
P r e s e n t e d  at 1991 American 
C o n t r o l  C o n f e r e n c e  (iiCC) 
Bos ton ,  MA, J u n e  26-28 1991 

ADAPTIVE ROBOTIC VISUAL TRACKING 

N .  Papanikolopoulos, P .  K .  Kliosla, and T.  Kartade 

Department of Electrical and Computer Engineering 
The Robotics Institute 

Carnegie Mellon University 
Pittsburgh, Pennsylvania 1521 3 

Abstract 

Current robotic systems lack the flexibility of dynamic interaction with the 
environment. Ihe use of sensors CM make the robotic systems more flexible. 
Among the different t y ~ s  of sensors. visual sensors play a critical role. This 
paper addresses some of the issues wociattd with the u s  of a visual sensor in 
the feedback loop. In particular. algorilhmr LR proposed for che soluiion of thc 
robotic fiand-cye configuration) visual tracking and srvoing problem We state 
the problem of robotic visual tracking as a problem of combining control with 
computer vision. W e  p r o p s  the use of sum-of-squared differences (SSD) 
optical flow for the computation of the vector of discrete displacements. These 
displacements are fed to an adaptive controller (sdf-tuntnR rcgulntar) that drives 
the robot in conjunction with a canuian robotic controller. W e  have im- 
plemented three different adaptive conwool schemes and the results am presented 
in this paper. 

1. Introduction 
One of the most desirable characteristics of a robotic manipulator is its 
flexibility. Flexible robots can adapt quickly to the evolving require- 
ments of an unknown task, they can recover successfully from hardware 
failures, and can react properly IO sudden changes in the environment. 
Flexibility and adaptability can be achieved by incorporating sensory 
dormat ion from multiple sources in the fcedback loop. This papcr 
addresses the use of vision sensor for dynamically servoing a 
manipulator for object tracking. 

The problem of robotic visual trackinghervoing can be defined 
as:"move the manipulator (the camera is mounted on the end-effector) 
in such a way that the projection of a moving or static object is always 
at the desired location in the image". The solution to this problem can 
be viewed as a paradigm of the conrrolled active vision framework 
introduced in [ l ] .  The underlying philosophy of this framework is that 
controlled and not accidental motion of the camera can enhance the 
efficiency of the vision algorithms thereby increasing the amount and 
quality of sensory information. 

Research in computer vision has traditionally emphasized the paradigm 
of image understanding. However, some work has been reported 
towards the me of vision information for tracking [2 ,3 ,4 ,5 .6 ] .  I n  
addition. some research [7,8] has been conducted in using vision infor- 
mation in the dynamic feedback loop. While we address h e  problcm of 
using vision information in the dynamic feedback loop, our paradigm is 
slightly diffcrent. Specifically, we claim that combining vision with 
control can result in better mcasurements. It is in this context that wc 
view our current work which shows that noisy measurements from a 
vision sensor when combined with an appropriate control law can lead 
to an acceptable performance of a visual sewoing algorithm. 

We propose algonrhms that address the real-time robotic visual tracking 
of moving objects. To achieve this objective. computer vision tech- 
tuques for detection of motion are combined with appropriate control 
strategies to compute the actuating signal for driving the manipulator. 
The problcm IS formulated from the system's theory point of view. An 
adv.mta_ee of this approach is that the dynamics of the robotic dcvice 

can bc tnken into account without changing the Imsic stIucturc ( i f  llic 

system. We introduce algorithms for incorporating color iriformnlion. 
sophisticated use of multiple windows. and numcrically stahlc coti- 
fidence measures in o r d u  to improve the accuracy of the vision 
measurements, In order to circumvent the need to explicitly computc 
the depth map of the target, adaptive control techniques arc proposcd. 
The experimental results show that the proposed system performs 
satisfactorily even with noisy measurements and adapts well to the 
changes in the movement of the object. 

The organi7ation of this paper is as follows: Section 2 dcxcrihes !tic 
vision Icchniques (optical flow, confidence mcasurcs) uscd for tlic 

computation of the object's motion parameters. The mathematical for- 
mulation of the visual tracking problem is describcd in Section 3. Tlic 
adaptive control strategies are discussed in Section 4. Scction 5 prcscnts 
the robot control scheme used in the experiments. Thc experimental 
results are presented in Section 6. Finally, in Scction 7, thc papcr is 
.summarized. The next Section describes how the vision scnsor detects 
and measures the target's motion. 

