or unspecific, physical perturbations devoid of molecular
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specificity can evoke specific cellular programs, such as prolifera-

tion, quiescence or apoptosis [14]. Some attractor states may

provide the optimal gene expression program for the cell to adapt

to and cope with a particular, rare environment, yet no specific

signaling pathway may exist that connects this rare external

condition with the appropriate genetic program. This raises the

question: how do cells in the case of rarely occurring environ-

mental changes switch to the adaptive attractor state of the

network that expresses the appropriate genes?

Here we use an artificial network with mutually inhibitory

operons in E. coli, to show that cells possess an inherent ability to

adaptively respond to environmental changes by selecting a gene

expression state which allows for higher cell activity, without the

help of a signal transduction apparatus. Unlike previous work in

which genetic switches were linked to fluorescent proteins that

report the state of the network [2,6,15], we link the bistable switch

also to enzymes with phenotypic properties that interact with the

environment. We show that cells can select the adaptive attractor

and propose that this selection process is a general consequence

of the stochastic nature of gene network dynamics. When the

network state reaches an attractor that is adaptive, cells exhibit

high cellular activity, increasing the turnover rates of mRNAs.

This in turn supresses the influence of gene expression noise. In

contrast, for the non-adaptive attractor, which accordingly has low

cellular activity, the metabolic rate is smaller, and hence, noise

overwhelms the deterministic component of the dynamics of the

newtork. This causes the cell to be kicked out of the non-adaptive

attractor. Thus, the synergism between (i) the deterministic bistable

gene expression dynamics, (ii) cellular activity that depends on the

match beween gene expression and environmental condition and

(iii) stochastic fluctuations in the level of low-abundance molecules,

allows the adaptive attractor to be selected.

RESULTS

Structure and Properties of the Network with

Mutually Inhibitory Operons
To study adaptive responses to environmental changes without

signal transduction machinery, we constructed a synthetic gene

network that can exhibit bistability and monitored its ability

to switch between two stable attractor states in response to

evnironmental change. Gene regulatory circuits that are based on

mutually inhibiting operons have previously been reported [2].

However, unlike existing work on synthetic networks (for example,

[2,16]), for our purposes, the network need to express not only

state-reporting fluorescence proteins, but also proteins with

selectable phenotypes. To obtain a bistable gene network that is

linked to metabolic phenotype switching we used the following

two mutually inhibitory operons (construct pALL7, Figure 1A).

Operon1 is composed of the tetA promoter [17], Lac Repressor

gene (lacI) [13], green fluorescence protein (GFP) gene (egfp) [18]

and a mutant glutamine synthetase (GLS-H) gene (gls-h; the

original post-translational regulation was eliminated) [19]. Oper-

on2 is composed of the trc promoter [20], Tet Repressor gene (tetR)

Figure 1. The Plasmid Structures of the Mutual Inhibition Network
(A) The structure of the mutually inhibitory operons in pALL7. t0 and rrnBT1T2 terminators terminated transcription from Operon 1 and Operon 2,
respectively. (B) Summary of the phenotype characteristics of pALL7.
doi:10.1371/journal.pone.0000049.g001

Adaptation of Double Feedback
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[17], red fluorescence protein (RFP) gene (dsred.T4) [21], and the

mouse dihydrofolate reductase (mDHFR) gene (mdhfr) [22]. The

two fluorescent proteins are introduced to monitor the transcrip-

tional level of the two operons. GLS-H and mDHFR confer

a metabolic phenotype to each of the two attractor, since these

enzymes compensate for two distinct conditions of nutrient

depletion.

As a basic property of the circuit architecture, the cells harbor-

ing pALL7 can be in a monostable and a bistable behavioral

regimes, depending on culture conditions. (Figure 1B and 2). After

several serial overnight cultures in Medium N (see Experimental

procedures), which does not impose restrictions on essential

nutrients, the cells proliferated sufficiently fast so that the gene

products of the two operons, including the repressors, were kept

low due to dilution. Consequently mutual inhibition was too weak

and did not produce bistability. In this monostable regime cells

were reproducibly distributed around low levels of expression for

both operons (blue dots). Two-color flow cytometry analysis

(Figure 2) indicate low levels of expression of Operon 1 (green

fluorescence) and Operon 2 (red fluorescence) for each cell. We

refer to this state of weak expression from both operons as

Attractor W, which is expected to appear at the low total

concentration of the two repressors relative to the dissociation

constants for their interacton with their promoter binding

sites.

In contrast, when the total concentration of gene products is

high, the network was shifted into the bistable regime, exhibiting

the two Attractors 1 and 2, as expected (Figure 2); either strong

expression of Operon 1 with strong repression of Operon 2

(Attractor 1), or vice versa (Attractor 2). This was achieved by

slowing down cell proliferation using 170 mg/ml nalidixic acid

[23,24] which reduces the specific growth rate by 30,40%. In this

bistable regime, the balanced state of Attractor W is no longer

stable. When either of the operons happens to express its encoded

repressor at a slightly higher level than the other, the other operon

is slightly suppressed, which in turn decreases the concentration of

the repressor for the former operon, leading to a further increase

in expression of the former. Thus, the cells are tipped into either of

the two self-stabilizing Attractors 1 and 2, as originally intended by

the circuit design.

