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Abstract. This paper discusses a novel distributed adaptive algorithm and representation used to construct
populations of adaptive Web agents. TheseInfoSpidersbrowse networked information environments on-line in
search of pages relevant to the user, by traversing hyperlinks in an autonomous and intelligent fashion. Each agent
adapts to the spatial and temporal regularities of its local context thanks to a combination of machine learning
techniques inspired by ecological models: evolutionary adaptation with local selection, reinforcement learning
and selective query expansion by internalization of environmental signals, and optional relevance feedback. We
evaluate the feasibility and performance of these methods in three domains: a general class of artificial graph
environments, a controlled subset of the Web, and (preliminarly) the full Web. Our results suggest that InfoSpiders
could take advantage of the starting points provided by search engines, based on global word statistics, and then
use linkage topology to guide their search on-line. We show how this approach can complement the current state
of the art, especially with respect to the scalability challenge.
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1. Introduction

As information environments become more complex, there is a need for tools that assist
users in ways that scale with the growth of such environments and adapt to both the personal
preferences of the user and the changes in user and environmental conditions. The situation
is not unlike the one faced by organisms adapting in physical environments. Such natural
agents have to adapt to the topology of their environments, internalizing into their behaviors
(via evolution or learning during life) those environmental signals and cues that they perceive
as leading to their well-being. The environmental features that are best correlated (or anti-
correlated) with fitness are the most useful internalizations.

Consider for example an ant’s environment: its association between pheromone and
food is internalized into the ant’s pheromone-following behavior. Further, this behavior can
be implemented by any ant without need for centralized control; finally, the ant can still
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resort to a behavior, such as a random walk, that can be implemented in the absence of
any appropriate environmental signals. These capabilities of an ant colony—internalization
of environmental signals, distributed control, and integration of externally driven and en-
dogenous behaviors—are also highly desirable properties for agents carrying out tasks in
complex information environments. It turns out, in fact, that such local, agent-based strate-
gies provide an excellent complement to initial searches seeded from the global perspective
of Web search engines.

This paper focuses on several machine learning abstractions springing from ecological
models, and on their applications to the intelligent retrieval of information distributed across
networked environments. In Section 2 we discuss some of the limitations of the current state
of the art; in Section 3 we suggest ways in which these limitations can be overcome by
employing adaptive on-line agents. These ideas are first tested on a graph abstraction of
the information discovery problem, in Section 4. Their application to the real problem of
locating information on the Web and the implementation of actual Web retrieval agents
required many design decisions, which are illustrated in Section 5. The system is evaluated
in Section 6. Section 7 discusses the main contributions of this work, contrasting them with
other approaches in the domains of machine learning and information retrieval. Section 8
outlines some directions for future research.

2. Beyond the state of the art

Exploiting proven techniques from information retrieval, search engines have followed the
growth of the Web and provided users with much needed assistance in their attempts to locate
an retrieve information from the Web (Eichmann, 1994; Pinkerton, 1994). The success of
search engines is attested by both their proliferation and popularity.

The model behind search engines draws efficiency by processing the information in some
collection of documents once, producing anindex, and then amortizing the cost of such pro-
cessing over a large number of queries which access the same index. The index is basically
an inverted file that maps each word in the collection to the set of documents containing that
word. Additional processing is normally involved by performance-improving steps such as
the removal of noise words, the conflation of words via stemming and/or the use of thesauri,
and the use of word weighting schemes (Belew, forthcoming).

This model, which is the source of search engines’ success, is also in our opinion the cause
of their limitations. In fact it assumes that the collection is static, as was the case for earlier
information retrieval systems. In the case of the Web, the collection is highly dynamic,
with new documents being added, deleted, changed, and moved all the time. Indexes are
thus reduced to “snapshots” of the Web. At any given time an index will be somewhat
inaccurate (e.g., contain stale information) and somewhat incomplete (e.g., missing recent
information).

These problems, compounded by the huge size of the Web, hinder search engines’ capa-
bility to satisfy user queries. Users are often faced with very large hit lists, yet lowrecall
(fraction of relevant pages that are retrieved), and stale information. These factors make it
necessary for users to invest significant time in manually browsing the neighborhoods of
(some subset of) the hit list.
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So our question is:How can we extend traditional information retrieval techniques to
address such limitation?The answer we suggest here is that populations of intelligent,
autonomous, adaptive information agents can effectively deal with these problems by au-
tomating much of the work that currently must be done by users. In the following subsections
we discuss two ways in which agents can improve on the current state of the art.

2.1. Linkage topology

Indexing can be described as the process of building a topology over a document space,
based on the distribution of words in the space. In the vector space model (Salton & McGill,
1983), documents and queries are viewed as vectors in very large feature spaces where each
word corresponds to a dimension. Two documents are similar if the angle between their
respective vectors is small. A search engine will show similar documents next to each other,
effectively creating on the fly a topology based on their word statistics. This is a very useful
model because the user can immediately make assumptions about the contents of retrieved
documents, for example about the fact that they contain certain words.

However, hypertext information environments such as the Web contain additional struc-
ture information (Chakrabarti et al., 1998b). While this linkage information could be used
to provide browsing users (or agents) with helpful cues, one cannot submit to search engines
queries like “Give me all documentsk links away from this one,” because the space to store
such information, or the time to compute it on the fly, would scale exponentially withk.1

While much linkage information is lost in the construction of indexes, it is there to be
exploited by browsing users, who in fact navigate from document to document following
links. We argue that linkage topology—the spatial structure in which two documents are
as far from each other as the number of links that must be traversed to go from one to the
other—is indeed a very precious asset on the Web. Even in unstructured portions of the Web,
authors tend to cluster documents about related topics by letting them point to each other
via links. Such linkage topology is useful inasmuch as browsers have a better-than-random
expectation that following links can provide them with guidance. If this were not the case,
browsing would be a waste of time.

Let us quantify the notion of value added by linkage topology. We have conjectured that
such value can be captured by the extent to which linkage topology “preserves” relevance
(with respect to some query). To obtain a lower bound for the value added of linkage
topology, imagine a browsing user or agent following a random walk strategy. DefineR
as the conditional probability that following a random link from a relevant document will
lead to another relevant document. We callR relevance autocorrelation.And defineG as
the fraction of relevant documents. We callG generality(of the query). If linkage topology
has any value for the random browser, then browsing will lead to relevant documents with
higher than random frequency. In order for this to occur the inequality

R

G
= Pr[rel(D2) | rel(D1) ∧ link(D1, D2)]

Pr[rel(D2)]
> 1

must hold. We can then express the linkage topology value added by the quantity2=
R/G− 1.
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Table 1. Measures of2 for ten queries submitted to Lycos (lycos.http://www.lycos.com) and Britannica On-
line (Encyclopaedia Britannica, Inc. http://www.eb.com). The minimum score parameter used for Lycos was
0.1. Only full (absolute) HTTP references were considered for Lycos, and only Micropaedia and Macropaedia
article references for EB. Multiple-term queries represent AND Boolean searches.

Query 2 (Lycos) 2 (Britannica Online)

red wine 2.5× 104 3.7× 101

evolution selection 2.3× 103 1.8× 101

photography 3.5× 103 1.8× 102

color 2.8× 103 6.1× 103

blindness 2.1× 104 1.1× 102

einstein 5.2× 103 6.2× 101

bach 7.5× 103 7.8× 101

carcinoma 1.5× 104 1.3× 102

cinema 1.1× 103 1.0× 102

internet 4.0× 103 7.2× 101

Mean (9± 3)× 103 (7± 6)× 102

As a reality check, we have measured2 for a few queries from a couple of search
engines (Menczer, 1997). Relevance autocorrelation statistics were collected by counting
the fraction of links, from documents in each retrieved set, pointing back to documents in
the set. Generality statistics were collected by normalizing the size of the retrieved sets
by the size of the collections. These are quite gross measurements, since they assume a
correspondence between retrieved and relevant sets.2 Our conjecture about the value added
by linkage topology is confirmed by the large values of2 shown in Table 1. Independent
evidence for the value of linkage topology can be found in bibliometric studies of the Web
(Larson, 1996) as well as link-based approaches to Web page categorization or discovery
(Chakrabarti et al., 1998c).

If links constitute useful cues for navigation—even for random walkers—then they can be
exploited by autonomousbrowsingagents as they are by browsing users. This observation
suggests that browsing is not an unreasonable task for autonomous agents.

2.2. Scalability

Scalability is a major issue limiting the effectiveness of search engines. The factors con-
tributing to the problem are the large size of the Web, its rapid growth, and its highly
dynamic nature. In order to keep indexes up-to-date,crawlersperiodically revisit every
indexed document to see what has have been changed, moved, or deleted. Heuristics are
used to estimate how frequently a document is changed and needs to be revisited, but the
accuracy of such statistics is highly volatile. Moreover, crawlers attempt to find newly
added documents either exhaustively or based on user-supplied URLs. Yet Lawrence and
Giles have shown that the coverage achieved by search engines is at best around 33%, and
that coverage is anti-correlated with currency—the more complete an index, the more stale
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links (Lawrence & Giles, 1998). More importantly, such disappointing performance comes
at high costs in terms of the load imposed on the net (Eichmann, 1994).

The network load scales asn/τ , wheren is the number of documents in the Web andτ
if the time scale of the index, i.e. the mean time between visits to the same document. The
longerτ , the more stale information in the index. Ifq is the number of queries answered
by the search engine per unit time, then the amortized cost of a query scales asn/qτ .

Agents searching the Webon-linedo not have a scale problem because they search through
thecurrentenvironment and therefore do not run into stale information. On the other hand,
they are of course less efficient than search engines because they cannot amortize the cost
of a search over many queries.3 Assuming that users may be willing to cope with the longer
wait for certain queries that search engines cannot answer satisfactorily, one might ask,
What is the impact of on-line search agents on network load?