2. Visual Measurements 
An object in an image consists of brightncss pattcrns. As tlic O ~ > J C C C  

moves in 3-D space. the brightness palterns i n  fhc irnayc m o w  simiil- 
taneously. Horn [9] dcfines the opricolflm, as "thc apparent niotion of 
the brightness patterns". For rigid objects the optical flow corrcspontis 
well to the motion field. We assume a pinhole camera modcl with a 
frame R, attached 10 i t .  We also assume a perspective projcctton and 
the focal length to be unity. A point P with coordinates (X, , Us, Z,) m 
R, projects onto a point p in the image plane with image coordinates 
(I, y )  given by: 

x = X , l Z ,  a n d  y=Y,IZ,. ( 1 )  

Equation ( I )  gives the ideal x and y. U we d e f i e  two scaling factors 
y, . y  to accouni for camera sampling and if ( c x ,  c,) is the origin of the  
imaie coordinate system F, !hen: 

X ~ = ~ ~ X + C ~  a n d  yd=y,y+c,  (2) 
where xa and y,, arc the actual image coordinnrcs. To kccp Ihr nolnlion 
simple and without any loss of generality. in the mathcnialic;il analysis 
that follows. we use only the rclations dcscrihcd hy ( I ) .  A n y  displ:icc- 
tnent of a rigid object can be described by a rotation ahout a n  n x i c  
through the origin and a translation. U thc anglc of this rotation is 
small, the rotation can be characterized by thrcc indcpcndcnt rot:ifionc 
about the X, Y and 2 'axes. Let us assume that the caincra niovcs in ;I 

static environment with a ~ranslational velocity T = ( T r .  T,, , TJT and 

with an angular velocity R = ( R x , R V , R z ) '  with rcspcci to ihc cnnicra 
frame XI. The vclocity of point P wlth rcspcct ro thc R,  r r n w  IS :  

(?i 

By Inking the time derivatives of thc expressions for x  id y : t r id using 
( I  ) and (3) we obtain: 



T. Tr 

2' z, =, T" 

z, 2, 

u = [ x 2 - - ] + [.ryR,-(I + 2 ) X v  + y R I ]  (4) 

( 5 )  I , = [  y - - -  ] + [ ( l + ~ ) R i - x ~ R Y - x R T ]  

where u = x  and v=y. u and v are also known as the optical flow 
measurements. Now, instead of assuming a static object and a moving 
camera, if we were to assume a static camera and a moving object then 
we would obtain the same result as in (4) and ( 5 )  except for a sign 
reversal. The computation of u and 1' has been the focus of much 
research and many algorithms have been proposed [IO, 111. For ac- 
curacy reasons, we use a modified version of the matching based 
technique [I21 also known as the sum-of-squared differences (SSD) 
optical flow. For every point pA=(xA , y A )  in image A, we want to find 
the point pn = ( x A  + u , yA + v) to which the point pA moves in image 
B. I t  is  assumed that the intensity in the neighborhood L of p,, remains 
almost constant. that the point pn is witlun 'an area S of pA, and that 
velocities are normalized by tune T to get the displacements. Thus. for 
the point pA the SSD estimator selects the displacement d = ( u ,  I!) that 
minjmizes the SSD mcasurc: 

e( p,, , d)  = [ IA(xA + ni . yA + 11) - 
ni.ri E N 

/B(xA + nt +u , yA + n + 1912 (6)  
where u , I '  E S, N is an arm around the pixel we are interested in, and 

/ A ,  are the intensity functions in image A and B, respectively. The 
different values of the SSD measure create a surface called the SSD 
surface. By using sub-pixel fitting and multi-grid techniques, the ac- 
curacy of the SSD tachnique can be improved but at rhe cost of 
increasing its computational complexity. The accuracy can also be 
improved by selecting an appropriate small area N and by having 
velocity fields with few quantization levels. 

The accuracy of the measurements of the displacement vector can also 
be improved by using multiple windows. The selection of them is 
discussed in detail in [ I ] .  The next step in our algorithm involves the 
use of these measurements in the visual uacking process. These 
measurements should be transformed into control commands IO the 
robotic system. Thus. a mathematical model for this transformation 
must be developed. In the next Section, we present the mathematical 
model for the visual tracking problem. 