Shift in Gene Expression Specifically toward the

Adaptive Attractors
We next studied the ‘‘adaptive’’ response of the network to

external changes by exposing the cells to culture conditions that

require the presence of either enzyme (GLS-H or mDHFR) whose

mutually exclusive expression is associated with the two attractors.

Thus, we ask whether cells can find the ‘‘adaptive attractor’’ that

copes with the nutrient condition (Scheme in Figure 1B). For this

purpose, we used two environmental conditions to implement the

respective nutrient depletion: Medium M lacks glutamine, so that

cells are required to syntheszie it to keep up cellular activity. Cells

carrying pALL7 can overcome glutamine depletion if glutamine

synthetase (GLS-H) in Operon 1 is stably expressed, that is, when

they are in Attractor 1. Conversely, Medium T consists of Medium

N plus trimethoprim lactate, which causes tetrahydrofolate

depletion [22] in the host cells. In this case the host cells carrying

pALL7 can overcome tetrahydrofolate depletion if mDHFR in

Operon 2 is expressed, which is active when cells are in Attractor

2. In summary, the Attractor 1 (2) is adaptive in mdeium M (T),

respectively.

Figure 2. The Three Possible Attractors Generated by the Mutual Inhibition Network under Different Conditions
Blue dots represent the expression pattern for cells cultured overnight in Medium N, while purple dots represent that for cells that were transferred
from Medium N to Medium N plus nalidixic acid and cultured for 3 days until the number of cells increased sufficiently for flow cytometric analysis.
The diagonal correlation for purple dots was not related to any relationship of GFP and RFP expression, but was attributable to the leakage of
fluorescence of GFP and RFP to the 600 nm dichroic filter and the band-pass filter at 525 nm625 nm, respectively.
doi:10.1371/journal.pone.0000049.g002
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We put the cells carrying pALL7 to around Attractor W in the

monostable regime by overnight culture in Medium N and then

transferred them to either Medium M or T supplemented with

170 mg/ml nalidixic acid. In the flow-cytometry measurements,

we observed that each cell underwent a unidirectional shift in gene

expression pattern toward the attractor expressing the adaptive

enzyme in response to respective nutrient depletion (Figure 3A).

To monitor the time evolution of the shift we plotted the number

of cells per unit volume against the green fluorescence/red

fluorescence (G/R) ratio which reflects relative transcriptional

activities from the two operons. At 0.5 h after transfer to either

Medium M or T, the cells initially retained gene expression

patterns, staying around Attractor W. Thereafter, in Medium M

the distribution of cells shifted toward Attractor 1. This attractor is

adaptive in medium M since glutamine synthetase in Operon 1 is

expressed and compensates for the glutamine depletion in this

medium. Conversely, the population transferred to Medium T was

pulled toward Attractor 2. This shift is also adaptive since the high

mDHFR expression compensates for tetrahydrofolate depletion in

Medium T. Note that the control transfer to Medium N

supplemented with the same concentration of nalidixic acid

resulted in a stochastic shift of gene expression toward that of

either Attractor 1 or 2 (Figure 2). Therefore, the nutrient

depletions in Medium M and T caused a selective, unidirectional

shift toward the corresponding adaptive attractors.

Adaptive Response to Changing Environments
We next examined how cells adjust their gene expression

adaptively to fluctuating environments. Cells carrying pALL7

were subjected to serial overnight culture with sequential medium

changes in two different orders (Figure 4A and 4B). In these

experiments, nalidixic acid was omitted from all three media to

minimize the risk of unexpected genomic rearrangements during

long-term cultivation. When cultured in Medium N, most of the

cells exhibited a neutral position of G/R, i.e., were in Attractor W.

Following transfer to Medium T (Figure 4A), the cells displayed

a low G/R, indicating strong expression of Operon 2, encoding

mDHFR, which compensates for the depletion of tetrahydrofolate

in this medium. After return to Medium N, the cells again

displayed the neutral position. The cells showed successive changes

in G/R: neutralRhighRneutral, when the medium was changed

in the order NRMRN; consistently, the high G/R ratio here

indicated expression from Operon 1, which encodes glutamine

synthetase that compensates for the lack of glutamine in Medium

M. Further transfer to Medium T caused the G/R ratio to shift

back to the low value, indicating that the cells retained the ability

to adjust their gene expression adaptively to Medium T. When the

medium was changed in a different order (Figure 4B), the same

three distributions appeared in response to the three media.