We argue that because of the scale effect, making an index less up-to-date can free up
sufficient network resources to completely absorb the impact of on-line searches. Consider
increasing theτ of a search engine by a factor of(1+ ε), allowing the information in the
index to become correspondingly more stale. Maintaining a constant amortized cost per
query, we could now refine the results of each query with an on-line search using an amount
of network resources scaling as

n

qτ
− n

qτ(1+ ε) ∼
n

qτ

ε

1+ ε .

As an example, imagine visiting 100 Web pages on-line for each query, and acceptingε = 1
(bringingτ , say, from one to two weeks). This could be achieved without impacting network
load by satisfying the conditionn/qτ = 200. Assumingqτ (the number of queries posed
over a constant time interval) is a constant, the current growth of the Web assures that the
condition will be met very soon.4 This simple argument, in our opinion, shifts the question:
we should not ask what is the network impact of on-line search agents, but rather,What
ε achieves an appropriate balance between the network loads imposed by search engines
crawlers and on-line agents.

3. On-line search agents

Let us operationalize the ideas discussed in the previous section. Our goal is to address the
scalability limitation of search engines by an adaptive framework able of taking advantage
of both the word and linkage topology of the networked information environment. Our
approach is based on the idea of a multi-agent system. The problem is decomposed into
simpler subproblems, each addressed by one of many simple agents performing simple
operations. The divide-and-conquer philosophy drives this view. Each agent will “live”
browsing from document to document on-line, making autonomous decisions about which
links to follow, and adjusting its strategy to both local context and the personal preferences
of the user. Population-wide dynamics will bias the search toward more promising areas.

In this framework both individual agents and populations must adapt. Individually learned
solutions (e.g., by reinforcement learning) cannot capture global features about the search
space or the user. They cannot “cover” heterogeneous solutions without complicated internal
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models of the environment; such models would make the learning problem more difficult. On
the other hand, if we allowed for population-based adaptation alone (e.g., by an evolutionary
algorithm), the system would be prone to premature convergence. Genetically evolved
solutions might also reflect an inappropriate coarseness of scale, due to individual agents’
incapability to learn during their life. These are the same reasons that have motivated the
hybridization of genetic algorithms with local search (Hart & Belew, 1996), and reflect the
general problem of machine learning techniques in environments with very large feature
space dimensionalities.

3.1. Local selection

How long should an agent live before being evaluated? What global decisions can be made
about which agents should die and which should reproduce, in order to bias the search opti-
mally? No answer to these questions appears satisfactory. Fortunately, algorithms motivated
by the modeling of populations of organisms adapting in natural environments provide us
with ways to remain agnostic about these questions (Menczer & Belew, 1996). Such an
algorithm is illustrated in figure 1.

In step (1), each agent in the population is initialized with some random search behavior
and an initial reservoir of “energy.” If the algorithm is implemented sequentially, parallel
execution of agents can be simulated with randomization of call order. Steps (4) and (5)
depend on the sensory and motor apparatus of an agent. In general we can assume that
actions will incur in work (energy loss) and possibly energy intake. The internal energy
reservoir is updated accordingly in step (6). Interactions with the environment may also
result in environmental cues that can be used as reward or penalty signals and exploited by
reinforcement learning in step (7), so that an agent can adapt during its lifetime.

Steps (8–12) are the central point where this algorithm differs from most other evolu-
tionary algorithms. Here an agent may be killed or be selected for reproduction. Energy is
conserved in both events. The selection thresholdθ is a constant independent of the rest
of the population—hence selection islocal.This fact reduces communication among agent

Figure 1. Pseudocode of an evolutionary algorithm based on local selection.
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processes to a minimum and has several important consequences. First, agents compete
only if they are situated in portions of the environment where they have to share resources.
No centralized decision must be made about how long an agent should live, how frequently
it should reproduce, or when it should die. The search is biased directly by the environ-
ment. The size of the population, rather than being determined a priori, emerge from the
carrying capacityof the environment. This is determined by the replenishment of resources
that occurs in step (13) and is independent of the population.

Second, environment-driven adaptation makes the search algorithm more amenable to
coveroptimization—all good solutions being represented in the population—than to stan-
dard convergence criteria. The bias is to exploit all resources in the environment, rather than
to locate the single best resource. This is particularly appropriate in multi-criteria optimiza-
tion applications, such as information search, where the goal is to locate as many relevant
sources of information as possible.

Finally, the algorithm is embarrassingly parallelizable and therefore lends itself ideally to
distributed implementations, in which case agents can execute on remote servers. If servers
are available as computational resources, the algorithm can achieve a speedup proportional
to the size of the population.

Local selection of course has disadvantages and limitations as well. Imagine a population
of agents who can execute code on remote servers in a distributed information environment,
but have to look up data on the client machine for every page they access. A typical
example of such a situation would be a centralized page cache. Because of communication
overhead and synchronization issues, the parallel speedup achievable in this case would be
seriously hindered. As this scenario indicates, the feasibility of distributed implementations
of evolutionary algorithms based on local selection requires that agents be provided by
their execution environment with access to local storage. Such capabilities may require the
addressing of such system-related issues as security and service payment transactions.

3.2. Internalization

Another limitation of local selection is its weak selection pressure. Consider the energy level
throughout the lifetime of the hypothetical agent depicted in figure 2. The agent reproduces
around time 35, giving half of its energy to the offspring. Finally the agent runs out of
energy and dies shortly after time 90. Such selection events are rare. As long as the energy
level fluctuates between 0 andθ , there is no selective pressure.

Reinforcement signals from the environment that are correlated with an agent’s perfor-
mance can be used as reward or penalty signals to adjust the agent’s behavior during its
life. This is the basis of thereinforcement learningframework (Pack Kaelbling, Littman, &
Moore, 1996). In particular, if the sensors of the agent in figure 2 could pick up the signal
encoding instantaneous changes in its energy level, the agent could clearly use that infor-
mation to assess the appropriateness of its actions. Such signal corresponds to the energy
change computed in step (6) of the algorithm in figure 1. It could be computed, for example,
as the time derivative of the agent’s energy level. Its sign represent a perfect reward/penalty
cue from the environment. Any reinforcement learning scheme can be used to adjust the
behavior of the agent so that actions perceived to lead to rewards are reinforced, and action
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Figure 2. Illustration of energy dynamics in a typical agent’s lifetime. The higher curve plots the level of
accumulated energy as a function of time, resulting from the instantaneous changes in energy plotted by the lower
curve. The selection threshold isθ = 2. With the exception of the reproduction event, the energy level is the
integral of the lower curve.

perceived to lead to penalties are discouraged. For example, the prevailing penalties incurred
between time 65 and 90 might have warranted changes leading to a delayed death.

An effectiveinternalizationof environmental signals via reinforcement learning during
the lifetime of an agent can obviate to the problem of weak local selective pressure. But
more generally, it can allow agents to pick up cues that are just not detectable at the
time scales of evolutionary adaptation. Evolution by local selection and internalization by
reinforcement learning are two sides of the same coin. Each process uses information from
the environment to improve on its “unit of adaptation.” For reinforcement learning, the
unit is the agent and the signals are sampled instantaneously. For evolution, the unit is
the population and the signals are averaged over time to eliminate noise and inconsistent
cues. The two forms of unsupervised adaptation can be integrated together to cover the
different temporal and spatial scales at which useful cues can be detected.

On-line agents performing in complex environment, such as networked information en-
vironment, have access to many signals. The problem is not so much whether some of these
signals contain useful information, but rather how to identify those among the many cues
that best correlate with performance and may allow the agent to discriminate between good
and bad behaviors. We will discuss in Section 5 how information agents can deal with this
problem.

4. Searching random graphs

In this section we outline a number of experiments aimed at evaluating the algorithm
discussed above in an abstract class of environments. The problem can be broadly described
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as searching large graphs in sublinear time. Imagine a very large graph, where each node
is associated with some payoff. The population of agents visits the graph as agents traverse
its edges. The goal is to maximize the collective payoff of visited nodes, given that there
is only time to visit a fraction of the nodes in the graph. The framework is well studied
theoretically in the case of random-walkers. The problem of finding the optimal path to
an unknown node in a weighted graph is NP-complete (Koutsoupias, Papadimitriou, &
Yannakakis, 1996). Agents can do no better than heuristically searching on-line through the
graph.

The problem is interesting because typically the graph is distributed, so that agents are
charged costs for using its resources, e.g., traversing edges and evaluating nodes’ pay-
off. More importantly, the graph search task is general enough that it can be reduced to
some interesting special cases. E.g., if we use nodes to model hypertext documents, edges
for hyperlinks, and payoff for some measure of relevance, then the problem can be used
to simulate networked information retrieval; we can explore different search strategies in
artificial information environments, given a model of relevance.5

In our instances of the graph search task, each node is assigned a payoffp from a
uniform probability distribution in the unit interval. Furthermore, each linkl is annotated
with a “feature vector” withNf real componentsf l

1, . . . , f l
N f
∈ [0, 1]. These features are

generated from anad-hocdistribution to model, e.g., textual annotations around anchors. If
properly interpreted, the features of a link can allow an agent to predict the payoff of the
node pointed to by that link.

To make this possible, each agent’s genotype comprises a single-layer neural net or
perceptron, i.e., a vector of weightsw1, . . . , wNf+1 ∈ <. An agent receives in input, for
each outgoing link from the node where it is currently situated, the link’s feature vector
(step (4) of the algorithm in figure 1). It then uses its neural net to compute

o(l ) = 1

1+ exp
{
−
(
wNf+1+

∑Nf

i=1wi f l
i

)}
i.e., its prediction of the payoffp(l ) of the node thatl points to. Finally (step (5)) the agent
follows a link that is picked by a stochastic selector among the links from the current node,
with probability distribution

Pr[l ] = eβo(l )∑
l ′∈nodeeβo(l ′)

where theβ parameter is a component of the agent’s genotype describing the importance
attributed to link predictions.