3. Modeling of the Visual Tracking problem 

3.1. Visual Tracking of a Single Feature Point 
Consider a target that moves in a plane with a feature. located at a point 
P, that we want to track. The projection of ths point on the image plane 
is the point p. Consider also a neighborhood SM, of p in the image 
plane. The problem of 2-D visual tracking of a single feature point can 
be defined as: "find the camera translation (Ti, T with respect to the 
camera frame that keeps Sw stationary in an area i a m u n d  the origin of 
the image frame". It is assumed that at initialization of the tracking 
process. the area Sw is brought to the origin of the image frame, and that 
the plane of motion is perpendicular to the optical axis of the camera. 
The problem of visual tracking of a single f a t u r e  point can also he 
defined as "find the camera rotation (R, .R with respect to the camcra 
frame that keeps S-, stationary in an area So around the origin of the 
image frame". The second definition does not require the cornputation 
of the depth Z, of the point P. Assume that the optical flow of the point 
p at the instant of time k T  is ( u ( k T )  , v ( k T ) )  where T is the time 
between two consecutive frames. It can be shown that at time (k+ I) T, 
h e  optical flow is: 

(7) 
(8) 

where uc ( ( k - 4  7-) ( ( k - d )  r)  are the components of the optical flow 
Lnduced by the [racking motion of the camera, and d is the delay factor. 
For the time being. the delay factor is assumed to be zero. Equations (7) 
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u ( ( k +  1) j3  = u ( k r )  + u c  ( ( k - d )  r)  
1, ( ( k  + l ) j 3  = I* (!io +I '  ( ( k -  d) r)  

and (8) are based on the assumption tliat thc optical flow induced by 
motion of the feature docs not change in the rime 111tcrv;11 T. Thercforc. 
T should be as small as possible. To kcep the notation simplc and 
without any loss of generality, equations (7) and (8) will be uscd wiih !i 
and ( k +  1) instead of k T  and ( k +  I )  T respectively. If the camera tracks 
the feature point with translation T,(k)  .and T y ( k )  with respect to [he 
camera frame, then the optical flow that is generated by thc motion of 
the camera with T, (k) and Ty (k) is: 

T, (k) T" (4 

z* zs 
u = ( k ) = - - -  , I '  (n)=-- (9) 

We assume that for 2-D visual tracking the depth Z, rem?' ins constant. 
From (7)-(9, the optical flow equations for the translational casc of thc 
visual tracking are: 

T, (U 

T, (k) 

u ( k +  l ) = u ( k ) -  - ( 10) 

v ( k + I ) = 1 , ( k ) -  - ( 1  1)  

z, 

=, 
When the tracking motion of the caniera I S  rotation with R , ( h )  a id  
R v ( k ) .  the optical flow induced by thc moving cnnicra IS: 

uc (a) =R, (k) x ( k )  y ( k )  - R y ( k )  12 ( P ) +  I ]  
i'< (k) = R$) Lv2 (k) + 1 1 - 4 1  (k) x (k) y (k) 

112) 
(13) 

I t  is known that: 

x ( k +  I)-x(k) v ( k +  l ) - y ( k )  
, v ( k +  I ) = '  (14) T T u(k+ I ) =  

If we substitute u(k+ 1) and v ( k +  i )  in (7) and (8) with their equivalent 
expressions from (14). then equations (7) and (8) can he writtcn as: 

(13 
y ( k +  1) = y  (k) + r vc (~r) + T~~ (k) (16) 

Further, if we model the inaccuracies of the model (ncglccted accelcm- 
tions) as white noise, ( 1  5 )  and (16) become: 

x (k + 1) E x  ( k )  + T uc (k) + Tu ( k )  

x ( k +  1) = x ( k )  +Tuc  (k )  + Tu (k) + V I  (k) 
y (k + I )  = y (k) + T l'< (k) + T v ( k )  + v2 ( k )  

(17) 
(18) 

where v I  (k) , il2 (k) are zero-mean, mutually uncorrclatcd. stationary 
random variables with v:uixnces u,' and u ~ ~ ,  rcspcciivcly Thc .ibovc 
equations can be written in the state-space form as: 

(19) 

where' A=H=I,, B=E=TI,, x ( k )  E R2. u , ( k )  E R2.  d ( k )  E R' 

and v ( k )  E R2. The vector ~ ( k ) = ( x ( k ) , y ( k ) ) ~  is thc state vcclor. 
uc ( k )  = (14 ,  (k) , (k))' is the control input vector. d (k) =(I( ( k )  , v(!,))~ 

is the exogenous disturb,mes vector, and v ( k )  = ( 1 8 ,  ( k )  , i s 2  (!i))7 is thc 
white noise vector. The measurement vector y ( k )  = @I ( k )  .yz (k))' IS 

given by: ' 

x (k+ 1 )  = A x (k)+R U~ (k) + E d  ( k )  + H v (k) 

(20) y ( k ) = C x ( k ) + w ( k )  

where w (k) = ( w I  (k), w2 (k ) )T  is a white noise vector (w ( k )  - N(0.W)) 
'and C=12. The measurement vector is computed using the SSD 
algorithm described in Section 2. The same modcl can be used for 
keeping the feature point stationary in .an arca S, dllfcrcrit from thc 
origin. Assume (r..r.rv) is the center of this arca S,. Wc can transform 
the statc variables x ( k )  and y ( k )  as s , ( X )  = . v ( L ) - / ,  ; i n d  
. v , (k )=y (k ) - rv ,  and the previous model still holds. The inatriccs 
A ,R , C  , E  ,H-remain unchanged under the transformation. Slncc thc 
SSD algorithni continuously computes the displacement vcctor of [he 
feature point from its desired position, we have the ability to compen- 
sate for previous measurement errors that tend to accumulate. 