Microscopic analysis confirmed that at the single cell level these

reproducible distributions with the peaks of high, neutral, and low

G/R correspond to Attractor 1, Attractor W, and Attractor 2,

respectively (Figure 5). The cells in Medium N expressed GFP and

RFP weakly, indicating Attractor W. On the other hand, cells in

Medium T showed strong expression of RFP and repression of

GFP compared to those in Medium N, indicating Attractor 2.

Similarly, cells in Medium M exhibited strong expression of GFP

and repression of RFP, consistent with Attractor 1. The alternative

appearance of the three attractors in each medium was also

supported by mRNA quantification; the average numbers of

mRNA copies transcribed from Operon 1 and Operon 2 per cell

were 10.0 and ‘‘undetectable’’, respectively, in Medium M,

Figure 3. The Initial Time Course of Adaptive Response in Gene Expression
(A) Temporal shifts in the distribution of gene expression. After transfer to Medium M cells were sampled at 0.5 h (green dash-double-dotted line),
2 h (green solid line), 5 h (green broken line), and 7.5 h (green dash-dotted line). After transfer to Medium T cells were sampled at 0.5 h (red dash-
double-dotted line), 3h (red solid line), 5 h (red broken line), and 7.5 h (red dash-dotted line). Green and red fluorescence of each cell was measured
by flow cytometry. By taking the ratio between the two fluorescence intensities, the influence of the diagonal correlation with the slope of 1 shown in
Figure 2 could be cancelled. (B) Temporal changes in the number of cells showing the noted fluorescence ratios. The temporal change of the cell
number at the denoted ratio on the x axis in Medium M from 0.5 h to 2 h (green solid line) was calculated by subtracting the cell distribution of (A) at
2 h from that at 0.5 h. Similarly, the temporal changes in Medium M were calculated from 2 h to 5 h (green broken line), and from 5 h to 7.5 h (green
dash-dotted line). The temporal changes in Medium T were calculated from 0.5 h to 3 h (red solid line), from 3 h to 5 h (red broken line), and from
5 h to 7.5 h (red dash-dotted line).
doi:10.1371/journal.pone.0000049.g003
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Figure 4. Attractor Selection in Changing Environments
E. coli OSU1 cells with pALL7 were subjected to serial overnight culture with an inoculum size of 66107 cells/l every day in changing environments.
(A) Days 1–5 in Medium N, days 6–7 in Medium T, days 8–10 in Medium N, days 11–13 in Medium M, days 14–15 in Medium N, and day 16 in Medium
T. On the last day of serial overnight cultures in the same medium, the cells were subjected to flow cytometric analysis. (B) Days 1–5 in Medium N,
days 6–7 in Medium M, days 8–9 in Medium T, days 10–11 in Medium N, days 12–13 in Medium M, and day 14 in Medium T.
doi:10.1371/journal.pone.0000049.g004

Figure 5. Microscopic Examination of Cells Cultured Overnight in Three Different Media
GFP and RFP fluorescence of cells in Medium M, N, and T were examined using an Olympus IX70 microscope and a KEYENCE VB-6010 CCD camera.
For the GFP channel, a BA470-490 excitation filter, DM505 dichromatic beam splitter, and BA515-550 emission filter were used. For the RFP channel,
a BA520-550 excitation filter, DM565 dichromatic beam splitter, and BA580IF emission filter were used. The exposure time and the sensitivity
expressed as ISO values are shown in the pictures. Scale bar, 5 mm.
doi:10.1371/journal.pone.0000049.g005
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whereas they were ‘‘undetectable’’ and 6.0, respectively, in

Medium T, and ‘‘undetectable’’ and 0.3, respectively, in Medium

N. These results clearly show that the cells chose the adaptive

attractors reproducibly in fluctuating environment.

The Response Is Not Due to Proliferation of Fit Cells
A fundamental question of cell state switching is whether (i) an

external signal that causes a commitment to the expression of

a particular phenotype does so by somehow instructing the gene

transcription apparatus to express the appropriate (set of) gene(s) in

all cells, or (ii) the signal merely promotes survival and expansion

of the few cells that ‘‘happen’’ to express that desired phenotype

[25]. In other words, if the switching is only due to the scenario (ii),

the two attractors are selected with equal probability first but only

the cells in the adaptative attractor will proliferate, causing a shift

in the population distribution. We found that the scenario (ii) alone

cannot explain the observed macroscopic shift toward adaptive

attractor, but the scenario (i) indeed is necessary, as demonstrated

by careful monitoring of the time course in which cells redistribute

between each of attractors, as explianed in the following.

