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Abstract

Current robotic systems lack the flexibility of dynamic interaction with the
environment. The use of sensors can make the robotic systems more flexible.
Among the different types of sensors. visual sensors play a critical role. This
paper addresses some of the issues associated with the u s of a visual sensor in
the feedback loop. In particular, aigorithms are proposed for the solution Of the
robotic (hand-ye configuration)visual tracking and servoing problem We state
the problem of robotic visual tracking as a problem of combining control with
computer vision. We prapose the use of sum-of-squared differences (SSD)
optical flow for the computation of the vector of discrete displacements. These
displacements are fed to an adaptive controller (seif-tuning reguiator) that drives
the robot in conjunction with a cartesian robotic controller. W e have im-
plemented three different adaptive control schemes and the results am presented
in this paper.

1. Introduction

One of the most desirable characteristics of a robotic manipulator is its
flexibility. Flexible robots can adapt quickly to the evolving require-
ments of an unknown task, they can recover successfully from hardware
failures, and can react properly to sudden changes in the environment.
Flexibility and adaptability can be achieved by incorporating sensory
information from multiple sources in the fcedback loop. This paper
addresses the use of vision sensor for dynamically servoing a
manipulator for object tracking.

The problem of robotic visual tracking/servoing can be defined
as:"move the manipulator (the camera is mounted on the end-effector)
in such a way that the projection of a moving or static object is always
at the desired location in the image"”. The solution to this problem can
be viewed as a paradigm of the controlled active vision framework
introduced in {1]. The underlying philosophy of this framework is that
controlled and not accidental motion of the camera can enhance the
efficiency of the vision algorithms thereby increasing the amount and
quality of sensory information.

Research in computer vision has traditionally emphasized the paradigm
of image understanding. However, some work has been reported
towards the use of vision information for tracking (2, 3,4,5,6}. In
addition. some research 7, 8] has been conducted in using vision infor-
mation in the dynamic feedback loop. While we address the problem of
using vision information in the dynamic feedback loop, our paradigm is
slightly different. Specifically, we claim that combining vision with
control can result in better measurements. It is in this context that wc
view our current work which shows that noisy measurements from a
vision sensor when combined with an appropriate control law can lead
to an acceptable performance of a visual servoing algorithm.

We propose algorithms that address the real-time robotic visual tracking
of moving objects. To achieve this objective. computer vision tech-
ruques for detection of motion are combined with appropriate control
strategies to compute the actuating signal for driving the manipulator.
The problem :s formulated from the system's theory point of view. An
advantage of this approach is that the dynamics of the robotic device

can bc taken into account without changing the basic structure of the
system. We introduce algorithms for incorporating color infarmation,
sophisticated use of multiple windows. and numerically stable con-
fidence measures in order to improve the accuracy of the vision
measurements, In order to circumvent the need to explicitly compute
the depth map of the target, adaptive control techniques arc proposcd.
The experimental results show that the proposed system performs
satisfactorily even with noisy measurements and adapts well to the
changes in the movement of the object.

The organization of this paper is as follows: Section 2 dcxcrihes the
vision (echniques (optical flow, confidence mecasures) uscd for the
computation of the object’s motion parameters. The mathematical for-
mulation of the visual tracking problem is described in Section 3. Tlic
adaptive control strategies are discussed in Section 4. Scction 5 prcsents
the robot control scheme used in the experiments. The experimental
results are presented in Section 6. Finally, in Scction 7, the paper is
summarized. The next Section describes how the vision sensor detects
and measures the (arget’s motion. '

2. Visual Measurements

An object in an image consists of brightness patterns. As tlic object
moves in 3-D space. the brightness patterns in the image move simul-
taneously. Horn (9} defines the oprical flow as “the apparent motion of
the brightness patterns”. For rigid objects the optical flow corresponds
well to the motion field. We assume a pinhole camera modcl with a
frame R, attached to it. We also assume a perspective projection and
the focal length to be unity. A point P with coordinates (X, .Y ,Z}
R, projects onto a point p in the image plane with image coordinates
(x,¥) given by:

X=XJ/Z‘ and y=YJ/Zl. Q)
Equation (1) gives the ideal x and y. If we define two scaling factors
Y Y, t0 account for camera sampling and if (¢ _,c ) is the origin of the
unage coordinate system £, then:
and y,=v,y+c, (2)
where x, and y, arc the actual image coordinaics. To keep the notation
simple and Wlthout any loss of generality. in the mathematical analysis
that follows. we use only the relations dcscrihed hy (). Any displace-
ment of a rigid object can be described by a rotation about an axis
through the origin and a translation. If the angle of this rotation is
small, the rotation can be characterized by threc independent rotations
about the X, Y and Z axes. Let us assume that the camera moves in a
static environment with a translational velocity T=(T . T, ,T:)T and
with an angular velocity R=(RX.RV,R,)T with respect to the camcra
frame R . The velocity of point P with réspcct to the R frame 15

dP SR

il T-RxP. (2
By taking the time derivatives of the expressions for x and y and using
(1) and (3) we obtain:

X, —‘Y r+(
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T, T,

=1 Z—Z—]+[ryR ~(1+)R, +yR)] (@)
T, T,

r=ly 3 Z U +R, ~xyR -xR] (5)

where u=x and v=y « and v are also known as the optical flow
measurements. Now, instead of assuming a static object and a moving
camera, if we were to assume a static camera and a moving object then
we would obtain the same result as in (4) and (5) except for a sign
reversal. The computation of « and v has been the focus of much
research and many algorithms have been proposed (10, 11}. For ac-
curacy reasons, we use a modified version of the matching based
technique [12] also known as the sum-of-squared differences (SSD)
optical flow. For every point p,=(x,,y,) in image A, we want to find
the point p, = (x, +u,y, +v) to which the point p, moves in image
B. It is assumed that the intensity in the neighborhood L of p,, remains
almost constant. that the point py, is within an area § of p,. and that
velocities are normalized by tune T to get the displacements. Thus. for
the point p, the SSD estimator selects the displacement d =(u,v) that
minimizes the SSD mcasurc:

2 {IA(xA+m .yA+n) -
manE N

IB(xA+m+u ')’A+" +v)]2 (6)

e(p, dy=

where u,v E §, N is an arca around the pixel we are interested in, and
;.. 1 are the intensity functions in image A and B, respectively. The
(ﬂfferent values of the SSD measure create a surface called the S§D
surface. By using sub-pixel fitting and multi-grid techniques, the ac-
curacy of the SSD technique can be improved but at the cost of
increasing its computational complexity. The accuracy can also be
improved by selecting an appropriate small area N and by having
velocity fields with few quantization levels.

The accuracy of the measurements of the displacement vector can also
be improved by using multiple windows. The selection of them is
discussed in detail in (1]. The next step in our algorithm involves the
use of these measurements in the visual tacking process. These
measurements should be transformed into control commands to the
robotic system. Thus. a mathematical model for this transformation
must be developed. In the next Section, we present the mathematical
model for the visual tracking problem.

3. Modeling of the Visual Tracking problem

3.1. Visual Tracking of a Single Feature Point

Consider a target that moves in a plane with a feature. located at a point
P, that we want to track. The projection of this point on the image plane
is the point p. Consider also a neighborhood S, of p in the image
plane. The problem of 2-D visual tracking of a single feature point can
be defined as: "find the camera translation (T, ,7 ) with respect to the
camera frame that keeps S,, stationary in an area S, around the origin of
the image frame". It is assumed that at initialization of the tracking
process. the area S, is brought to the origin of the image frame, and that
the plane of motion is perpendicular to the optical axis of the camera.
The problem of visual tracking of a single feature point can also he
defined as "find the camera rotation (R Ry) with respect to the camcra
frame that keeps S, stationary in an area’ §_ around the origin of the
image frame". The second definition does not require the cornputation
of the depth Z_ of the point P. Assume that the optical flow of the point
p at the instant of time 47 is (u(kT),v(kT)) where T is the time
between two consecutive frames. It can be shown that at time (k+ 1) T,
the optical flow is:

u(k+ DD =ukDtu (k-1 (M
v(tk+ DDy =v(kD+r (k-1 (8)
where u, ((k—=d)T),v_((k—-d) T) are the components of the optical flow
induced by the [racking motion of the camera, and d is the delay factor.
For the ume being. the delay factor is assumed to be zero. Equations (7)

and (8) are based on the assumption that the optical flow induced by
motion of the feature docs not change in the time interval T. Therefore,
T should be as small as possible. To keep the notation simple and
without any loss of generality, equations (7) and (8) will be uscd with &
and (k+ 1) instead of k7 and (k+ 1) T respectively. If the camera tracks
the feature point with translation T, (%) and Ty (k) with respect to the
camera frame, then the optical flow that is generated by thc motion of
the camera with T, (k) and T, (K)is:

T, (k) T, (k)

O R C R

s s

9

We assume that for 2-D visual tracking the depth Z_ remains constant.
From (7)-(9), the optical flow equations for the translational casc of the
visual tracking are:
T (k)
u(k+ 1) =uk)— —Z‘ (10)
T, (&

y(k+1)=v(k) - (n

£

When the tracking motion of the camera 15 rotation with R (&) and
R (k). the optical flow induced by the moving camera is:

u (R)=R_(Kx(®)y(®) =R (k) [P (K)+ 1) (12)
v () =R (K Y2 (k) + 1=k (K)x (K)y (K) (13
It is known that:
k —-x(k k+1)=v(k
u(k+ |):L7)_X() ,vk+1)= v(+—_|)_\() (14)

If we substitute u(k+ 1) and v(k+ i) in (7) and (8) with their equivalent
expressions from (14), then equations (7) and (8) can he written as:

x(ktD=x(k) +Tu () +Tuk) (15)

ylk+ )=y (k) +Tv_ (k) +T v (k) (16)
Further, if we model the inaccuracies of the model (ncglected accelera-
tions) as white noise, (15) and (16) become:

x(k+ 1) =x(®) +Tu_(k) +Tu (K)+v, (&) an

Yyt =y & +7v, (K)FTv (k) v, (k) (18)
where v, (k),v, (k) are zero-mean, mutually uncorrclatcd. stationary
random variables with variances 012 and czz. respectively  The above
equations can be written in the state-space form as:

x(k+t1)=Ax(k)+Bu_(k) +Ed k) +Hv (k) (19
where' A=H=l, B=E=TL, x(¥) E R? u () E R d(k) e R?
and v (k) E R% The vector x(k)=(x(k),y (k)7 is the state vector.
u_ (&) =(u_(K),v (k)7 is the control input vector. d (k)= (i (k) ,v (k)7
is the exogenous disturbances vector, and v (k) =(v, (k) ,\'2(l<))7 is the
white noise vector. The measurement vector y (k) = (y, (k) Yy N’ s
given by:

y (k) =Cx (k) +w (k) [@A0)]

where w (k)= (w, (K),w, (k)7 is a white noise vector (w (k) - N(O,W))
and C=1,. The measurement vector is computed using the SSD
algorithm described in Section 2. The same modcl can be used for
keeping the feature point stationary in a1 arca §, diffcrent from the
origin. Assume (ro.or) is the center of this arca 5 . Wc can transform
the statc variables x(k) and y(k) as xpythy=xk)y=r  and
yw(k)y=y () ~r, and the previous model still holds. The matrices
A.B . C ,E, H remain unchanged under the transformation. Since the
SSD algorithm’ continuously computes the displacement vcctor of the
feature point from its desired position, we have the ability to compen-
sate for previous measurement errors that tend to accumulate.

“The symbol I_denotes the identity matrix of order n



3.2.Visual Tracking of an Object

Consider a target that moves in a plane which 1s perpendicular lo the
optical axis of the camera. The projection of the target on the image
plane is the area S_ in the image plane. The problem of 2-D visual
tracking of a single object can be defined as: "find the camera trans-
lation (T, 7) and rotation (R,) with respect to the camera frame that
keeps S, stalionary". It is assumed that the target rotates around an axis
Z which at k=0 coincides with the optical axis of the camera. The
mathematical model of this problem in state-space form is (a formal
derivation is given in [1]):

x(k+ D)=Ax©+Bu_(k)+Ed (k) +Hv(k @n

where A=H=1, B=E=T I, x(K)E R*, u (k) e R}, d(k)e R® and
v(k) E R}, The vector x (k)=(x (k),y(k).G(k))T is the state vector.
u, (k)= (K),v (K .R, (*»7 is the control input  vector,
dky=(u (k),v (k).m(k))r is the exogenous disturbances vector. and
v(ky= (v, (k) vy (k) vy (&) is the white noise vector. x (&), y k), B(k)
are now the X. Y and roll component of the tracking error, respectively.
The measurement vector y (&) =(y, () ,y, (4) .y, (7 is given by:
y (k) =Cx (k)+w (k)