3.2. Visual T r a c k i n g  o f  a n  O b j e c t  

Consider a target that moves in a plane whxh IS perpendicular lo thc 
optical ax is  of the camera. The projection of the target on the image 
plane is the area X-, in the image plane. The problem of 2-D visual 
tracking of a single object can be defined as: "find the camera trans- 
lation (T,,T$ and rotation (RJ  with respect to the camera frame that 
keeps SI, stauonary". 11 is assumed that the target rotates around an axis 
2 which at k = O  coincides with the optical axis of the camera. The 
mathematical model of this problem in state-space form is (a formal 
derivation is given in [ 11): 

x ( k +  1) = A  x(k)+B uC (k) + E d  (k) + H v(k) (21) 

where A = H = I,. B = E  = T I,, x (k) E R', u c ( k )  E $, d (k) E R' and 
v(k) E R?. The vector x(k)=(X(k),y(k).e(k))T is the state vector. 
uc ( k )  = (ur  (k) , i!<(k) .R2  ( k ) f  is the control input vector, 
d (k) = ( u  (k) , v ( k )  . o ( k ) ) '  is the exogenous disturbances vector. and 
v ( k ) = ( v l  ( k ) , ~ , ~ ( k ) . v ~ ( k ) ) ~  is the white noise vector. x ( k ) .  y ( k ) .  Q(k) 
are now the X. Y and roll component of the tracking error, respectively. 
The measurement vector y (k) = CyI ( k )  , yz (k) . y3 ( k ) f  is given by: 

y (k) = c x (k) + w ( k )  (22) 

where w (k) = ( w ,  ( k )  . wz (k) , w3 ( k ) f  is a white noise vector 
( w  (k) -N(O,W)) and C =I, .  The measurement vector is obtained in a 
slightly different way than in the case of the visual tracking of a single 
feature point. First, the tracking error of the projections of the two 
different feature points on the image plane is computed by using the 
SSD algorithm. Thcn. an algebraic system of four equations (two 
tracking error equations pcr point) is formulatcd. The solution of this is 
the X, Y and roll component of the tracking error. If the projections of 
the two feature points on the image plane are not the same, it is 
guaranteed that the system of equations has a solution. It is assumed 
that each one of these features at time r = O  is located at its desired 
position. If the features at r = O  are no t  at their desired position. we 
should use a different vision technique for the recovery of the displace- 
ments' vectors. An efficient algorithm for this type of computation is 
the one that calculates the coordinates of the centroid of the object's 
projection on the image plane. This technique can be combined with the 
previously mentioned strategies to keep continuously the target station- 
ary at the desired position and orientation. The optical flow technique 
can take care of the target tracking after the target has been moved to 
the desired position and orientation while the centroid calculation 
permils successful initialization of the tracking process. The control 
strategies that keep the target stationary in both cases are discussed in 
detail in the next Section. 

4. Design of Adaptive Robotic Visual Controllers 
The convol techniques that will be presented for the 2-D visual tracking 
of a moving object can also be used for visual tracking of a single 
moving feature point. The mathematical models for the two cases 
(feature. object) h a t  were developed in the previous section have the 
s.me structure. The only differences are in the order of the systems and 
in the way that we obtain the measurement vector. The control 
objective is to minimize at each instant of time the error v e t o r  
e ( k ) = ( , r ( k ) - O , y ( k ) - O . f l ( k ) - O ) T  by choosing an appropriate control 
input vector u r ( k ) .  In [13]. we have presented various control tech- 
niques (LQG, PI, Pole Assignment) that are appropriate for the robotic 
visual tracking problem. Adaptive control techniques can be used for 
2-D visual tracking of either a feature or an object when the depth 
information is not directly available. The adaptive control techniques 
are used only for the recovery of the Tx (k) and T, (k). When the object 
rotates around the optical axis of the camera, all the coefficients of the 
equation that gives R z ( k )  are known. Thus, there is no need for an 
estimation scheme. These adiptive control techmques are based on the 
estimated and not the actual values of the system's parameters. A large 
number of algorithms can be generated, depending on which parmeter 
estimation scheme is used and which control law is chosen. The rest of 
the section will be devoted to the detailed description of the system 

modcl, thc estimation schcmcs, and fin;llly. thc sclcctioil 0 1  ihc coii l rol  

law. 