The feature vectors are constructed in such a way that there exists an optimal perceptron
weight vector that predicts payoff within accuracyA (a parameter). Agents with such a
genotype can follow the best links and thus achieve optimal fitness (maximum payoff
intake). The energy benefit of an action is the payoff of the newly visited node, provided it had
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not been previously visited by any agent (step (6)). A node yields energy only once; nodes are
“marked” to keep track of used resources and the environment is not replenished. A constant
energy cost is charged for any new node visited. A smaller cost is also charged for previously
visited nodes, to prevent endless paths through visited nodes. At reproduction (steps (8–10)),
an agent’s genotype is cloned and mutated to obtain the offspring genotype. Bothβ and
some of the weights are mutated by additive uniform noise (with the constraintβ ≥ 0). To
study the effect of local selection in isolation from other factors, no recombination operator
is applied.

Random graphs are generated according to a number of distinct parameterizations, aimed
at modeling different aspects of a networked information environment with respect to some
query:

generality G equals the density of “relevant” nodes, i.e. those whose payoff is above some
threshold (cf. Section 2 and carrying capacity in Section 3.1);

ambiguity H is the number of clusters in which relevant nodes are grouped, each with a
distinct optimal perceptron (the irrelevant background has yet another optimal weight
vector);

autocorrelation R is defined as the conditional probability that a relevant node is linked
to other nodes in the same cluster (R≥ G; cf. relevance autocorrelation in Section 2);

accuracy A= 1− noise, wherenoiseis the minimum achievable error in payoff prediction
(by construction).

Unless otherwise stated, the graphs constructed for the experiments described in this section
have 1000 nodes, an average fan-out of 5, andNf = 16 features constructed with an accuracy
A = 0.99.β is initialized with uniform distribution in the range [0, 6].

4.1. Local versus global selection

We have first used the graph environments to compare local and global selection (Menczer &
Belew, 1998b). Binary deterministic tournament selection was chosen as the global scheme
for the comparison because of its steady-state nature. Steps (8) and (11) of the algorithm are
modified for tournament selection by using the energy level of a randomly chosen member
of the population in place of bothθ for reproduction and 0 for death.

The algorithm is stopped when 50% of the nodes have been visited. Figure 3 illustrates the
difference in performance typically observed between the two selection schemes for a few
example graphs. Therecall level (fraction of relevant nodes visited so far) is plotted versus
the fraction of all nodes visited so far. Local selection populations continue to discover a
constant rate of good nodes, while tournament populations tend to converge prematurely.

The same experiment was repeated for a wide range of graph parameters:

(G, R, H | G ∈ {0.025, 0.05, 0.1, 0.2}, R ∈ {0.2, 0.4, 0.6, 0.8}, H ∈ {1, 2, 3, 4}) .

Across all graph parameterizations, local selection significantly and consistently outper-
forms tournament selection. The improvement varies depending on the graph parameters,
but is generally between two- and ten-fold.
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Figure 3. Performance of local selection (LS) vs. tournament selection on typical random graphs withG = 0.1
and various values ofH and R (shown above the plots). In these and the following plots, error bars indicate
standard errors across multiple runs with the same algorithm and graph parameters.

Two main trends are observed in this data. IncreasingR, the correlation among good
nodes, is equivalent to increasing the importance of locality; where an agent is situated
has greater consequence in determining how well it will do in the future. In agreement
with our expectation, we find the performance of local selection to increase withR at
least as much as that of tournament selection, yielding a consistent advantage in favor
of local selection. IncreasingH makes for a multi-criteria problem, modeling ambiguous
queries. Correspondingly, we observe that tournament selection degrades in performance
due to premature convergence. Since local selection is not prone to premature convergence,
the advantage in favor of local selection increases withH . These results tell us that if
we apply an evolutionary algorithm to search the Web, we are justified in using a robust
selection method such as LS, especially in the face of linkage topology (modeled byR) and
ambiguous queries (modeled byH ).

4.2. Internalization of global cues

In a second set of experiments, the goal was to test the capability of agents evolving by
the local selection algorithm to internalize global environmental cues (Menczer, 1997). The
signal considered was the accuracy of payoff predictions based on link cues, i.e., the potential
accuracy of optimally evolved agents. For highA, the optimal agent strategy is best-first-
search; for lowA, it is random-walk. Thus internalization of link prediction accuracy implies
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Figure 4. Scatter plot between link accuracyA and population averages of evolvedβ parameters. Linear regres-
sion is also shown.

evolvingβ values corresponding to the appropriate strategies as implemented by agents via
their stochastic selectors.

We have run ten experiments with graphs having an average fan-out of 10 links,G = 0.1,
R = 0.75, andH = 1. Each experiment, consisting of 10 runs, used a different value of
A between 0.1 (very noisy predictions) and 1.0 (perfectly accurate predictions). In each of
these runs,β was initialized with uniform distribution in the range [0, 5] and measured after
750 node accesses. As figure 4 shows, theβ values evolved by the population are indeed
well correlated with the accuracy of the environmental cues. The correlation coefficient is
0.77. This indicates that Web browsing agents could successfully internalize environmental
cues about accuracy into their behaviors, thus adapting to local noise levels.

4.3. Internalization of local cues

The last experiment with graphs is aimed at testing whether local environmental cues can be
internalized by reinforcement learning occurring over the lifetime of individual agents. To
this end, we have endowed agents with the capability to adjust their neural nets by Q-learning
(step (7) of the algorithm in figure 1). This algorithm was chosen because it is model-free
and easy to implement within the connectionist framework of the agent representation (Lin,
1992); agents’ neural nets are naturally used asQ-value function approximators. An agent
compares the payoff of the current node with the prediction based on the features of the
link that was followed to visit the node. Perceptron weights are adjusted by the delta rule
to improve the accuracy of the link predictor. The net instantaneous energy change (payoff
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Figure 5. Recall levels achieved with and without Q-learning, averaged over multiple runs. Standard errors are
also shown.

minus cost) is used as reinforcement signal, with future values discounted by a factor of
0.5. Learned changes to the weights are inherited by offspring at reproduction.

We have run two experiments with graphs having 10000 nodes,G = 0.25, R= 0.5, and
H = 1. In the two experiments Q-learning is disabled and enabled, respectively. Figure 5
shows that Q-learning allows for a significant improvement in performance. Agents are able
to learn, based on where they are situated, the appropriate network weights allowing them
to correctly predict payoff. This experiment supports the argument that Web agents could
internalize the different local features of relevant document clusters, and discriminate them
from irrelevant background.

5. InfoSpiders implementation

The methods discussed above have been applied in the construction of populations of infor-
mation agents. TheInfoSpiderssystem was implemented to test the feasibility, efficiency,
and performance of adaptive, on-line, browsing Web agents. In this section we describe the
InfoSpiders design and implementation and in particular discuss the details of the distributed
evolutionary algorithm and agent representation used.

5.1. Algorithm

InfoSpiders search on-line for information relevant to the user, by making autonomous de-
cisions about what links to follow. Figure 6 shows the InfoSpiders implementation of the
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Figure 6. High-level pseudocode of an evolutionary algorithm based on local selection for distributed information
agents.

local selection algorithm. A central part of the system is the use ofoptionalrelevance feed-
back. The user may assess the relevance of (some of) the documents visited by InfoSpiders
up to a certain point. Such relevance assessments take place asynchronously with respect
to the on-line search, and alter the subsequent behaviors of agents on-line by changing the
energy landscape of the environment. The process is akin to the replenishment of environ-
mental resources; the user interacts with the environment to bias the search process. Let us
first overview the algorithm at a high level; representation-dependent details will be given
in the next subsections and experimental parameter values in the following section.

The user initially provides a list of keywords and a list of starting points, in the form
of a bookmark file.6 In step (1), the population is initialized by pre-fetching the starting
documents. Each agent is “positioned” at one of these document and given a random
behavior (depending on the representation of agents) and an initial reservoir of energy.

In step (4), each agent “senses” its local neighborhood by analyzing the text of the docu-
ment where it is currently situated. This way, the relevance of all neighboring documents—
those pointed to by the hyperlinks in the current document—is estimated. Based on these
link relevance estimates, in step (5) the agent “moves” by choosing and following one of
the links from the current document.

In step (6), the agent’s energy is updated. Energy is needed in order to survive and
move, i.e., continue to visit documents on behalf of the user. Agents are rewarded with
energy if the visited documents appear to be relevant. Thee( ) function is used by an agent
to evaluate the relevance of documents. If a document had previously been visited and
assessed by the user, the user’s assessment is used; if the document had not been visited
before, its relevance must be estimated. This mechanism is implemented via a cache, which
also speeds up the process by minimizing duplicate transfers of documents. While in the
current, client-based implementation of InfoSpiders this poses no problem, caching is a
form of communications and thus a bottleneck for the performance of distributed agents. In
a distributed implementation, we imagine that agent will have local caches. When using
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the current implementation to simulate the performance of distributed InfoSpiders, we will
simply set the cache size to zero.

Agents are charged energy costs for the network load incurred by transferring docu-
ments. The cost functionc( ) should depend on used resources, for example transfer latency
or document size. For simplicity we will assume a constant cost for accessing any new doc-
ument, and a (possibly smaller) constant cost for accessing the cache; this way stationary
behaviors, such as going back and forth between a pair of documents, are discouraged.