At 0.5–2 h, when the total cell concentration had hardly

increased as indicated by the minimal increase in the total areas

under the curve (AUC) of distribution (Figure 3A), the cell

distribution began to shift toward the adaptive attractor. To better

represent the shift in population (change in histogram of cell

number for a given G/R ratio) Figure 3B shows the increment in

cell number within each bin in the histogram up to each sampling

time, obtained by subtratcing the cell number from that at the

previous sampling time point in Figure 3A. In Medium M, the

subpopulation of cells with high G/R ratio clearly increased within

the time period from 0.5 to 2 h (1.56107 cells/l in the G/R ratio

between 100.3 and 10), while that with low G/R ratio decreased

(1.26107 cells/l in the G/R ratio between 1020.5and 100.3). The

small difference in the total AUC between the downward peak for

cells with low G/R ratio and the upward peak for cells with high

G/R ratio indicates little cell growth from 0.5 to 2 h. Since

nutrient starvation for less than 5 h caused little cell rupture (data

not shown), the two allmost equal AUCs of downward and upward

peaks indicate that each cell underwent a unidirectional alteration

in its gene expression pattern from Attractor W toward Attractor 1

during this time period. Taken together, this kinetic analysis

suggests that the observed unidirectional shift until 2 h can be

attributed not to the prolification of cells randomely tipped toward

the adaptive attractor (scenario (ii)) but to a deterministic change

in gene expresssion of each cell (scenario (i)).

In contrast, for the period from 2 to 5 h, the change in gene

expression toward Attractor 1 and the growth of cells at high G/R

occurred simultaneously, as indicated by the smaller total area of

the downward peak for cells with low G/R ratio compared with

that of the upward peak for those with high G/R ratio. From 5 to

7.5 h, as indicated by the small downward peak for cells with the

low G/R ratio, the change in gene expression toward Attractor 1

was almost complete, while cells with the high G/R ratio con-

tinued to grow. Thus, the time course analysis indicates that after

exposure to Medium M the cells that happened to have been

tipped toward the adaptive attractor at the beginning were pulled

to these attractors and started growing in the favorable condition

(scenario (ii)) while the other cells that happened to have been

tipped to the non-adaptive attractor escaped from them and

switched to the adaptive attractor in a scenario (i) process. Upon

exposure to Medium T, the cells showed the same time course of

attractor selection but in the opposite direction. These unidirec-

tional changes in gene expression suggest that cells are capable of

response adaptively to environmental changes through attractor

selection. Thus, within the limits of measuring the time course of

gene expression for each cell, both mechanisms appear to play

a role. It remains to be determined to what extent each of two

scenarios contribute to the observed adaptive attractor selection.

Fitness-Induced Gene Expression without Signal

Transduction Machinery
Given that the mechanism of regulation of selecting the attractor

cannot be solely explained by selective growth advantage of

randomly swicthed cells, one may suspect that adaptive attractor

selection in response to nutrient depletion may be due to some

direct but ‘hidden’ instructive signal transduction that may

somehow be ‘‘hard-wired’’ in the host cell’s genome, connecting

nutrient situation to the respective cis-region of the two metabolic

genes. To exclude this possibility, we carried out a ‘promoter swap’

experiment. The mdhfr and gls-h genes were swapped in the pALL7

plasmids, so that the same regulatory circuit was maintained

(plasmid pALL8, Figure S1A). This new plasmid was introduced

into the same host cells, E. coli OSU1. The transformed cells were

subjected to a series of overnight cultures in essentially the same

media with a slight modification (legend of Figure S1). As shown in

Figure S1B, attractor selection took place in the same way with the

mutually inhibitory network of the pALL8 plasmid as with the

pALL7 plasmid but only with the difference that with pALL8, the

correlation between the media and the strongly expressed operon

was the reverse of that observed with pALL7.

We did not observe a non-adaptive response with pALL8, in

that for instance, depletion of tetrahydrofolate would have

activated Operon 2, which contains the promoter that drives

mDHFR in pALL7 but glutamin synthetase in pALL8. Thus, the

promoter swap experiments corroborate the principle that

expression of operons was dependent on the fitness conveyed by

the encoded enzyme to the environmental condition and was not

due to some unexpected fixed functional relation (such as an

unknown signaling pathway) between the DNA sequence of these

nominally generic promoter regions and the environmental signal.

In summary, we have shown experimentally that by introducing

a gene network with bistable attractors expressing phenotypes that

are sensitve to the environment, most of the cells changed the

attractor state and associated gene expression in response to the

environment, so as to mount an adaptive response by producing

the enzymes necessary to compensate for the nutrient depletion.

Theoretical Model for Adaptive Attractor Selection
How can we understand the above adaptive attractor selection

without specific signal transduction machinery? Here, we propose

that such selection is a rather general process allowing cells to grow

by selecting and maintaining stochastic gene expression patterns.

The basis for the alternative expression patterns in the present

gene network is a deterministic bistable system. Thus, we propose

here first a model for bistability for our network that links attractor

state with a metabolic phenotype.