4.1. Sys tem Mode l  

The state-space modcl in (19) and (20) can be transformed to [hc 
following equations in the case of 2-D visual tracking with T ,  ( k )  a n d  
T,  (0 

x ( k  + I )  = x  (k) + br T,  ( k )  + Tu ( k )  
>' ( k  + I )  = y  (k) + b y  T"(k)  + T v (k) (24) 
u (k+ I )  = u ( k )  +Tv,, (k) 
v ( k +  l )=V(k)+TvM2(k)  (26) 

(23) 

(2.5) 

The coefficients 6x and by  depend on the values of the dcpth Z, and the 
sampling interval T. If we transform the stochastic state-space model 111 

observer form, we can derive two time-varying SISO A R h l A X  nimlcls 
(the ARMAX model in this case can be viewed as a compnct way o f  
writing down the innovations model): 

A, (q - ' ) y ,  (L) =q-"E,  (q - l )  uc, (L) + C; ( q - ' )  K', (L) X Z 0 1 = 1 .2 ( 2 7 )  

where 

A ; ( ~ - ' ) = I  + a ; , q - ' + ~ ~ ~ q - ~  i = 1 , 2  

B; (q- ' )  = 6,0 + bit 9-I i = 1.2 
c, (q- ')  = I +c,, 9-1 + c /  i =  1.2 

The noise sequences w, ( k )  are assumed to satisfy thc assumplions: 

E I H ' , ( L )  IF;-'J=O E l 4 ( k )  IF;-,)=a; 1=1.2 

where the symbol E(X) denotes the expected value of tlic randoin 
variablc X and Fi-t is the sigma algebra generated by the pnst nicasurc- 
ments and the past control inputs up to time k- 1. The index I cor- 
responds to the two different SlSO ARMAX models, the scalar input 
uci(k)  now represents either T,(k) or Ty(k), and the scalar y,(k) cor- 
responds to the measured deviation of the feature point from its desircd 
position in one of the X or Y directions. It can be shown that 
bto=-b, ,=bz. ,  b,O=-b,,=b and d =  1. Since image processing cal- 
culations require finite time: the introduced computational delays can 
be represented by the delay factor d. For the time being, i t  I S  assunled 
that d =  I .  The coefficients of the polynomials C, (9-I) dcpcnd on (tic 
values of the Kalman gains. and thus. C,(q-l) arc time-varying duc 10 

the time-varying nature of the Kalman gains. I t  can be shown [ 1 I rh.it 
the polynomials Ci(9-') have their roots strictly inside thc unit circlc. 
The optimal one-stepahead predictor [14] with d =  L has the fonn: 

C, (q- ')y: (k+l I k) =A; (q - ' ) y ;  (k) + 
~ ; ( q - ~ ) u ~ k )  k 2 o i =  1.2 (28 )  

where 

E:(q-') = 8; (q- ' )  i = 1.2 

AT(q- ' )  =q [C, (q - ' ) -A ;  (q- I ) ]  i =  1.2 

y ; ( k +  1 Ik)=E{y,  (k+ I )  IF, =y,  ( k  + 1 ) - ~ , ,  ( k +  1 )  I= 1.2 

y:(kl(k- 1 ) )  denotes the optimal prediction of the output while the 
! , ( k )  denotes the the output of the adaptive prediclor. Since ihe 

y : ( ( k -  I ) l (k -2 ) )*  .v:((k-2)l(k-3)) ,... are not dircctly nvailnhlc. thc 
previously estimated values ;-, ( k-  1). $, (k -2 )  ... c m  be uscd instcad. 
The introduced error can be neglected because the polynomials C, ( 9 - ' )  
have all their mros inside the unit circlc. This fact guxiiitccs th;it tlic 
- I  ?.(k+ 1) converges to y:((k+ 1 ) l k )  exponentially. Thus. tlic ;,, ( X )  arc 
given by the formula: 

i, (k) = F (k -  1) 4, (A.- 1 )  i = 1.2 (29) 
where 

f f ( k -  I ) = [ ? . ,  ( k -  I )  .?', ( k - 2 )  . l J < ,  ( k -  l ) ,  It<, ( L - 2 ) .  
-$, (k- I)*-.$, (k-2)) . I =  1  . 2  

' T  q, ( k -  1) = I 
(k- I )  . 

( k -  I ) ,  a,2 (k - I ) .  i," (k- I ) .  