Just as for graph search, instantaneous changes of energy are used, in step (7), as re-
ward/penalty signals. This way agents adapt during their lifetime by Q-learning. This adap-
tive process allows an agent to modify its behavior based on prior experience, by learning
to predict the best links to follow.

In steps (8–12), an agent may be killed or be selected for reproduction. In the latter
case offspring are recombined by the use oflocal crossover,whereby an agent can only
recombine with agents residing on the same document, if there are any.7 Offspring are also
mutated, providing the variation necessary for adapting agents by way of evolution.

Finally, in step (13), the user may provide the system with relevance feedback. It is impor-
tant to stress that this process is entirely optional—InfoSpiders can search in a completely
unsupervised fashion once they are given a query and a set of starting points. Relevance
feedback takes place without direct on-line interactions between user and agents. The user
may assess any visited documentD with feedbackφ(D)∈ {−1, 0,+1}. All the words
in the document are automatically assessed by updating a “feedback list” of encountered
words. Each word in this list,k, is associated with a signed integerωk that is initialized with
0 and updated each time any document is assessed by the user:

∀k ∈ D : ωk ← ωk + φ(D).

The word feedback list is maintained to keep a global profile of which words are relevant
to the user.

The algorithm terminates when the population goes extinct for lack of relevant informa-
tion resources, or if it is terminated by the user.

5.2. Agent architecture

Figure 7 illustrates the architecture of each InfoSpiders agent. The agent interacts with the
information environment, that consists of the actual networked collection (the Web) plus
data kept on local disks (e.g., relevance feedback data and cache files). The user interacts
with the environment by accessing data on the local client (current status of a search) and on
the Web (viewing a document suggested by agents) and by making relevance assessments
that are saved locally on the client and will be accessed by agents as they subsequently
report to the user/client. There is no direct interaction between the user and the agents.

The InfoSpiders prototype is written in C and runs on UNIX and MacOS platforms. The
Web interface is based on theW3Clibrary. Agents employ standard information retrieval
tools such as a filter for noise words (Fox, 1992) and a stemmer based on Porter’s algorithm
(Frakes, 1992). Finally, agents store an efficient representation of visited documents in the
shared cache on the client machine. Each document is represented by a list of stemmed
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Figure 7. Architecture of an InfoSpider. Interactions between the user and the agents (relevance feedback) are
indirect and mediated by the environment. The agent’s representation (keywords and neural net) is used to decide
which link to follow from the current document, while documents are evaluated based on the user’s assessments
(or initial query) to provide energy updates and reinforcement signals.

keywords and links (with their relative positions). If the cache reaches its size limit, the
least recently used page is replaced.

5.3. Adaptive agent representation

Figure 7 highlights the central dependence of the InfoSpiders system on agent representa-
tion. The adaptive representation of InfoSpiders consists of the genotype, that determines
the behavior of an agent and is passed on to offspring at reproduction; and of the actual
mechanisms by which the genotype is used for implementing search strategies.
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The first component of an agent’s genotype consists of the parameterβ ∈ <+. Roughly,
it represents the degree to which an agent trusts the descriptions that a page contains about
its outgoing links.β is initialized withβ0.

Each agent’s genotype also contains a list of keywords, initialized with the query terms.
Since feed-forward neural nets are a general, versatile model of adaptive functions, we
use them as a standard computation device. Therefore genotypes also comprise a vector
of real-valued weights, initialized randomly with uniform distribution in a small interval
[−w0,+w0]. The keywords represent an agent’s opinion of what terms best discriminate
documents relevant to the user from the rest. The weights represent the interactions of such
terms with respect to relevance. The association of an agent’s keyword vector with its neural
net highlights the significant difference between the representation in this model and the
vector space model (Salton & McGill, 1983).

The neural net has a real-valued input for each keyword in its genotype and a single
output unit. We want to allow the inputs and activation values of the network to take negative
values, corresponding to the possibly negative correlations perceived between terms and
relevance. For this reason the network uses the hyperbolic tangent as its squashing function,
with inputs and activation values in [−1,+1]. Let us now see how the different parts of the
system are implemented, based on this representation.

5.3.1. Action selection. An agent performs action selection by first computing the rele-
vance estimates for each link from the current document. This is done by feeding into the
agent’s neural net activity corresponding to the small set of (genetically specified) keywords
to which it is sensitive. Each input unit of the neural net receives a weighted count of the
frequency with which the keyword occurs in the vicinity of the link to be traversed. In the
experiments reported here, we use a distance weighting function which is biased towards
keyword occurrences most close to the link in question. More specifically, for linkl and for
each keywordk, the neural net receives input:

ink,l =
∑

i :dist(ki ,l )≤ρ

1

dist(ki , l )

whereki is thei th occurrence ofk in D anddist(ki , l ) is a simple count of intervening links
(includingl and up to a maximum window size of±ρ links away). The neural network then
sums activity across all of its inputs; each unitj computes a logistic activation function

oj = tanh

(
bj +

∑
k

w jk inl
k

)
wherebj is its bias term,w jk are its incoming weights, andinl

k its inputs from the lower
layer. The output of the network is the activation of the output unit,λl . The process is
illustrated in figure 8 and is repeated for each link in the current document. Then, the agent
uses a stochastic selector to pick a link with probability distribution:

Pr[l ] = eβλl∑
l ′∈D eβλl ′

.



220 F. MENCZER AND R.K. BELEW

Figure 8. How an agent estimates each link from the current document. For each link in the document, each
input of the neural net is computed by counting the document words matching the keyword corresponding to that
input, with weights that decay with distance from the link up to the window sizeρ.

5.3.2. Relevance estimation and feedback.After a link has been chosen and the corre-
sponding new document has been visited, the agent has to determine the corresponding
energy gain and loss; both depend on whether or not the document had been visited pre-
viously. If the document is in the cache, and the user has assessed its relevance, then the
agent receives energye(D) = φ(D), after whichφ(D) decays according to

φ(D)← γφ(D)

where the decay factorγ is a parameter. This is done to avoid a population explosion due
to non-conserved energy from relevance feedback.

If the user provided the system with relevance assessments, the word feedback list rep-
resents a profile of his/her interests that is both more current and more accurate than the
original query. This list is used to estimate the relevance of previously unvisited or not
assessed documents, so that the corresponding energy intake can be computed:

e(D) = tanh

(∑
k∈D

freq(k, D) · Ik

)

wherefreq(k, D) is the frequency of termk in documentD normalized by document size,
and Ik is the weight of termk based on relevance feedback. The latter is an extension of
the TF-IDF (term frequency-inverse document frequency) index weighting scheme. Ifk
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is not in the word feedback list, thenIk = 0. The list is initialized with the query terms
and weightsI = 1. It changes only if/when the user provides InfoSpiders with relevance
feedback. In these cases the weights are updated according to the rule:

Ik ← α · Ik + (1− α) · ωk ·
[
1+ log

(
1

Ck

)]
whereCk is the fraction of cache documents containingk. α is an inertia term. Such a
weighting formula differs from more traditional TF-IDF schemes (Sparck Jones, 1972) in
at least two respects. First, it is not aimed at weighting terms based on how well they describe
documents, but rather on how well they correlate with relevance. Therefore it employs alge-
braic term frequencies (ωk) to account for terms found in documents that are anti-correlated
with relevance. Second, it is computed on-line and therefore uses document frequencies
based on the contents of the cache rather than the entire collection. The hyperbolic tangent
is used to normalize energy intakes into the appropriate range [−1,+1]—the same range
as the corresponding neural nets prediction.

5.3.3. Q-learning. The agent then compares the relevance (assessed or estimated) of the
current document with the estimate of the link that led to it. By using the connectionist
version of Q-learning (Lin, 1992), the neural net can be trained on-line to predict values of
links based on local context. After the agent visits documentD, e(D) is used as an internally
generated reinforcement signal to compute a teaching error:

δ(D) = e(D)+ µ ·max
l∈D
{λl } − λD

whereµ is a future discount factor andλD the prediction from the link that was followed to
get toD. The neural net’s weights are then updated by back-propagation of error (Rumelhart,
Hinton, & Williams, 1986). Learned changes to the weights are “Lamarckian” in that they
are inherited by offspring at reproduction (see Belew & Mitchell (1996) for a treatment of
this issue).

In the absence of relevance assessments, this reinforcement learning algorithm is unsuper-
vised because it is the environment that provides the reinforcement signale(D). However,
relevance feedback alters the functione( ) under the supervision of the user, who modifies
the environment by providing examples of relevance. Therefore InfoSpiders integrate un-
supervised and supervised adaptation in the form of evolution, Q-learning, and relevance
feedback.

5.3.4. Reproduction. At reproduction, the offspring clone may be recombined with another
agent. Two-point crossover is applied to the keywords of the clone, so that a subset of the
mate’s keywords is spliced into the offspring’s keyword vector.

Then the offspring is mutated to provide the evolutionary algorithm with the necessary
power of exploration. Ifa′ is an offspring ofa:

βa′ ← U [βa(1− κβ), βa(1+ κβ)]
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whereκβ ∈ [0, 1] is a parameter andU is the uniform distribution. The values ofβ are
clipped toβmax to maintain some exploratory behavior. The neural net is mutated by adding
random noise to a fractionζw of the weights. For each network connectioni :

wi
a′ ← U

[
wi

a(1− κw),wi
a(1+ κw)

]
.

The keyword vector is mutated with probabilityζk. The least useful (discriminating) term
arg mink∈a′(|Ik|) is replaced by a term expected to better justify the agent’s performance
with respect to the user assessments. In order to keep any single keyword from taking over
the whole genotype, this mutation is also stochastic; a new term is selected with probability
distribution

Pr[k] ∝ freq(k, D) · |Ik|

whereD is the document of birth. The first factor captures the local context by selecting
a word that well describes the document that led to the energy increase resulting in the
reproduction. The second factor captures the global context set by the user by selecting a
word that well discriminates the user’s preferences. Learning will take care of adjusting the
neural net weights to the new keyword.