where  w (K)=(w, (k) W, (k),w3 T is a white noise vector
(W (k) ~N(O,W)) and C= 13. The measurement vector is obtained in a
slightly different way than in the case of the visual tracking of a single
feature point. First, the tracking error of the projections of the two
different feature points on the image plane is computed by using the
SSD algorithm. Then. an algebraic system of four equations (two
tracking error equations per point) is formulated. The solution of this is
the X, Y and roll component of the tracking error. If the projections of
the two feature points on the image plane are not the same, it is
guaranteed that the system of equations has a solution. It is assumed
that each one of these features at time t=0 is located at its desired
position. If the features at r=0 are not at their desired position, we
should use a different vision technique for the recovery of the displace-
ments' vectors. An efficient algorithm for this type of computation is
the one that calculates the coordinates of the centroid of the object's
projection on the image plane. This technique can be combined with the
previously mentioned strategies t0 keep continuously the target station-
ary at the desired position and orientation. The optical flow technique
can take care of the target tracking after the target has been moved to
the desired position and orientation while the centroid calculation
permits successful initialization of the tracking process. The control
strategies that keep the target stationary in both cases are discussed in
detail in the next Section.

(22)

4. Design of Adaptive Robotic Visual Controllers

The conurol techniques that will be presented for the 2-D visual tracking
of a moving object can also be used for visual tracking of a single
moving feature point. The mathematical models for the two cases
(feature. object) that were developed in the previous section have the
same structure. The only differences are in the order of the systems and
in the way that we obtain the measurement vector. The control
objective is to minimize at each instant oF time the error vector
ek)=(x (k)-O.y(k)—O.O(k)—O)T by choosing an appropriate control
input vector u_(k). In[13], we have presented various control tech-
niques (LQG, PI, Pole Assignment) that are appropriate for the robotic
visual tracking problem. Adaptive control techniques can be used for
2-D visual tracking of either a feature or an object when the depth
information is not directly available. The adaptive control techniques
are used only for the recovery of the 7 (k) and Ty (k). When the object
rotates around the optical axis of the camera, all the coefficients of the
equation that gives R (%) are known. Thus, there is no need for an
estimation scheme. These adaptive control techniques are based on the
estimated and not the actual values of the system's parameters. A large
number of algorithms can be generated, depending on which parameter
estimation scheme is used and which control law is chosen. The rest of
the section will be devoted to the detailed description of the system

modcl, (he estimation scheines, and finaily, the selection ot the control
law.,

4.1. System Model

The state-space modcl in (19) and (20) can be transformed to the
following equations in the case of 2-D visual tracking with 7 (k) and
T, k):

x(kt)=x®) +b6, T () +Tuk (23)
Y+ N=yk)+6 T () +Tv k) (24)
u(kt D=u@®+T vy, (K) (25)
vik+ 1) =v k) +T v, (k) (26)

The coefficients &, and & depend on the values of the depth Z, and the
sampling interval 7. If we transform the stochastic state-space model n
observer form, we can derive two time-varying SISO ARMAX maodcls
(the ARMAX model in this casec can be viewed as a compact way of
writing down the innovations model):

Ag )y, =B, (g Yu, () +C, (g Hyw, (k) X2 0:=12 (27)
where
Ai(q_')= 1 +a, g’ +a, q'2 i=12
B.(q ) =b, to, gt =12
Cq =14, g7 +cyq?t i=12
The noise sequences w, (k) are assumed to satisfy the assumptions:

Efw ()1 F}_}=0 E{w?() I F._
where the symbol £{X} denotes the expected value of tlic random
variable X and F,_, is the sigma algebra generated by thc past measure-
ments and the past control inputs up to time k— 1. The index 1 cor-
responds 1o the two different SISO ARMAX models, the scalar input
”c.‘(“) now represents either T _(k) or Ty(k), and the scalar y, (k) cor-
responds t0 the measured deviation of the feature point from its desircd
position in one of the X or Y directions. It can be shown that
bio==b,=b,, byy=—by=b_and d=1. Since image processing cal-
culations require finite time, the introduced computational delays can
be represented by the delay factor d. For the time being, it 1s assumed
that ¢ = I. The coefficients of the polynomials C, (¢™"y depend on the
values of the Kalman gains. and thus. C; (™" arc time-varying duc to
the time-varying nature of the Kalman gains. It can be shown [1] that
the polynomials C; (¢7") have their roots strictly inside the unit circlc.
The optimal one-stepahead predictor [14) with ¢ = [ has the fonn:

’]_—.0'2 i=1.2

Cq™yT k11 =47 @y (k) *
BY(q Hu,(k) k20i=12
where
B (q)=8,(q"") i=12
AT @ NY=q(C,(gH~A,(g™H] i=12
y; k+ Uk =Ely, (k+ DIF, ) =y k+D)=w (k+1)i=12
y?(kl(k—l)) denotes the optimal prediction of the output while the
9,.(1\') denotes the the output of the adaptive predictor. Since ihe
YT ((k=1)1(k=2), ¥, ((k=2)1(k~3)).... are not directly available, the
previously estimated values ¥, (k—1), ¥ (k=2)... can be uscd instead.
The introduced error can be neglected because the polynomials C, @ hH
have all their zcros inside the unit circle. This fact guarantees that the
¥.(k+ 1) converges to y;'((k+ 1)1 k) exponentially. Thus. tlic g,. (X) arc
given by the formula:
b= w-1)q (k=1) i=12 29
where
k=1 =[y (k=1).y, (k= 2)u (k=1),u_ (k=2).
~P k=1), =3, (k=2)) .1=1.2
a7 (k= 1) =( 0 (k= 1) Gty (k= 1), b (k=1

by tk=1) .6 (k=1 . k=D)] i=12



Based on the relations between the coefficients of the BT(q"). we can
reduce the number of the coefficients that should be estimated. The
)Al (k) are now given by equation (29) where
Tk~ 1)=(y, (k= 1),y,(k=2) , Au, (k=1),
=% (-1) =5, (k=2)] i=1,2
of (k-1 =(0y, (k=1) Gy k=1) by (k= 1),
E =1, Cytk=1)]) i=12
The Au (k) can be  computed from the equation
Au_ (K)=u_ (k)=u_ (k-1). The next step is the on-line estimation of
these parameters.

4.2. Estimation Schemes

Many estimation schemes have been proposed for this type of problem
by different researchers {14]. Due to the time-varying nature of the
estimated coefficients, a variation of the exrended least squares (ELS)
algorithm is used. It is called least-squares wirh exponential data
weighting [14]. This algorithm discards old data exponentially under
the assumption that the most recent data contain more information. The
parameter vector q, (k) is estimated on-line by the equations:

q,(k)=q; (k=) +P. (k= 1)f. (k=) e, (k) i=12 30)
1
Pﬂ(—l):m (P, (k-2)—
P,(k=2)f (k=1) T (k= 1)P;(k =2)
TG = )+ k= 1) Pk =2) Fy (k= 1)
e, ()=y ()=5 (k) i=1,2 (32)

] i=12 @n

The scalar &, (X) = f, is the design variable which should bc selectied to

be 0 <X, < 1. In the examples, X, has been chosen to be 0.95. The
next step in the implementation of our algorithm is the selection of the
control law.

4.3. Selection of the Control Law

The first adaptive controller that we propose is a modified version of
the adaptive minimum variance controller. The adaptive minimum
variance controller is often called self-runing regulator (15] (STR). For
this type of controller, the input is chosen so as to minimize the
mean-square error between the output and the desired value. The
corresponding cost function is:

I (k+d)=E([y,(k+d) =] (k+d))? IF;] (33)
Ford=1, the input signal &u_, (k) is obtained by the equation:

y k1) =17 k) Sleky 0= 12 (34)

The above equation Is generated by replacing 3’; (k) with y! (k)and k
with & + 1 in (29).0ne important observation is that in our application
y; (k)=0 for every instant of time. It can be easily shown that if

y! (k) =0 for every instant of time. then fvi (k) =0 for every instant of

time. Thus. the coefficients of the C, (q") can be removed from the
problem. This fact simplifies the algorithm and reduces the number of
parameters that should be estimated. Thus, in the 2-D visual tracking
problem only six paramcters must be computed each instant of time.
The general ARMAX formulation for the same problem requires the
on-line estimation of ten parameters. The minimum variance controller
presents some serious problems. The first and most important is that the
coefficients b, can become zero or very small. This will result in large
input signals or even unbounded ones. A second important problem is
the possible saturation of the input signals. A large change in the values
of the system parameters can create large input signals. A practical but
partial solution to the problem is to bound the input signals. Another
problem of the minimum-variance controller is its bad performance
under noisy measurements. Large oscillations appear due to the effort
of the controller to compensate fast for large errors. Thus. the applica-

tion of minimum variance control law for robotic visual tracking 1s not
highly recommended. Since the robotic syslem cannot track objects
whose projections in the image plane move cxtrcmcly fast, a smooth
control performance is important in the case of robatic visual tracking
A smooth control performance can be achieved by using a cost function
that includes the input signal (STRWU). The oscillations arc rcduccd
in number and in magnitude and the overall pcrformancc is better. The
major disadvantage of the STRWU control scheme is the large stcady-
state error. The cost function that includes the input signal is:

Ji(k+d) =E Iy, (k+d) -¥! (k+d))? +p,u? ()1 F}) (35)

Ford=1, the modified one-step-ahead predicto} [c1'4] is given by:
oy o
C.(q )b'_(z)+ .
=T gtk +u,, (k) i=12 (36)
where q(k) is the vector that contains the coefficients of the
polynomials:

b

P,
Ly, (k11 =yt (k+ 1)+ ——u (K] =
i ' ’)‘0 «

0

pi op
{AT(q Y, —[CqgH-11g+{B] (¢H-
bg+e ! bio” ! '

bl ~Ci(g™h i=12
and ;' (k) is given by the following equation:
£ Ty =y, 0y, (k=1),u, (k=D u (k=2) v (k+1),
yi .y k=1)] i=1.2

Goodwin [14] has suggested an adaptive coiitrol scheme for this type of
problem. The proposcd algorithm uses tlic following control law:

u,=-T0qk =12 an
where
1
QK =0 (k= 1) ¢ —— P (k= 1) 17 (k= 1) €, &) (3%)
0+ en
0

P (k-1)=P,(k-2) ~
P (k= f (k= 1) T (k= 1) P, (k=2)

LHE T (k= )P (k= 2)1 (X- 1)

(39

P;
e, () =— u, (k) +y, (k) -y’ (k) (40)
b
The symbol b:; denotes the initial estimate of the coefficicnt h.,. The
above algorithm minimizes the cost function (35) with a modified p,
that we call p.:
, pr blO
Py ==
by
Due to the fact that y; (k)=0 V¥ & > 0, the three last cocfficients of the
q(k) need not be computed. Thus. eight parameters should be es-
timated in total. The computational complexity is higher than tlic STR
control scheme but the performance is iinproved. The problem with (his
approach is that it creates a steady-state error (SSE). To reduce the SSE.
onc should introduce an integrator in the system. TIlic last controlter
(STRWDU) which is implcmentcd is designed to provide integral
action. This can bc accomplished by weighting the control signal
change.  This s in agreement with the structural and operational
characteristics of a robotic system. A robotic systcm cannot track
objects that have large changes in their image projections during the
sampling interval T. In addition, there are some upper limits in the
robotic tracking abiliry. The cost function that includes the control
signal change is:

Skt dy=E{ly; (k+d) =y, (k+d)]? +p, A1l ()1 F) (1)

Based on the relations between the coefficients of B;'(q")_ we can
rewrite the modified one-step-ahead predictor in (36) as:



o2
@) e Tk TR~y (k4 )+ B, (0] =
C(q )b,f,+p, [y, G+ LIy ~y (k+ )+bl0 u_, (k)]
=0Tk q W) +Au, (A) 1=12 (42)

where q(k) is the vector that contains the coefficients of the
polynomials.
by

b.‘%)*ﬁ'
and the new f;” (k) is given by:

€70 =y, () y,(k=1) ,Au_ (k= 1), Au_ (k-2)

yi(k+ Dy (K)yf (k=1)) i=12

The new control law is:

- P,
(AT@Y. 5oIC (@™ -11q.~C g ™)) i=12
0

Au,()==1/TR) Q'K i=12 (43)
The estimation scheme is almost the same as the onc in equations
(38)-(40). The only change is in equation (40) where the u_, (k) should
be changed 0 Au,, (k). In total, eight parameters should be estimated
on-line. This controller seems the most appropriate for the specific
control problem that we have to solve.