We analyzed a standard model of mutually inhibitory operons

which can generate bistability [2], but introduced terms to capture

the phenotypic consequence of a stable state, which determines the

adaptation to an environment, and a noise term:

d

dt
m1~

S(A)

1zm22
{D(A)|m1zg1

d

dt
m2~

S(A)

1zm12
{D(A)|m2zg2

ð1Þ
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where m1 and m2 are the concentrations of the mRNAs or their

protein products (which are here lumped together into one term

since the phenotype switch of the population occurs at a slower

time scale than transcription), transcribed from Operon1 and

Operon2, respectively. S(A) and D(A) are the rate coefficients of

synthesis and degradation and/or dilution due to the cell volume

growth, respectively. Importantly, they depend on A, which

represents cellular activity. g1 and g2 represent independent white

noise in gene expression.

By setting the equations (1) without noise to dm/dt = 0, one can

obtain the fixed-point solutions for the system. This yields a single

attractor of m1* = m2* for S/D,0.5 (corresponding to Attractor W

in the monostable regime in the experiment in the absence of

nalidixic acid). For S/D.0.5, there are two attractors satisfying

(m1 = m*, m2 = 1/m*) and (m1 = 1/m*, m2 = m*) (see Supporting

Information). Without the noise term, the initial condition with

m1.m2 is attracted to the attractor located in the region of

m1.m2 and vice versa.

To capture the phenotypic consequence that allows adaptation

we introduce the variable A = ‘‘cellular activity’’, which is increased

when cells approach the adaptive attractor, expressing the genes

that allows survival and optimal growth in a given environment.

It is not easy to define ‘‘cellular activity’’ on a material basis, as it is

a complex function of the concentrations of ATP and other

chemicals. However, cellular activity can be lumped together and

represented as the variable A that increases monotonously with cell

growth rate, particularly for unicellular organisms.

The first important postulate in the model is that both synthesis

S(A) and degradation and/or dilution D(A) are increasing functions

of activity A (albeit in distinct ways) which in turn is correlated

with the nutrition condition and growth rate. Since the rate of

metabolic processes increase with activity A, the amplitudes of the

synthesis rate of mRNA or its protein product, S(A), is expected to

increase with A. As the degradation rates of LacI and TetR are

much smaller than the specific growth rate of cells in this work

[26–29], the amplitude of D(A) is mostly determind by the dilution

due to cell growth and thus increases with A.

The different attractors show different activities. The adaptive

attractor has higher activity, i.e., larger values of S(A) and D(A). In

other words, the deterministic part of Eq. (1) (i.e., all terms without

the noise terms) take larger (smaller) values for an adaptive (non-

adaptive) attractor, respectively. (Recall S(A) and D(A) are

increasing functions of the activity A).

We now discuss selection of adaptive attractor. First we note

that such selection of attractors is not possible in the above

deterministic dynamics alone. However, gene expression is always

accompanied with considerable random fluctuations, or noise

[30], represented by the term g which can account for noise-

driven transitions between attractor states [31] .

The second basic postulate in the model is that the noise

amplitude is independent of the activity A, or at least it does not

vanish with the decrease of the activity. Specifically, in a first

approximation we assume a constant amplitude of noise.

However, the specific form of noise in the Langevin Eq. (1) is

not important, as long as a considerable amount of noise remains

when the network is in the non-adaptive attractors, even if noise

strength may depend on (m1, m2), or activity to some extent.

In general, for noise arising from chemical reactions associated

with the activity, its strength should increase with the activity.

However, even if the activity vanishes, fluctuation in gene

expression may remain due to basal (housekeeping) biochemical

processes in the cell. Indeed, recent measurement of noise on

a variety of environmental conditions suggests that considerable

amount of noise remains independent of the growth speed of a cell

that is correlated with cellular activity [32]. Hence, it is natural to

assume that some part of noise is activity independent, even

though the actual form of noise strength is difficult to predict at the

present stage. In our experiment, we found that considerable noise

remains even for a cells in the ‘‘non-adaptive condition’’ where

they are in a state with low activity. When cells located around

Attractor 1 in Medium M were transferred to Medium T

(Figure 4B), most of the cells moved to Attractor 2, while a small

fraction of cells remained at Attractor 1. The observation that the

latter cells, though they had very low activity around the non-

adaptive attractor, maintained a similar scattering in fluorescence

intensity (Figure S2B,) suggests that noise is present even in states

with low activity. On the other hand, we found that the relative

contribution of noise to the deterministic metabolic rate decreased

as cells approached the adaptive attractors. In Figure 3A, the

distribution of the G/R ratio became narrower as cells shifted

their gene expression toward the adaptive attractors. The relative

variances in G/R ratio (estimated as full width at half-maximum

of the histogram) decreased by 72% (in Medium T) or 57%

(in Medium M) by the time of 7.5 h, suggesting that the relative

magnitude of the noise term decreased while that of the deter-

ministic metabolic term became large with increasing activity.