The evolution of keyword representations via local selection, mutation and crossover
implements a form ofselective query expansion.Based on relevance feedback and local
context, the query adapts over time and across different places. The population of agents
embodies a distributed, heterogeneous model of relevance that may comprise many differ-
ent and possibly inconsistent features. But each agent focuses on a small set of features,
maintaining a well-defined model that remains manageable in the face of the huge feature
dimensionality of the search space.

6. InfoSpiders evaluation

In this section we report on results of experiments and analysis aimed at evaluating the
performance of InfoSpiders in responding to queries by searching the Web on-line. In so
doing we extend previous, preliminary results (Menczer & Belew, 1998a).

In Section 5 several algorithm parameters have been mentioned. Table 2 shows the values
taken by all parameters in the experiments described in this section. The costc is such that
an agent can visit 1000 irrelevant documents before it will run out of energy. The effects
of cache size are not considered in the experiments described here; although for efficiency
purposes the cache is large enough to contain all of the visited documents, the same costc
is assessed whether or not a document is in the cache. Therefore the algorithm effectively
simulates the behavior of distributed InfoSpiders.8

For each query, the search is stopped when the population meets the success crite-
rion described in the next subsections (unless it goes extinct or visits a total ofTmax new
pages).
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Table 2. InfoSpiders parameter descriptions and values for the experiments reported in this paper. Some parameter
values are determined empirically, while others are explored elsewhere (Menczer, 1998).

Parameter Value Description

p0 21 Initial population size

θ 2.0 Reproduction threshold

c 0.001 Energy cost per document

Tmax 10,000 Max number of new pages visited per query

β0 2.0 Initialβ

κβ 0.5 β mutation range

βmax 5.0 Maxβ

ρ 5 Half-size of link estimation sliding window

ζk 0.5 Keyword mutation rate

Nlayers 2 Neural net layers (excluding inputs)

w0 0.5 Initial neural net weight range

ζw 0.2 Neural net weight mutation rate

κw 0.25 Neural net weight mutations range

η 0.05 Neural net Q-learning rate

µ 0.5 Q-learning discounting factor

α 0.5 Inertia of word feedback weights

γ 0.9 Decay factor for document assessments

Fmax 64 Max number of word feedback entries

|C| Tmax Max cache size

6.1. The EB search graph

The difficulty of evaluating on-line retrieval systems stems from multiple factors. The lack
of a ranking function over all documents (in particular those not seen) is one problem that
will be addressed in the next subsection. A more general difficulty is the lack of queries with
available well-defined relevant sets. To overcome this problem, a special chunk of the Web
has been selected as a test environment (Steier, 1994): the Encyclopaedia Britannica (EB)
(Encyclopaedia Britannica, Inc. http://www.eb.com.). The advantage is that we can make
use of readily available relevant sets of articles associated with a large number of queries.

Here we use a subset of the EB corpus, corresponding to the “Human Society” topic—
roughly one tenth of the whole collection. Any links to other parts of the EB are removed,
and so are the documents left without outlinks as a result. The final environment is made of
N = 19427 pages, organized in a hypertext graph (the EB is already in HTML format). 7859
of these pages are full articles constituting theMicropaedia. These, together with 10585
Indexpages (containing links to articles and pointed to by links in articles), form a graph
with many connected components. The remaining 983 nodes form a hierarchical topical
tree, calledPropaedia.These nodes contain topic titles and links to children nodes, ancestor
nodes, and articles. Micropaedia articles also have links to Propaedia nodes. Propaedia and
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Table 3. Propaedia query statistics and examples. Multiple measurements are obtained from a single query by
restarting the search with different initial conditions (i.e., different seeds for the random number generator).

Depth # Queries # Measurements 〈G〉 Example

1 12 84 0.02 Branches of private law, substantive

and procedural

2 72 144 0.003 Laws governing economic transactions

3 100 200 0.002 Law of commercial transactions

4 100 200 0.001 Principal forms of business associations

5 12 84 0.0007 State and municipal corporations,

quasi-public enterprises and utilities

Figure 9. In-degree and out-degree distribution histograms for the EB Human Society graph. There is only one
document with zero in-degree (the Propaedia root), and no document with zero out-degree.

Index pages are included in the search set to ensure a connected graph and to be faithful
to the EB information architecture—an actual subset of the Web. Figure 9 shows the in-
and out-degree statistics of the search graph. These illustrate the main disadvantage of
using the EB dataset—its careful design yields an unrealistically well-structured hypertext
environment in comparison to the noisier full Web.

Articles are manually classified according to the Propaedia hierarchy by skilled human
editors. By using the title of any Propaedia node as a query we have access to all the
articles classified into that category by the editor, who has exhaustive knowledge of all the
documents in that subject. Therefore we will use the set of Micropaedia articles associated
with thesubtree rooted at the query nodeas the relevant set corresponding to that query.

Since the Propaedia topology is used to define relevance, its “visibility” to agents during
search would make the problem of navigating through the relevant set quite easy. Therefore
one modification is made to the search space for each query. We remove all the Propaedia
nodes in the relevant subtree, so that agents cannot access relevant nodes directly from the
Propaedia, but only from Index or other Micropaedia nodes. This is illustrated schematically
in figure 10 for the example query used in Section 6.3.

Table 3 shows some statistics and examples for the queries used in the experiments.
Queries corresponding to nodes at the same depth in the Propaedia tree are grouped together.
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Figure 10. Schematic representation of the EB search space for an actual query, showing the titles of a few
relevant articles. The relevant set is depicted in light gray. The subtree in dark gray is removed from the search
space.

Generality statistics are obtained dividing the size of the relevant set byN, and averaging
over same-depth queries.9 Queries span five different depths. Ifd is the depth of a query,
the minimal distance from the staring node (the Human Society root) to the root of the
relevant Propaedia subtree isd+1. However, since the latter is not part of the search graph,
the actual shortest path to a relevant article is at leastd + 3. Deeper queries are harder for
InfoSpiders because they are less general (lower carrying capacity) and their relevant sets
are farther from the starting point. The number of different queries available also varies
with depth. The small number of queries available at the maximum depth, corresponding
to maximum variance, will yield the greatest standard error in performance measurements.

6.2. Performance evaluation

Let us quantitatively analyze the behavior of the InfoSpiders algorithm on the EB cor-
pus. Since InfoSpiders do not have access to the whole corpus, but only to the subset of
documents they actually visit, it is difficult to impose a ranking over the whole collec-
tion. Furthermore, we want to focus on the novel aspect of the InfoSpiders approach—the
location of documents by autonomous on-line browsing—rather than the ranking perfor-
mance of the algorithm, which is not addressed in this paper. Therefore we choose to avoid
using standard information retrieval measures such as precision-recall curves, which require
rank or similar measures as a control parameter (van Rijsbergen, 1979).
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Search lengthis an alternative metric that better lends itself to assess the performance
of on-line retrieval systems. It is normally defined as the number of irrelevant documents
that appear, in some ordered list of retrieved documents, in front of some fraction of the
relevant set (Cooper, 1968). We can easily extend this method by imagining that only visited
documents appear in the list of retrieved documents, and that their ordering is given by visit
time rather than rank—length then refers to waiting time. For an on-line retrieval system this
means that we only need to wait until some fraction of the relevant set is visited, and count
the total number of documents visited up until that time. For each query in the experiments
discussed here, search length is measured for an arbitrary recall level of 10%, i.e., when
d0.1 · G · Ne relevant articles have been visited.

We want to compare InfoSpiders with the best global search algorithm. When searching
an annotated graph, the optimal strategy is given by theA∗ algorithm. However, in the
case of the Web there is no admissible criterion to applyA∗, since the only suitable lower
bound on the distance from the closest relevant node is trivially 0. ThereforeA∗ does not
have an admissible heuristic other than the trivial one, and reduces tobest-first-search
(BFS). InfoSpiders can implement a search strategy similar to BFS by evolving high values
for the β gene, but only from the local “perspective” of single agents, rather than with
respect to the global search space. Nevertheless, assuming BFS as an upper bound for
global search algorithms, we compare its performance with InfoSpiders. We implemented
BFS by means of a priority queue. Links are estimated in the same way in which they are
by InfoSpiders, but then they are placed in a global queue, sorted by estimated relevance
of the pointed documents; then documents are visited by following the queued links, in the
order determined by their priority.10

Another complication arises due to potential distributed implementations. In a sequential
algorithm, all visited documents are retrieved from the servers on which they reside and
analyzed locally on the client machine. In this case the cache helps minimize the number
of repeated document requests over the network. Since this is also the case for BFS, we
allow BFS to use an arbitrarily long cache, so thatonly previously unvisited documents
contribute to the measured search length. For InfoSpiders, we want to simulate a distributed
implementation of the algorithm. This is why those parts of the system that require commu-
nication among agents (shared access to the global cache and differential costs for new and
previously visited documents) are disallowed. Therefore we includeeach and every docu-
ment visitedinto the search length statistics, be it requested across the network or loaded
from the cache.11 Agents then effectively execute in parallel, and search length is given by
the maximum number of documents visited by any agent lineage. This is measured in the
experiments by keeping track of the number of links traversed by each agent, accumulated
over all generations in the agent’s ancestry since the start of a run.

We have run experiments by initializing the agents at the Human Society root of the
Propaedia and comparing the search length achieved by BFS with that of two variants
of InfoSpiders, one without relevance feedback and one with relevance feedback every
50 newly visited documents. In the latter case,φ(D) = 1 assessments are automatically
generated for all documentsD visited so far that belong to the editor-defined relevant set.