5. Robot Control

After the computation of «, (k) signals with rcspect to the camera frame
R,, we transform them to the end-effector frame R, with the use of the
transformation “T,. The transformed signals are fed to the robot con-
troller. We experimented with a cartesian PD scheme with gravity
compensation. The selection of the appropriate robot control method is
essential to the success of our algorithms because small oscillations can
create blurring in the acquired images. Blurring reduces the accuracy of
the visual measurements. and as a result the system cannot accurately
track the moving object. The mathematical model of the robot’s
dynamics is:

D(q)q +¢c(q.q) +g(@ =1 (44
where g is the vector of the joint variables of the robotic arm,D is the
inertial acceleration related matrix, ¢ is the nonlinear Coriolis and
centrifugal torque vector. g is the gravitational torque vector and * is the
generalized torque vector. The model is nonlinear and coupled. This
control scheme assumes that all velocities in the dynamics equations are
zero. This implies that g=J=c¢(q,q)=0. J(q) is the manipulator's
Jacobian. Thus, the actuator torque vector T is given by:

=37 (@ F+g(q) (45)
F=KPAx+K'AX+kd“ (46)
Ax=x,,, -J(Qq 47

where F is the generalized force vector, AxT:(Ax:, Ax’o') is the posi-
tion and orientation error vcctor. and K and K, are gain matrices. The
subscript des denotes the desired quantities. The next Section describes
the experimental results.

6. Experiments

A number of experiments were performed on the CMU DDArmm Il
robotic system. A description of the hardware configuration of the
CMU DDArm 11 can he found in (13). The camera is mounted on the
end-effector. The focal length of the camera is 7.5mm while the objccts
are moving on a plane (average depth 2, =680mm). The center of mass
of eaich one of these objects moves across the line ¥=0.74 X +0.77 (Y
and X in meters). The real images are 510x492 and are quantized to
256 gray levels. The objects used in the tracking examples are books,
pencils. and generally. items with distinct features. The user, by using
the mouse. proposes to the system some of the object’s features that he
1s interested in. Then. the system evaluates on-line the quality of the
measurements. based on the confidence measures described in a pre-
vious Section. Currently, four features are used and the size of the
attached windows is 10x10. The experimental results are plotted in Fig.

1-3 where the dotdashed trajectories correspond to tlic trajectories of
the center of mass of the moving objccts. The Mez_P vector represents
the position of the end-effector with respect to the world frame. For tlic
STR conntrollcr, the covariance matrix P (k) is initialized to be I’ , =1,

and the initial value of the vector q‘r (0)is q,T (0)=(0.0,0.0, -1.0]. For
both the STRWU and STRWDU controllers. the covariance matrix
P, (k) is initialized to be P, =1 and the initial value of the vcctor q,T (L)

is q‘T (0)=({-1.0,1.0,1.0,1.0}. The value of the scalar p_is 0.2. The
experimental results lead to some interesting observations. The simple
PD produces oscillations around the desired trajectory. The reason why
we do not use the computed torque scheme is that it requires the
inversion of the Jacobian. Thus, the DDAm I can casily become
unstable (whencver two of the joints are aligned). The observed
oscillations are due to the fact that the robotic controller (PD with
gravity compensation) does not take into consideration the robot
dynamics. The results arc presented in Fig. 1-3. The knowledge of the
depth Z_ is assumed to bc inaccurate. The adaptive minimum variance
controller (STR) is implemented with bounded control signal change
Au (k). This controller. as depicted in Fig. |, has the worse perfor-
mance. The reason is that the large variations in the control signal
create blurring in the images, and thus. large errors in the visual
measurements. The STRWU and STRWDU controllers have almost
comparable performances. The STRWU controller presents n steady-
state error while the STRWDU regulator secms 0 hnvc the smoothest
performance.

7. Conclusions

In this paper, the robotic visual tracking (hand-eye configuration)
problem is addressed. We claim that we should look to the problem by
combining vision and control techniques together. The potential of the
proposed approach has been demonstrated by presenting experimental
results from the application of our framework to the problem of robotic
visual tracking of arbitrary 3-D objects traveling at unknown velocitics
in a 2-D space. We first presented a mathematical formulation of the
problem. This model is a major contribution of this work and is bnscd
on measurements of the vector of discrete displacements which arc
obtained by the sum-of-squared differences (SSD) optical flow This
model can be extended to 3-D by including in the calculations a larger
number of feature points. Other contributions of this work are n sophis-
ticated measurement scheme using multiple windows and efficient
confidence measures that improve the accuracy of the visual measure-
ments. The next step was to show the effectiveness of the idea of
combination of control with vision as a solution to the robotic visual
tracking problem. Adaptive control schemes were introduced for the
case of inaccurate knowledge of some of the system’s parameters.
Three different adaptive controllers were implemented on our cx-
perimental testbed, the DDArm II system. Experimental results show
that the methods are quite accurate, robust and promising. One impor-
tant observation is that all the experiments were done in real-time.
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