We now describe how, given the above two basic postulates, the

adaptive attractor is selected. Let us first consider the case in which

an environmental change causes a marked decrease in A because

the gene expression pattern is inappropriate (i.e., the cell is in the

non-adaptive attractor). Then, the deterministic metabolic rate in

Eq. (1) will be so small that it will approach the same magnitude as

that of the noise term, g. The dynamics of gene expression will

therefore be dominated mostly by random fluctuations. This is true

as long as the network is in a region with the state of low activity.

On the other hand, when the network moves into a region with

high acttivity A, i.e., to the adaptive attractor, then the metabolic

rate inceases, and the deterministic part becomes much larger than

the noise term. Consequently, the dynamics of the system will be

governed by the deterministic part of Eq. (1). Thus, whichever gene

expression state the network starts with, gene expression will

continue to fluctuate until it arrives at the adaptive attractor which

is more stable against the noise because of the relatively lager

metabolic rate of the first and second terms in Eq. (1).

With a simple form of D(A) and S(A), the above dynamics for

attractor selection was confirmed by numerical simulation of Eq.

(1) (Figure 6). (for details on the mathematical model, see

Supporting Information).

The present scheme of adaptive attractor selection generally

works for a system with dx/dt = f(x, A)+g, with f(x, A) = {f1(x,

A),f2(x, A),…} where fi(x, A) is the metabolic rate of mRNA or

protein for gene i. In general, if |f(x, A)| increases with A, the

attractor with small A is disturbed by noise so that an attratcor

with high A is selected.

Switching between attractors has been studied in dynamical

systems as noise-induced selection of attractors [33,34]. In these

previous studies, however, the direction of switching was not

adaptive. In contrast, in the case presented here, due to the

coupling of the attractor states with the cellular activity which

influences the rate of the turnover of the deterministic state

variables, an adaptive attractor with its higher cellular activity is

inevitably selected in the presence of noise.

DISCUSSION

Perspective for Genomic Networks
We propose here the concept of attractor selection based on

experimental and theoretical studies on a simple network with

Adaptation of Double Feedback
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mutually inhibitory operons in which the network autonomously

chooses the appropriate gene expression pattern associated with

the adaptive attractor in response to environmental changes that

are not mediated by a cognate signal transduction machinery. This

mechanism for environmental adaptation of gene expression

crucially depends on the ratio of the metabolic rate (mRNA,

protein turnover) controlled by the regulatory circuit and on the

presence of noise in gene expression. The latter is relatively high

compared to the deterministic regulation when cells are in

unfavorable conditions so that the overall metabolic regulation is

weak due to low cellular activity. Thus, the ratio of (deterministic)

metabolic regulation relative to noise is reduced or increased

around non-adaptive or adaptive attractors, respectively. As long

as this correlation is satisfied, network structures other than the

simple network investigated here will be able to respond to

environmental changes through attractor selection if they possess

multiple attractors [theoretically confirmed by Furusawa and

Kaneko, unpublished]. Thus, noise-driven selection between two

alternative attractor states differs from previously studied decision

between functional states, such as glucose/lactose utilization in E.

coli or lysogeny/lysis in lambda phages, in that there is no explicit,

specific molecular link between proteins of the gene network and

an external signal (metabolite as allosteric regulator of a key

regulatory protein; UV light, etc.).

Our simple regulatory circuit utilizes common promoters and

their repressors. However, the noise in gene expression from

plasmids does not appear to differ markedly from that of the

genomic genes [35,36]. The existence of attractor selection in

genome-encoded networks should be investigated in future studies,

although the response of the whole genomic network in terms of

attractor selection will be not as simple as that described here as it

will involve combinations of many molecular mechanisms,

including canonical signal transduction pathways.

Comparison between Signal Transduction and

Attractor Selection
Signal transduction is a basic mechanism for cellular responses to

environmental changes, which is based on complex networks that

connect the environment to genome. Each signal transduction

network must have evolved through natural selection by respond-

ing to environmental changes that have occurred frequently in the

past. Signaling pathways then have been conserved because they

allow the host cells to adapt rapidly to specific environmental

changes.

However, in addition to such frequently occurring environ-

mental changes, unicellular organisms may encounter a large

number of different starvation conditions each of which may

appear only a few times during their lifespan. In addition, cells

may not have evolved an attractor state to every environmental

condition, yet some may confer better adaptation than others. It is

then hard to imagine that the cells would have evolved and

maintained specific signal transduction machineries for all possible

rare environmental changes so as to map every environment to an

optimal attractor, because of the high cost of maintaining all these

signaling machineries. Even for frequently occurring environmen-

tal changes, attractor selection can be beneficial for cells since it

requires no specific signal transduction apparatus, if speed of state

transition is not an issue.