(k- 1 ) .  (?,? (k- 111 i =  1.2  



oy 
Bascd on the relations between the coefficients of the B, (9-l). we can 
reduce the number of the coefficients that should be estimated. The 
F, ( k )  are now givcn by equation (29) where 

f ? (k -  1) = [ y, ( k -  1) .y, (k-2) , A  uC, (k- I ) ,  
- ;, (k - 1) , -;, (k - 2)] i = 1 , 2  

: , l (k - l ) , t , 2 (k - l ) ]  i=1.2  
4: (.c- - 1) = [ (k - 1) . (k- 1) 7 i,o (k- 1) 1 

The A u c , ( & )  can be computed from the equation 
A uc, ( k )  = uc, ( k )  - uc, ( k -  I ) .  The next step is the on-line estimation of 
these parameters. 

4.2. Es t ima t ion  Schemes 
Many estimation schemes have been proposed for this type of problem 
by different researchers (141. Due to the time-varying nature of the 
estimated coefficients, a variation of the errended leasr squares (ELS) 
algorithm is used. It is called leosr-squares wirh exponcnrial daro 
weighring [ 141. This algorithm discards old data exponentially under 
the assumption that the most recent data contain more information. The 
parameter vector q; (k) is estimated on-line by the equations: 

P, ( k  - 2) f, (k - I )  fT(k - 1) P; (k - 2) 

I ,  (k - 1) + f 7 ( k -  I )  P; (k - 2) f; ( k-  I )  
] i =  1.2 (31) 

e, (k)=y,(k)- i , (k)  i = ~  . 2  (32) 

The scalar A, (X) = x, is the design variable which should bc sclectcd to 

be 0 < x, 2 1. In the examples, xi has been chosen to be 0.95. The 
next step in the implementation of our algorithm is the selection of the 
control law. 

- 

4.3. Selection of the Control Law 
The first adaptive controller that we propose is a modiiied version of 
the aduprive minimum iwriunce controller. The adaptive minimum 
variance controller is often called self-runing regulator [15] (STR). For 
this type of controller, the input is chosen so as to minimize the 
mean-square error between the output and the desired value. The 
corresponding cost function is: 

J ,  (k +d) = E (  b, ( k + d )  - y; (k +d)y IF;:] 

y: ( k +  I )  = fT(&) ;I, ( k )  i = 1.2 

(33) 
F o r d =  1. the input signal Aut, (k) is obtained by the equation: 

(34) 

The above equation IS generated by replacing ij (k) with yf (k) and k 
with k +  1 in (29). One important observation is that in our application 
y : ( k ) = O  for every instant of time. I1 can be easily shown that if  
y , ' ( k ) = O  for every instant of time. then j i ( k ) = O  for every instant of 
time. Thus. the coefficients of the C,(q-') can be removcd from the 
problem. T h ~ s  fact simplifies the algorithm and reduces the numbcr of 
parameters that should be estimated. Thus, in the 2-D visual tracking 
problem only six parmcters must be computcd ozch instant of timc. 
The general ARMAX formulation for the same problem requircc the 
on-line estunation of ten parameters. The minimum variance controller 
presents some serious problems. The first and most important is that the 
coefficients b,o can become zero or very small. This will result in large 
input signals or even unbounded ones. A second important problem is 
the possible saturation of the input signals. A large change in the values 
of the system parameters can create large input signals. A practical but 
pnrtial solution to the problem is to bound the input signals. Another 
problem of the minimum-variance controller is its bad performance 
under noisy measurements. Large oscillations appear due to the effort 
of the controller to compensate fast for large errors. Thus. the applica- 

tion of minimum variance control law for robotic visual tracking I S  not 
highly recommended. Sincc the robotic syslcm cannot track ohJcclT 
whose projections in the image plane move cxtrcmcly fiist, a smooth 
control performance is important in the case of rohotic vist~:iI tracking 
A smooth control pcrformnnce can be achieved by using a cost functioii 
that includes the input signal (STRWU). The oscillatioiis arc rcduccd 
in number and in magnitude and the overall pcrformancc is bcttcr. Thc 
major disadvantage of the STRWU control scheme is thc large stcady- 
state error. The cost function that includes the input signal is: 

( 3 5 )  J; ( k + d )  = E (  LY; ( k + 4  - y; ( k +  4 1 2  + p, u;, ( k )  IF; 1 
Ford= 1. the modified one-step-ahead predictor [ 141 is given by: 

= f;' T(k) q,'(k) + U<# ( k )  i = 1.2 (30)  
whcre q,'(k) is the vector that contains thc cocfficicrits of [lie 
polynomials: 

b jo ]q . -C j (q - l ) t  I=  1.2 
and f,'(k) is given by the following eqmtion: 