Figure 11 shows the percentages of queries successfully completed by the different
algorithms. These are the cases in which 10% of the relevant pages are found within the
Tmax limit on visited pages. Non completed queries are those for which InfoSpiders run out
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Figure 11. Percentage of queries successfully completed by BFS (Priority Queue) and different versions of
InfoSpiders.

of time, or go extinct; and for which priority queue runs out of time, or becomes engulfed
in previously visited areas. Performance degrades for queries of increasing depth. This is
expected: like humans, agents can “get lost” or “get tired and give up.” InfoSpiders however
tend to have a higher success rate than BFS (with the only exception of depth 5 for which
InfoSpiders without relevance feedback do worse than BFS by 1%). Relevance feedback
affords an improvement where unsupervised InfoSpiders fail to achieve 100% completion
rate. This is due to the evolutionary reinforcement provided by relevance feedback: those
agents that are moving in the right direction receive energy boosts and have a greater chance
to reach the relevant clusters.

Figure 12 plots search length versus query depth. Search length is averaged over same-
depth queries that are successfully completed. As the plots demonstrate, InfoSpiders’ search
length increases with depth while the global heuristic does not show such dependency, at
least within the observed depth range. BFS seems to either fail or succeed with depth-
independent search length. As a result, BFS outperforms InfoSpiders for very deep com-
pleted queries.

This result provides insight into the complementarity between the InfoSpiders approach
and traditional search engines. In practical cases we expect the search to start not too far away
from the desired pages, thanks to the use of search engines to seed the initial population of
InfoSpiders. Under this assumption, figure 12 shows that the distributed nature of InfoSpi-
ders results in a significantly shorter search time than required by BFS. The hypothesis that
realistic queries correspond to lower depths requires empirical confirmation. Interestingly,
human browsing behavior leads to similar results—people rarely follow more than a few
links at any given site. For example, AOL users typically request only one page from any
server (the mode of the browsing depth is one click, the average is three clicks per server)
(Huberman et al., 1998).
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Figure 12. Performance of InfoSpiders (with and without relevance feedback) versus BFS. Error bars correspond
to standard errors.

Figure 12 also illustrates that when user relevance feedback is available, it further accel-
erates the discovery of relevant documents, by pointing agents in the right direction. The
improvement becomes less significant statistically for deep queries due to the fewer avail-
able measurements.

6.3. Micro analysis

To illustrate how some of the goals that we set out for adaptive information agents are
achieved by InfoSpiders, let us now look more closely at a few typical agents adapting
within a single search. The query is “Social service: organized public and
private activities to alleviate human wants and needs ” and, after re-
moval of stop words and stemming, it results in the keyword vector shown in Table 4.

To simplify the analysis during this example run we used simple perceptrons to represent
agent behaviors, so that an agent is completely described by a vector of 8 keywords and a
vector of 9 weights (one per keyword plus a bias term), plus theβ parameter. We ran the
search until the population had visited 1000 new pages, and provided the population with
relevance feedback every 50 new pages.

6.3.1. Adapting to “spatial” context. How do InfoSpiders internalize environmental word
features that are spatially local (in the sense of linkage topology)? Can they adapt to the
spatial context in which they evolve? To answer these questions consider two agents, A and
B, born at the same time but in different places. More precisely, A was born at time 554 in
the sequential execution of the algorithm, i.e., after the population had collectively visited
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Table 4. Default initial word feedback list corresponding to a query.

k Ik

ORGAN 1.0

PUBLIC 1.0

PRIVAT 1.0

SERVIC 1.0

SOCIAL 1.0

HUMAN 1.0

ACTIV 1.0

ALLEVI 1.0

554 new pages. B was born at time 580; A and B were effectively contemporaries because
they had the same temporal context—the global information resulting from the relevance
assessments of time 550, partially shown in Table 5.

As Table 5 shows, the original query words were displaced from their top positions and
replaced by new terms. For example,PRIVAT andALLEVI had relatively low weights,
while FOUNDATappeared to have the highest correlation with relevance feedback at this
time (cf. figure 10).

A’s and B’s keyword vectors are shown in Table 6. In the course of the evolution leading
to A and B through their ancestors, some query terms were lost from both genotypes. A was
a third generation agent; its parent lostALLEVI through a mutation in favor ofHULL. At
A’s birth, PRIVAT was mutated intoTH. B was a second generation agent; at its birth, both
ALLEVI andPRIVAT were replaced byHULLandADDAM, respectively, via mutation and
crossover. These keyword vectors demonstrate how environmental features correlated with
relevance were internalized into the agents’ behaviors.

The difference between A and B can be attributed to their evolutionary adaptation to
spatially local context. A and B were born at documentsDA andDB, respectively, whose
word frequency distributions are partly shown in Table 7.TH represented well the place
where A was born, being the second most frequent term there; andADDAMrepresented well
the place where B was born, being the third most frequent term there. By internalizing these
words, the two situated agents are better suited to their respective spatial contexts.

6.3.2. Adapting to “temporal” context. Let us now consider adaptation along the temporal
dimension. How do InfoSpiders internalize features appropriate for their time? Can they
capture the temporal context in which they evolve? To answer these questions consider
again two agents, B and C, born in the same place (DB; see Table 7) but at different
times. More precisely, C was born at time 965, and therefore its temporal context was the
global information resulting from the relevance assessments of time 950, partially shown
in Table 8. B’s temporal context was given in Table 5.

Let us make a few observations about Table 8. After more relevant documents were
discovered, the original query terms gained weight, with four of them in the top six positions.
Their relative positions also changed; for example,PRIVAT surpassedHUMAN. Other words



230 F. MENCZER AND R.K. BELEW

Table 5. Part of the word feedback list and weights at time 550. Stars mark new terms not present in the original
query. Note thatTH does not correspond to the article “the,” which is a noise word and thus removed from all
documents; rather, it corresponds to the “th” used for ordinal numbers and often associated with centuries.

Rank New k Ik

1 ? FOUNDAT 0.335

2 ? RED 0.310

3 ? MISSION 0.249

4 SOCIAL 0.223

5 ? CROSS 0.197

6 ? HULL 0.184

7 ? HOUS 0.183

8 ORGAN 0.161

. . .

15 SERVIC 0.114

16 ACTIV 0.112

. . .

23 ? TH 0.094

. . .

30 PUBLIC 0.087

. . .

32 ? ADDAM 0.079

. . .

37 HUMAN 0.075

. . .

41 PRIVAT 0.067

. . .

44 ALLEVI 0.065

. . .

Table 6. Keyword vectors for agents A and B.

A B

ORGAN ORGAN

PUBLIC PUBLIC

TH ADDAM

SERVIC SERVIC

SOCIAL SOCIAL

HUMAN HUMAN

ACTIV ACTIV

HULL HULL
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Table 7. Most frequent terms in the documents where agents A and B were born. Word frequencies are normalized
by the total number of words in each document.

rankDA k freq(k, DA) rankDB k freq(k, DB)

1 WORKHOUS 0.076 1 HOUS 0.043

2 TH 0.038 1 HULL 0.043

2 POOR 0.038 3 ADDAM 0.025

4 SOCIAL 0.030 . . .

4 CENTURI 0.030 38 AMERICAN 0.004

. . . . . .

Table 8. Part of the word feedback list and weights at time 950. Stars mark new terms not present in the original
query. Query words have regained the top three positions.

Rank New k Ik

1 SERVIC 0.273

2 SOCIAL 0.268

3 ORGAN 0.238

4 ? FOUNDAT 0.152

5 ? NATION 0.148

6 PUBLIC 0.138

. . .

12 ACTIV 0.118

. . .

15 ? HULL 0.110

. . .

17 PRIVAT 0.098

. . .

25 HUMAN 0.087

. . .

31 ALLEVI 0.080

. . .

35 ? AMERICAN 0.077

. . .

56 ? ADDAM 0.053

. . .

lost importance; among those with a presence in B’s and C’s birth pageDB, bothHULL
andADDAMdecreased their weights, but while the former maintained a relatively strong
position, the latter did not. Finally, some new terms made their first appearance in the list,
such asAMERICANthat was also represented inDB but was not present in the word feedback
list at time 550.
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Table 9. Keyword vectors for agents B (from Table 6) and C.

B C

ORGAN ORGAN

PUBLIC PUBLIC

ADDAM PRIVAT

SERVIC SERVIC

SOCIAL SOCIAL

HUMAN AMERICAN

ACTIV ACTIV

HULL HULL

Table 9 shows the differences between the representations of agents B and C. Such
differences reflect the times in which these agents were born. When B was born,ADDAM
appeared better correlated with relevance thenPRIVAT, while the converse was true when
C was born. The internalization of the two terms by B and C, respectively, is consistent with
this change in temporal context. Furthermore, at the time of C’s birthAMERICANhad a small
but positive global weight, so that the presence of this term inDB could be picked up by C—
something impossible for B due to the term’s absence in the earlier word feedback list. By
evolving to internalize these words, the two agents adapted to their respective temporal
contexts, shaped by the dynamics of the user’s personal preferences.

6.3.3. Learning from experience.One last question is: Can InfoSpiders internalize their
local context over smaller spatial scales and shorter time scales, during their lives? To
answer, consider two agents D and E in the initial population. Both lived until the end of
the run and were successful (with three and nine offspring, respectively). Although D and
E were born at the same time and in the same place, they searched through different paths
and therefore had different life experiences.

Table 10 shows the weight vectors of D’s and E’s neural nets at the end of the run. The
weights were adapted via Q-learning so that each agent would be able to estimate document
relevance across links. For example, it is clear that the strategy learned by D paid special
attention toPUBLIC. On the contrary, E’s predictions were anticorrelated with the presence
of PUBLIC. This demonstrates that the local contexts experienced by D and E during their
lives were quite divergent with respect to this word. Through reinforcement learning, the
two agents were able to internalize into their neural nets the perceived correlations between
environmental features and relevance.