Due to its stochastic nature, attractor selection may not be as

efficient as ordinary signal transduction, but it may prevent cells

from dying in fluctuating environments. Molecular signal trans-

Figure 6. Simulation of Dynamics of Networks with Mutually Inhibitory Operons
Black, green, and red indicate activity A, and the expression levels at the two operons, m1 and m2, respectively. Culture conditions were captured by
N1, N2 (see Supporting Information). We employed a changing environment: (N1, N2) = (10,10) from 0 to 2000 step, (0,10) to 8000, (10,10) to 10000,
(10, 0) to 16000, (10,10) to 20000. The parameters used in this simulation were: S(A) = 6A/(2+A) and D(A) = A, N_thr1 = N_thr2 = 2, P = C = 0.01, and
n1 = n2 = 5. Initially, the environment contained both nutrients at sufficient levels from t = 0 to 2000, and activity A was less than but very close to 1.
Then, following the change in the environment causing depletion of N1 = 0 but with N2 = 10, the system started to lose the activity, which
destabilized the Attractor W, and entered the regime with two attractors, where the attractor with higher levels of m1 is selected. When returned to
the nutrient-rich environment at t = 8000, the system came back to the single attractor with m1 = m2 = 1. Then, the environmental conditions were
changed to depletion of the other nutrient, N1 = 10, N2 = 0 at t = 10000, and the system first deviated to express more of m1 but less m2. This
deviation to the side of the non-adaptive attractor occurred by chance, but the small value of m2 did not compensate for the nutrient depletion and
the activity is reduced close to zero. Then, the noise term in equations (1) took over in influence on the system. This fluctuation decreased only when
m2 happened to rise sufficiently to allow activity to increase again at around t = 11000.
doi:10.1371/journal.pone.0000049.g006
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duction may have evolved for efficient adaptation, but in view of

our present results it is plausible that attractor selection may still be

utilized as a primitive adaptation for sustainability in broadly

changing environments. Attractor selection may facilitate the

design of a network that can robustly respond in an adaptive

manner to unknown environmental changes without requiring

a large number of specific sensors and transducers. It may also be

viewed as a sort of Darwinian preadaptation for the evolution of

signal-specific transduction pathways when a particular new

environmental condition becomes dominant and hence contri-

butes to evolvability.

MATERIALS AND METHODS

Plasmid construction
All plasmids were constructed using standard molecular cloning

techniques [37]. Genes and promoters were obtained from the

following sources: Ptrc from pTrc99A (Amersham Biosciences);

PtetA from pASK-IBA3 (Sigma Genosys); lacI from pTrc99A; tetR

from pcDNA6/TR (Invitrogen); egfp from pEGFP (BD Biosciences

Clontech); dsRed.T4 (a gift from Dr. B. S. Glick, The University

of Chicago) [21]; mdhfr from pQE16 (Qiagen); and gls-h from

pKGN-H [19]. The plasmid contained the ColE1 origin of

replication and ampicillin resistance gene. The t0 terminator from

pPROTet.E333-lacZ (BD Biosciences Clontech) and rrnBT1T2

terminator [38] from pTrc99A were used to terminate transcrip-

tion from Operon 1 and Operon 2, respectively.

Strain, media, and growth conditions
E. coli strain OSU1, a derivative of DH1 [39], was constructed by

replacing the glnA gene with the cat gene by homologous

recombination [40]. For cells carrying pALL7, the following three

media were employed. 90 mg/l ampicillin was added to Medium

C to prepare Medium M [41]. Medium N consisted of Medium M

plus 90 mM glutamine, which compensates for the lack of the glnA

gene in the genome of OSU1. Medium T was Medium N plus

580 mg/l of trimethoprim lactate, which completely inhibits

bacterial DHFR and requires a high level of expression of

mDHFR for survival of E. coli cells. To match the effective strength

of PtetA to that of Ptrc, anhydrotetracycline, which inhibits Tet

repressor, was added to the three media at equal concentrations of

0.5 mg/l. All culture steps were conducted at 37uC with aeration

after inoculation of 66107 cells/l, unless otherwise noted. The

number of cells was measured using a Particle Analyzer SD-2000

(SYSMEX). The cells from each population were stored at 280uC
before flow cytometric analysis.

Flow cytometric analysis
The samples stored at 280uC were thawed at 25uC in a water

bath and kept on ice before analysis. The single-cell fluorescence

measurements were carried out on a COULTERH EPICSH
ELITE Flow Cytometer (Beckman Coulter) with a 488-nm Argon

excitation laser and band-pass filters of 525625 nm for green

fluorescence and a 600 nm dichroic filter for red fluorescence. All

flow event data were converted to text format using WinMDI

Version 2.8 and analyzed with MATHEMATICA 5.0 (Wolfram

Research) and DeltaGraph Version 5.0.1.

mRNA measurement
Total bacterial RNA was prepared with RNeasy kits (Qiagen).