* T  
f, ( B =  [Y, ( 0 ,  y, ( k -  1) * uc, ( k -  I ) .  uc, ( k - 2 ) .  y; ( X  + 1 ) .  

y;(k).y;(X-l)] i = I  , 2  

Goodwin [ 141 has suggcclcd an adaptivc coiitrol schcnic for this typc o f  
problem. The proposcd algorithm USCS tlic followiiig control law: 

U<, (k) = - f;. T(k) ;I,,(k) i = I .2 

whcre 
(37) 

1 
(38) q,'(k) = q,' (X-  I )  +- P, (k- I )  f , ' (k- I )  c ,  ( A )  

," p, 
b,o + 7 

b#O 

r, (k-2)f,,(k- 1) f , 'T (k -  I )  r, ( k -  2 )  

1 + f , 'T (k -  1) r, ( k -  2) f,, ( X -  I )  

P, ( k -  1) = r, ( k- 2 )  - 

(79) - 

p, 
e; (4 =7; uCi (4 +Y, ( k )  -Y: ( k )  (40) 

The symbol b:; denotes the initial estimate of the coefricicnt / J , ~ .  The 
above algorithm minimizes the cost function (3.7) with a modified p, 
that we call pn': 

0,o 

P, bdl 
p'=- 

8 1,; 

Due to the fact that ,vt ( k )  = 0 V k > 0, thc thrce last cocfflcicnts of the 
q,'(k) need not be computed. Thus. eight parninetcrs should be cs- 
timated in total. The computational complexity is higher tliiin tlic STR 
control schcmc but the performancc is iinprovcd. The prohlcin with i l l i s  

approach is that i f  c r a t e s  a steady-statc error (SSE). To rcdiicc thc SSE. 
onc should introducc an intcgator in the systcm. Tlic Ixs t  controllcr 
(STRWDU) which is implcmentcd is desipncd to prcivitlc intcFr:ll 
action. This can bc ncconiplished by wcightinp the control sigri;il 

chmgc. This i q  in agrccmcnt with thc structural and  npcr:itiotiaI 
charactcristics of a robotic system. A robotic systcm cannot track 
objects that have large changes in their image projcctions during thc 
sampling interval T. In addition, there are some upper limits in the 
robotic tracking abiliry. The cost function that includes the control 
signal change is: 

Based on the relations between the coefficims of B , T ( q - l ) ,  we car1 
rewrite thc modified one-step-ahead predictor in (36)  as: 



= f,’ ‘ (L) q,’(k) + A u ~ ,  ( A )  I = I ,2 (42) 
where q,’(k) is the vector that contains the cocfficients of thc 
polynomials. 

and the new f,’ (k) is given by: 

f,’ T(k) = [ y; ( k )  , y ;  ( k  - 1) , AuCi ( k  - I )  ,Aut, ( k  - 2) , 
y: ( k +  I )  ,r: ( k )  ( k-  I)]  i =  1.2 

The new control law is: 

A uc, (k) = - f,‘ ‘ ( k )  G, ,(k)  i = I ,2  (43) 
The estimation scheme is almost thc same as the onc in equations 
(38)-(40). The only change is in equation (40) where the uc, ( k )  should 
be changed to A uc, (k). In total, eight parameters should be estimated 
on-line. This controller seems the most appropriate for the specdc 
control problem that we have to solve. 

5. Robot Control 
After the computation of itc, ( k )  signals with rcspcct to the camera framc 
R,. we transform them to the end-effector frame Re with the use of the 
transformation 7,. The tr,usfomed signals are fed to the robot con- 
troller. We experimented with a Cartesian PD scheme with gravity 
compensation The selection of the appropriate robot control method is 
essential to the success of our algorithms because small oscillations CNI 

create blurring in the acquired images. Blurring reduces the accuracy of 
the visual measurements. and as a result the system cannot accurately 
track the moving object. The mathematical model of the robot’s 
dynamics is: 