6.4. Web case study

We conclude this evaluation section briefly outlining the result of a simple case study
described in greater detail elsewhere (Menczer & Monge, 1999). Anad-hocquery was
constructed in such a way that the small relevant set (a total of four Web pages) was known
a priori. Three of these pages had been recently published on the Web, so that none of
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Table 10. Learned neural net weights for agents D and E.

k wD
k wE

k

ORGAN 0.22 −0.14

PUBLIC 0.75 −0.42

PRIVAT 0.20 0.81

SERVIC 0.22 −0.05

SOCIAL −0.01 −0.21

HUMAN 0.07 −0.03

ACTIV 0.12 0.27

ALLEVI 0.29 −0.08

Bias 0.02 0.41

the major search engines had yet indexed any of them. The remaining page was old and
previously indexed by all of the major search engines, but it had been recently updated to
include, among its many links, an additional link to one of the other three relevant pages. The
linked new page included, among others, links to the remaining two pages, so that all the
relevant set was within two links from the indexed page.

The query was submitted to the Excite (Excite. http://www.excite.com.) search engine. As
expected, Excite returned the only relevant page indexed (a recall of 1/4 and a precision
of about 3× 10−7). The hit was ranked first. A small population of 10 InfoSpiders was
then initialized at the top 10 pages returned by Excite (one agent per page) and allowed to
search on-line, adapting by evolution and query-based reinforcement learning, without any
user-supplied relevance feedback. After 66 new pages had been visited, all of the relevant
pages had been located (a recall of 1 and a precision of about 0.05 if we count the startup
pages among those visited). The search took 9 minutes. The purpose of this case study is
limited to an illustration of the InfoSpiders potential. The main point is that complementing
a search engine with on-line browsing agents can overcome limitations in coverage and
currency, and thus address the scalability challenge.

7. Related work

The following discussion of the main connections between our work and that of others in
machine learning and information retrieval reflects the fact that distinctions between these
two areas are blurred in this paper, due to a problem-oriented rather than a discipline-oriented
approach.

7.1. Machine learning

Evolutionary algorithms using local selection are a general adaptive paradigm for distributed
agents. While we have shown elsewhere that the approach is not suitable in every domain
(e.g., combinatorial optimization (Menczer & Belew, 1998b)), local selection has proven
successful in multi-criteria optimization problems requiring a heterogeneous cover of the
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search space rather than a convergence to the perceived global optimum. In the evolutionary
algorithm community this behavior is often referred to asniche selection(De Jong & Sarma,
1995; Mahfoud, 1995).

The most notable selection variations explicitly aimed at niching arecrowding(De Jong,
1975) andfitness sharing(Goldberg & Richardson, 1987). In both of these methods selection
is altered to take into account some measure of similarity among individuals, leading to
inefficiency; if p is the population size, selection has time complexityO(p) rather thanO(1)
per individual.Moreover, the population size required to maintain a cover across niches
grows rapidly with the number of niches (Mahfoud, 1994). Local selection naturally enforces
the maintenance of population diversity and is implicitly niched without any communication
overhead. Therefore it affords efficiency both in centralized and, especially, distributed tasks.

Local selection and reinforcement learning both allow agents to internalize environmental
features in an unsupervised fashion (Pack Kaelbling, Littman, & Moore, 1996). InfoSpiders
seamlessly integrate population-based adaptation and individual-based learning, not to ac-
celerate global optimization (Hart & Belew, 1996) but to take advantage of environmental
signals at different spatial and temporal scales.

There is plenty of data available on-line, and although it may be noisy and inconsistent
compared with manually constructed relevance assessments, adaptive algorithms must take
advantage of what is cheap and realistic in the actual search environment (Sutton, 1996). The
connectionist model in which InfoSpiders learn to estimate link relevance is also reminiscent
of the use of neural networks to learn probability distributions for text retrieval by logistic
regression (Mitchell, 1997).

If relevance assessments from the user are available, active learning should take advan-
tage of them because it has been shown that they can considerably improve the performance
of retrieval systems (Lewis, 1995). This is why, in a user-oriented system such as InfoS-
piders, we have integrated unsupervised adaptation with “adaptation by examples,” driven
by relevance feedback. The environmental model behind local selection allows relevance
feedback to interact asynchronously with the on-line agents. Relevance feedback is a self-
ish process from the user’s standpoint (Sutton, 1996), but it provides agents with modified
rewards that improve on their models of relevance and therefore on their performance.

Large, distributed text collections are a typical example of massive data sets that challenge
machine learning techniques due to their huge feature space dimensionality (Lewis, 1996).
InfoSpiders deal with dimensionality reduction in a localized, situated way. Agents inter-
nalize those words that appear maximally correlated (or anticorrelated) with their objective
function, in their (temporally and spatially) local context. This model of feature selection
keeps the size of the learning problem manageable for each individual agents, while the
population as a whole may consider a much larger set of heterogeneous features.

7.2. Information retrieval

Our linkage topology conjecture is equivalent to the cluster hypothesis (van Rijsbergen,
1979) under a hypertext derived definition of association. Linkage topology has been con-
sidered by others in the context of the Web and other hypertext environments, with different
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motivations. For extending vector space retrieval systems, links have been used to collect
index terms across neighboring documents (Salton, 1963; Salton & McGill, 1983; Kwok,
1988; Croft & Turtle, 1993). Links have also been used for enhancing relevance judgments
(Rivlin, Botafogo, & Shneiderman, 1994; Weiss et al., 1996) and incorporated into query
formulation to improve searching (Savoy, 1996; Arocena, Mendelzon, & Mihaila, 1997;
Spertus, 1997).

In the Clever project (Chakrabarti et al., 1998a; Chakrabarti et al., 1998c), the results of
a search engine are used to seed a pool of pages that is augmented with all pages pointing
to or pointed by this initial set. Links between these pages are then used to distill the best
authorities and hubs. Clever shares with InfoSpiders the idea that these links capture the
annotative power of the many independent authors of Web pages. And like InfoSpiders,
Clever exploits not only the link structure but also the text features of the pages being
distilled. Unlike InfoSpiders, Clever is generally limited to the pages already indexed by a
search engine.

The most direct application of machine learning to the information retrieval task has been
as a type of classification task, separating “relevant” documenents from “irrelevant” ones
(Lewis & Hayes, 1994; Lewis et al., 1996; Cohen, 1996). In addition to assuming a previ-
ously identified training set of documents that have been classified manually, this approach
also holds constant the set of features on which discrimination is based. Learning within the
InfoSpiders system is more consistent with what is sometimes called the “on-line” learning
task (e.g., within the TREC 1998 competitions), in that the stream of data available to the
learning algorithm later in its training changes as a consequence of its earlier performance.

A more significant difference in InfoSpiders learning is that while early generations of
agents begin with a shared set of lexical features (taken from the original query), this feature
set soon diverges. Evolutionary pressures select for features that help to discriminate relevant
from irrelevant documents within the local context of nearby documents, in the link-distance
sense. This process of selective query expansion differs from traditional uses of feature
selection for information retrieval (Harman, 1992) in the role played by local context.

InfoSpiders are a first step towards applying traditional indexing methods within the
contextualframe that naturally surrounds Web documents. All samples of language, in-
cluding the documents indexed by Web search engines, depend heavily on shared context
for comprehension. Authors make assumptions, often tacit, about their intended audience
and when a document appears in a “traditional” medium (newspaper, academic journal, etc.)
it is likely that typical readers will understand it as intended. But one of the many things
the Web changes is the huge new audience it brings for documents; much of this audience
may not share the author’s intended context. These vague linguistic concerns have concrete
manifestation in theglobalword frequency statistics collected by Web search engines. The
utility of an index term, as a discriminator of relevant from irrelevant items, can become a
muddy average of its application across multiple, distinct sub-corpora within which these
words have more focused meaning (Steier, 1994; Steier & Belew, 1994). Agents that are
situatedat a particular location within the Web can exploit local coherence in keyword
distributions by exploring link proximity. Over time, they may come to internalize those
features that best discriminate between relevant and other pages with respect to their local
context only.
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Context also characterizes the main difference between our use of relevance feedback with
TF-IDF-like weighting and the mainstream of text retrieval research in which supervised
learning is employed to estimate word probability distributions (Robertson & Spark Jones,
1976; Sparck Jones, 1979). InfoSpiders use cues provided by user assessments only in
conjunction with local context. The environment plays a mediating role. An agent will not
waste its limited resources paying attention to a word that never appears in the current
search area, even if the user likes that word a lot.

The ideas incorporated into the InfoSpiders framework suggest ways to deal with some
of the new challenges posed by text classification to machine learning, especially with
respect to time-varying documents and user needs (Lewis, 1996) and to large, dynamic, and
heterogeneous collections (Lewis, 1997). For example, the InfoSpiders population deals
with the curse of dimensionality in a scalable way; more agents can collectively select more
features, but each agent’s learning task does not become harder. On-line search makes the
classification problem hard because the relevant classes can be heterogeneous (think of a
long-standing user profile) and because class membership can change over time with the
user’s shifting interests. Fortunately, these factors can be viewed as assets in the construction
of an agent-based retrieval systems.

7.3. Other related projects

The idea of decentralizing the index-building process is not new. Dividing the task into
localized indexing, performed by a set ofgatherers,and centralized searching, performed
by a set ofbrokers,has been suggested since the early days of the Web by the Harvest
project (Bowman et al., 1994).