Northern blotting and hybridization were performed according

to standard methods and visualized with the AlkPhos DirectTM

Labeling and Detection System (Amersham Biosciences). Double-

stranded lacI and dsred.T4 DNAs were used as probes for tran-

scripts from Operon 1 and Operon 2, respectively. Hybridization

signals for the mRNAs from Operon 1 and Operon 2 were

quantified using ImageJ 1.29.

Model analysis
The numerical simulation of the Langevin equation (1) was con-

ducted by the Runge-Kutta method using a program developed in

Microsoft Visual C++, as well as by FORTRAN program using

algorithms in Numerical Recipes [42]. The noise term was

calculated as an independent Gaussian random number. We

confirmed the accuracy by reducing the time grid for integration.

SUPPORTING INFORMATION

Text S1 Supporting text for this paper.

Found at: doi:10.1371/journal.pone.0000049.s002 (0.04 MB PDF)

Figure S1 Adaptive Response of the Network in Cells with

pALL8. (A) The structure of pALL8 is the same as pALL7 shown

in Figure 1 except for the exchanged positions of mdhfr and gls-h.

Ptrc and PtetA represent the trc promoter and tetA promoter,

respectively. (B) The adaptive shifts in gene expression of pALL8

that are opposite to those of pALL7. Cells carrying pALL8 were

subjected to a series of overnight cultures in the same manner

as in Figure 4 with a slightly modified media as follows. As

trimethoprim lactate at the concentration used in the original

Medium T completely suppressed the growth of cells, it was

diluted to 3 mg/l. To further support the cells with trimethoprim

lactate, we increased the anhydrotetracycline concentration from

0.5 mg/l to 0.8 mg/l to achieve higher levels of expression of

mDHFR (Medium T9). The same concentration of anhydrote-

tracycline was used in the other two media (Medium M9 and N9)

for accurate comparison. Cells grown in Medium N9 were sub-

jected to a series of overnight cultures with an inoculum size of

76107 cells/l every day in Medium N9 for 4 days (blue), in

Medium T9 for 4 days (green), and in Medium M9 for 7 days (red)

in the same way as described in Figure 4.

Found at: doi:10.1371/journal.pone.0000049.s003 (0.01 MB PDF)

Figure S2 Flow Cytometric Analysis of Attractor Selection by

Changing Environments. (A) The original data from the flow

cytometry results shown in Figure 4A. (B) The original data for

Figure 4B. For each culture, 10,000 events were collected. The

weak positive correlation observed in Medium T was due to

leakage of the red fluorescence to the green fluorescence gate and

was not related to GFP expression. Note that when cells located

around Attractor 1 in Medium M were transferred to Medium T

(upper right panel in B), a small fraction of cells stayed in this

attractor and exhibited the same scattering of fluorescence

intensity, indicating gene expression noise in this non-adaptive

state.

Found at: doi:10.1371/journal.pone.0000049.s004 (0.05 MB PDF)

Figure S3 Basic Characteristic of the Model in Equation (1).

Phase space spanned by m1 and m2 with nullclines, dm1/dt = 0 or

dm2/dt = 0 in Eq. (1), calculated for (N1,N2) = (0,10) in Eq. (2), by

adopting S(A) = 6A/(2+A) and D(A) = A (solid lines) with the

parameter values P = C = 0.01, N_thr1 = N_thr2 = 2, n1 = n2 = 5.

The separatrix (dashed line) is given by m1 = m2. The fixed-point

attractors are given by the intersections of the two solid lines (filled

circles).

Found at: doi:10.1371/journal.pone.0000049.s005 (0.03 MB PDF)

Figure S4 Bifurcation Diagram of the Model with Equations (1)

and (2). Bifurcation diagram for dm1/dt = 0 and dm2/dt = 0 in Eq.
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(1) for the same condition as in Figure S3 (solid line). Since m2 = 1/

m1 for A,1 and m2 = m1 for A.1 are adopted as steady-state(s),

only m1 (horizontal axis) is indicated as a function of change of the

parameter A (vertical axis). The bifurcation point (m1,m2) = (1, 1),

as well as the adaptive attractor with large and the non-adaptive

attractor with small are represented by the three filled circles. The

dependency of A on (steady-state) is computed from the condition

dA/dt = 0 in Eq. (2) (broken line) where m2 = 1/m1 is adopted as

A,1.

Found at: doi:10.1371/journal.pone.0000049.s006 (0.02 MB

PDF)

Figure S5 Dependence of the Fraction of Selection of Adaptive

Attractor on the Noise Strength for the Model (1)–(2). The

frequency the cell is in the adaptive attractor is plotted against the

standard deviation of the noise per single time step. For each noise

strength, 10,000 runs of simulation were performed by changing

the environment at the time step 2,000, while the frequency of

adaptive attractor selection is computed from the number of runs

that ended with m1.m2 at the time step 20,000. The vertical axis

represents the ratio of such runs to the total number of runs,

10,000.

Found at: doi:10.1371/journal.pone.0000049.s001 (0.25 MB PDF)
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