D (9) s + c ( 9 . 9 )  + g (4) = ‘c (44) 
where q is the vector of the joint variables of the robotic arm, D is the 
inertial acceleration related matrix, c is the nonlinear Coriolis and 
cenmfugal torque vector. g is the gravitational torque vector and z is the 
generalized torque vector. The model is nonlinear and coupled. This 
control scheme assumes that all velocities in the dynamics equations are 
zero. This implies that q =  J = c  (q , q )  =O. J (9) is the manipulator’s 
Jacobian. Thus, the actuator torque vector 7 is given by: 

where F is the generalized force vector, Axr = (Ax:, Ax: ) is the posi- 
tion and orientation error vcctor. and K and Kv are gain matrices. The 
subscript des denotes the desired quantities. The next Section describcs 
the experimental results. 
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6. Experiments 
A number of experiments were performed on the CMU D D A m  I I  
robotic system. A description of the hardw.are codiguration of the 
CMU DDArm 11 can he found in (13).  The camera is mounted on the 
end-effector. The focal length of the  camera is 7.Smm while the objccts 
are moving on a plane (average depth 2, = 680mm). The center of mass 
of eaich one of these objects moves across the line Y=0.74X+0.77 ( Y  
and X in meters). The real images are 510x492 and are quantized to 
256 gray levels. The objects used in the tracking examples are books, 
pencils. and generally. items with distinct features. The user, by using 
the mouse. proposes to the system some of the object’s features that he 
is interested in. Then. the system evaluates on-line the quality of the 
measurements. based on the confidence measures described in a pre- 
vious Section. Currently, four features are used and the size of the 
attached windows is 10x10. The experimental results are plotted in Fig. 

1-3 whcrc thc dotdashcd (rajcctories corrcspond to tlic 1r:ljcctorics nl 
the center of mass of the moving objccts. Thc Me:-P vcctor rcprcscnts 
thc position of the end-cffector with respect to the world frainc. For tlic 
STR conntrollcr, the covariance matrix P, ( k )  IS inilializcd lo bc I’,” = I ,  

and the initial value of the vector 4: (0) is (0) = [O.O. 0.0. -1 . O ] .  For 
both the STRWU and STRWDU controllers. the covariancc malrix 
P, (k) is initialized to be Pi,= I, and the initial value of the vcctor ql ( L )  
is 4‘ (0) = [-1.0,1.0, 1.0.1 .O]. The value of the scalar p, i s  0.2. Tlic 
experimental results lead to some interesting observations. The simple 
PD produces oscillations around the desired trajectory. Thc rcason why 
we do not use the computed torque scheme is that i t  requires the 
inversion of the Jacobian. Thus, the DDArm 11 can casily becomc 
unstable (whencver two of the joints are aligned). Thc ohscmcd 
oscillations are due to the fact that the robotic controllcr (PD wiih 

gravity compensation) does not take into considcratiori thc robot 
dynamics. The results arc presented in Fig. 1-3. The knowlcdgc of thc 
dcpth Z, is assumed to bc inaccurale. Thc adnptivc minimum varimicc 
controller (STR) is implemented with bounded control signal change 
Au,(k).  This controller. as depictcd in Fig. I ,  has the worse pcrfor- 
mance. Thc reason is that the large variations in the control signal  
create blurring in the images, and thus. large errors in the visu:iI 
measurements. The STRWU and STRWDU controllers hnvc almosi 
comparable performances. The STRWU controllcr prescnts n stcady- 
state error while the STRWDU regulator seems to hnvc thc sinootlicst 
performance. 

7. Conclusions 
In this paper, the robotic visual tracking (hand-eye configuration) 
problem is addressed. We claim that we should look to thc problem by 
combining vision .and control techniques togelher. The potcniial or thc 
proposed approach has been demonsuated by presenting expcrimental 
results from the application of our framework to the problem of robotic 
visual tricking of arbitrary 3-D objects traveling at unknown vclccitic~ 
in a 2-D space. We first presented a mathematical formulation of thc 
problem. This model is a major contribution of this work and is bnscd 
on measurements of the vector of discrete displaccments wtuch arc 
obtained by the sum-of-squared differences (SSD) optical flow T h i s  
model clan be extended to 3-D by including in the calculnlions a I;irFcr 
number of feature points. Other contributions of this work are n sophis- 
ticated measurement scheme using multiple windows and cfficienc 
confidence measures that improve the accuracy of the visual measure- 
ments. The next step was to show the effectiveness of thc idea of 
combination of control with vision as a solution to the robotic visual 
tracking problem. Adaptive control schemes were introduced for thc 
case of inaccurate howledge of some of the system’s parameters. 
Three different adaptive controllers were implemcnted on our cx- 
perimental testbed, h e  DDArm I1 system. Experimental results show 
lhat the methods are quite accurate, robust and promising. One impor- 
tant observation is that all the experiments were done in real-timc. 
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Figtire I :  STR adnpiivc controller in conjuncilon with a cnrtcylati PD 
grnvtry cornpensnilon (Expcrlnlcn- 
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Figure 2: STRWU adaptive controller in conjunction with a cartcclan 
PD robotic controller with gravity cornpensailon (Ex- 
perimental). 
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