Fish Search (De Bra & Post, 1994) was a search system proposed at the same time
as InfoSpiders (Menczer, Willuhn, & Belew, 1994) and inspired by some of the same
ideas from artificial life. Fish Search was based on a population of search agents who
browsed the Web autonomously, driven by an internally generated energy measure based
on relevance estimations. The population was client-based, and used a centralized cache
for efficiency. While we believe that the algorithm could have been extended to allow for
distributed implementations, each agent could not internalize local context. This was due to
a fixed, nonadaptive strategy: a mixture of depth-first-, breadth-first-, and best-first-search,
with user-determined depth and breadth cutoff levels. One difficulty of the Fish Search
approach was in determining appropriate cutoff levelsa priori, possibly resulting in load-
unfriendly search behaviors.

There have been several examples of agents who rely on search engines to find infor-
mation (e.g., homepages or papers) on behalf of users. CiteSeer (Bollacker, Lawrence, &
Giles, 1998) is an autonomous Web agent for automatic retrieval and identification of pub-
lications. Ahoy (Shakes, Langheinrich, & Etzioni, 1997) is a homepage finder based on
a metasearch engine plus some heuristic local search. WebFind (Monge & Elkan, 1996)
is a similar locator of scientific papers, but it relies on a different information repository
(netfind) to bootstrap its heuristic search. While agents like CiteSeer, Ahoy and WebFind
may perform some autonomous search from the pages returned by their initial sources, this
is strongly constrained by the repositories that provide their starting points, and usually
limited to servers known to them.
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WebWatcher (Armstrong et al., 1995) and Letizia (Lieberman, 1997) are agents that learn
to mimic the user by looking over his/her shoulder while browsing. Then they perform look-
ahead searches and make real-time suggestions for pages that might interest the user. As
with InfoSpiders, these agents learn to predict an objective function on-line; they can also
track time-varying user preferences. Unlike InfoSpiders, however, WebWatcher and Letizia
are single agents, and more importantly they need supervision from the user in order to
work; no autonomous search is possible.

Fab (Balabanovi´c, 1997) and Amalthaea (Moukas & Zacharia, 1997) are multi-agent
adaptive filtering systems inspired by genetic algorithms, artificial life, and market mod-
els. Term weighting and relevance feedback are used to adapt a matching between a set
of discovery agents (typically search engine parasites) and a set of user profiles (corre-
sponding to single- or multiple-user interests). Like InfoSpiders, these systems can learn to
divide the problem into simpler subproblems, dealing with the heterogeneous and dynamic
profiles associated with long-standing queries. However these systems perform no active au-
tonomous search, and therefore cannot improve on the scale limitations of the indexes they
exploit.

Finally, the ecology-inspired InfoSpiders algorithm has been contrasted with a normative
model for constructing browsing agents who make optimal local decisions about when to
stop surfing, in much the same way in which real options are evaluated in financial mar-
kets (Lukose & Huberman, 1998). Such model is based on a different linkage topology
assumption, in which thevalueof pages along the browsing path of a user follows a ran-
dom walk of the formVL = VL−1 + ξL whereL is the depth along the path andξL is
a random variable drawn from a normal distributionℵ(µ, σ 2). This is stronger than our
linkage conjecture, since it implies a positive correlation betweenVL and VL−1 (analo-
gous to our relevance autocorrelation) for anyµ > 0. Huberman et al. (1998) find that
the distribution of surfing depth (clicks per Web site) derived from the above random walk
equation is a very good predictive model of human browsing behavior. Although our con-
jecture on the value of linkage topology is more modest, it finds strong support in these
findings.

8. Conclusion

8.1. Summary

Our results suggest that distributed, adaptive, on-line information browsing agents could
complement current indexing technology by starting up where search engines stop. Engines
provide global starting points, based on statistical features of the search space (words);
agents can use topological features (links) to guide their subsequent search on-line. We
have shown how this approach can improve on the current state of the art by dealing
effectively with the scalability problem.

Our evaluation of the InfoSpiders collective performance provides us with encouraging
support for the approach: the population can locate relevant documents in a large dis-
tributed corpus faster than best-first-search, taking advantage of its distributed model and
implementation. We have shown elsewhere (Menczer, 1997; Menczer & Belew, 1998a)
that InfoSpiders outperform exhaustive (breadth-first) search in this domain by an order
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of magnitude, and that their performance can receive a boost from the synergy between
individual learning and relevance feedback.

Our micro analysis enables us to determine that single agents can in fact internalize
important local features of the environment into their internal representation, while the
collective ecology captures a more heterogeneous snapshot of what features best correlate
with user relevance. Agent representations and strategies evolve with time and change over
an agent’s lifetime; they are different from agent to agent depending on the temporal and
spatial contexts in which they were born, and on what parts of the environment each has
experienced.

8.2. Future directions

In our early experiments we have been most interested in the behavior of agents on a carefully
controlled and structured corpus (EB). Therefore the full diversity we can reasonably expect
from our agents as they interact with the real Web remains to be demonstrated. We have
shown at least some divergence in the features that allow one agent to be successful within
one topical area of the Encyclopedia and another, but the real purpose of open-ended
evolutionary methods like those we propose is to adapt to the much wider variation found in
the Web. We expect there to be roles for many different types of agents, sensitive to widely
varying user demands, and effective at searching disparate corpora. Extensive evaluation of
our approach on the actual Web, beyond the limited case study outlined above, is necessary
to verify whether these goals can be met.

Many aspects of our model are to be explored at a greater detail in the near future. For
instance, we have only begun to study the effect of caching and cache size on performance
in the sequential InfoSpiders implementation (Menczer, 1998). The role of local, distributed
caches in distributed implementations also needs further attention.

Our weighting scheme may be improved in several ways; for example, it has been sug-
gested that the use of IDF in the local relevance estimation mechanism may be inappro-
priately biased toward global features (Srinivasan, 1998). The use of term weights in the
mutation process could also be modified to allow for query expansion in the absence of
relevance feedback, based solely on unsupervised correlation detection. This could be eas-
ily achieved by replacing the factor|Ik| by (χ + |Ik|) in the probability distribution used
for keyword mutation (cf. Section 5.3.4), whereχ could be a fixed or evolved parameter
(Menczer, 1998).

The only form of direct agent interaction that we have considered is crossover. An agent
at reproduction can recombine its internal representation with that of a nearby agent, per-
haps one situated on the same server. The two can internalize experiences that are now
relevant to each other because of their proximity. Many other models of interaction among
agents are also worth exploration in this domain. Agents learning from other agents, agent
collaboration, and agent communication languages are all examples of very active research
areas.

In the opposite direction, an important issue with respect to the practical implementations
of InfoSpiders concerns the wasted effort in running the entire population of agents serially
on a single, centralized user client. From the point of view of distributed implementations,
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agent interactions must be kept at a minimum. This calls for further study of the interactions
that are implicit in the current model, mainly centralized repositories for caching, resource
sharing, and relevance feedback.

The InfoSpiders architecture anticipates a computing environment, already beginning to
emerge (Pasquale, 1998), in which remote processes can be run on the hosts serving the
documents. In this case, our simple agents need only perform a very light-weight “remote
indexing” function. Documents will be scanned locally (on their remote servers) for a few
textual features, and only those documents that appear relevant will be sent back to the
user’s client machine. As Internet bandwidth becomes more and more saturated, and as
the communication overhead associated with the crawling activity of global search engines
continues to grow, we believe such remote indexing strategies will become essential.

Finally, the feasibility of integrating agent-based on-line search with index-based search
engines must be put to better test. The case study shows how to construct hybrid systems in
which search engines provide agents with good staring points, based on the statistical (word-
based) topology of the search space. This is crucial because, as we have shown in Section 6.2,
the performance of on-line distributed search degrades with the distance between starting
points and relevant clusters. The hypothesis that search engines can provide InfoSpiders with
“good” starting points—within a certain distance from relevant pages—deserves empirical
confirmation. If this is achieved, personal agents can continue the search on-line, adapting to
both user and current environmental context. Using a population of autonomous browsing
agents as a front-end to a search engine can help us better understand the mutual benefits
of the two approaches and the potential synergies that may ensue.

Acknowledgments

The authors are grateful to Apple Computers for equipment donations and Encyclopaedia
Britannica for making the Britannica CD collection available for the experiments described
in this paper; the BCD data isc©1997 Encyclopaedia Britannica, Inc. Parts of the Info-
Spiders code arec©1993 Free Software Foundation, Inc.,c©1995 Massachusetts Institute
of Technology, andc©1992–1997 Matthias Neeracher. We thank these sources for making
such software available under the GNU General Public License. Daniel Clouse contributed
a software library for associative arrays. Finally, we wish to thank David Lewis, Alvaro
Monge, Charles Elkan, Russell Impagliazzo, the members of the Cognitive Computer Sci-
ence Research Group in the CSE Department at UCSD, and four anonymous reviewers for
helpful discussions and suggestions.

Notes

1. Several search engines now allow such queries fork = 1.
2. But a retrieved set could be viewed as the relevant set forsomequery.
3. Like search engine crawlers, on-line agents may carry out their search in real-time or be delayed until low-

traffic hours, depending on user needs and network resources.
4. For Alta Vista, at the time of this writing we estimaten/qτ ≈ 5 (Digital Equipment Corporation. http://altavista.

digital.com.); the condition will be met within a few years.
5. This methodology was suggested by van Rijsbergen (van Rijsbergen, 1979).
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6. This list would typically be obtained by consulting a search engine.
7. Alternative crossover strategies are explored elsewhere (Menczer, 1998).
8. Other cost settings are explored elsewhere (Menczer, 1998).
9. These statistics do not account for the removal of relevant Propaedia subtree nodes.

10. The length of the priority queue is set equal to the initial InfoSpiders population size,p0.
11. This is a worst-case scenario for InfoSpiders performance, since we can imagine that each agent could carry

along a small local cache.
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