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A B S T R A C T

Given the increasing share of variable renewable energy resources (VREs), power system operations need to
account for the associated uncertainty with a fine resolution. This paper formulates an adaptive robust optimal
power flow, which secures the hourly schedule against uncertain intrahour power injections. The uncertainty
is characterized by spatially correlated polytopic sets. Second-order cone programming relaxation is employed
to address the nonconvexity of power flow constraints. A sequential convex programming (SCP) procedure is
developed to close the relaxation gaps. Due to convexity, the vertices fully represent the uncertainty sets, which
alleviates the computational complexity stemming from full recourse. The effectiveness of the proposed solution
framework is verified on 14-, 118-, and 588-bus systems with 80% VRE penetration and various uncertainty
sizes. The SCP procedure recovers high-quality AC-feasible solutions in 3–17 iterations within 0.1%–41.4%
of the planning horizon time span, which makes it suitable for practical use. The robust optimization can
prevent load shedding and reduce operational costs by 2.0%–13.6%, while incurring 2.5%–5.0% reduction in
VRE utilization.
1. Introduction

The share of renewables in the global and in the European electricity
supply is projected to reach 43% and 60% by 2030, respectively,
mainly driven by new solar and wind installations [1]. The intrahour
volatility of these variable renewable energy resources (VREs) strains
the flexible generation and can pose power reserve problems [2].
In addition, their uncertainty challenges the secure and cost-effective
operations of power systems relying on conventional deterministic
approaches [3,4]. Therefore, probabilistic models with high temporal
resolution are required for reliable flexibility assessment and adequate
reserve procurement [4,5].

Several optimization methods account for uncertainty in power
system operations [6]. Stochastic optimization entails generating repre-
sentative scenarios and minimizing the expected cost. The efficiency
and solution quality, however, are sensitive to the scenario selection
schemes [7]. Stochastic optimization is applied to various power sys-
tem problems, e.g., unit commitment [7,8] and optimal power flow
(OPF) [9,10]. Chance-constrained optimization determines the solution
such that the constraints are satisfied with a specified probability.
To overcome their computational complexity for AC OPF, the chance
constraints are often approximated by tightened deterministic con-
straints [11–13]. Both stochastic and chance-constrained optimization
requires specifying the probability distribution of the uncertainty,
which is often unavailable. Distributionally robust optimization relaxes
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this prerequisite and assumes an ambiguity set of probability distri-
butions. Distributionally robust OPF usually relies on linear approx-
imations of power flow equations to achieve tractability [14–16].
In contrast, robust optimization assumes no prior knowledge of the
uncertainty distribution. Robust optimization has been used to hedge
the operations against uncertain power injections from VREs in unit
commitment [4,17,18], single-period OPF [19–23], and multiperiod
OPF [24,25].

The optimization models should differentiate between the deci-
sions to be made before the uncertainty is revealed (e.g., day-ahead
generation scheduling, reserve procurement) and the adaptable de-
cisions after the uncertainty is revealed (e.g., real-time redispatch,
reserve activation). Given the continuous nature of power injection
uncertainty, this differentiation results in an infinite-dimensional two-
stage optimization problem. To alleviate the associated computational
complexity, the infinite recourse space is often restricted to affine
functions of the uncertain variables [11,12,26], which may sacrifice
economic efficiency.

The other computational complexity arises from the nonconvexity
of AC power flow equations. Hence, these equations are usually approx-
imated using the DC model [4,8,16,21] and second-order cone (SOCP)
and semidefinite (SDP) programming relaxations [12,23,25,26]. The
DC model is computationally efficient but neglects power losses and
reactive power. The SDP relaxation, on the other hand, offers more
vailable online 26 December 2022
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accurate solutions but can hardly scale to large networks [25]. The
SOCP relaxation offers a compromise between computational efficiency
and accuracy. Yet, the SOCP solutions may entail significant opti-
mality gaps [27] and are often infeasible to the original problem,
especially when the cost function is not strictly increasing in power
injections [28], e.g., due to the zero marginal cost of renewable units.
Furthermore, the quality of the SOCP relaxation degrades for large
uncertainty sets [25]. In contrast to convex relaxation, convex restric-
tion ensures AC feasibility, but the inner approximation of the feasible
region makes the solutions prone to suboptimality, especially if the
recourse decisions are restricted to affine policies as in [19,22].

The treatment of the infinite dimensionality resulting from full
recourse varies according to the power flow formulation. On the one
hand, the full-recourse OPF literature [8,17,18,20,23,25] usually relies
on convex approximations of AC power flow equations to capture
the infinite recourse space with finite-dimensional models. On the
other hand, the full nonconvex AC OPF literature relies on restricting
the uncertainty characterization. For instance, the probabilistic AC
OPF models in [9,10,24] secure the operation decisions against a
finite number of scenarios, providing no robustness guarantees against
other possible scenarios. The chance-constrained AC OPF in [11] lin-
earizes the impact of uncertain power injections, which is valid if the
uncertainty is small. Therefore, there is a gap in implementing full
recourse in response to general continuous uncertainty, while ensuring
AC feasibility.

This paper addresses the computational complexity of adaptive
robust OPF while ensuring AC feasibility, without resorting to affine
policies. A two-stage robust optimization is formulated to solve mul-
tihour AC OPF under uncertain intrahour power injections. The first
stage is an economic dispatch, and the second stage determines the
subhourly redispatch in response to the uncertainty. The optimization
secures the schedule against the worst case; yet, it avoids overconser-
vatism by minimizing the base-case costs [4]. The uncertain power
injections from VREs and loads are characterized by polytopic un-
certainty sets that capture spatial correlations. This allows a skilled
yet efficient characterization of high-dimensional uncertainty [29].
Principal component analysis (PCA) is used to enhance the numerical
stability of the uncertainty characterization and reduce the computa-
tional needs [30]. A column-and-constraint generation (C&CG) [31]
procedure is used to enhance the computational tractability. The de-
composition greatly benefits from parallel computation and is further
expedited by warm starting the set of binding subproblems.

The major contributions are as follows:

1. The proposed adaptive robust OPF employs full recourse for an
effective activation of ramping reserves in response to uncer-
tainty realizations. The resulting infinite dimensionality is ad-
dressed using SOCP relaxation, which allows to account for the
uncertainty sets by enumerating the vertices [32]. The proposed
model goes beyond the state-of-the-art SOCP-based robust OPF
models with full recourse, namely, (a) in comparison to [25], it
retrieves base-case generation setpoints, which the system oper-
ator requires in real-world settings, for instance as the dispatch
settled in the day-ahead market, and, it extends the uncertainty
characterization and the optimization horizon of [23].

2. To recover AC feasibility, a sequential convex programming
(SCP) procedure is developed. The SCP procedure is shown to
reliably retrieve near-global AC-feasible solutions. In contrast
to sequential linear programming [33], the SCP procedure re-
tains convex nonlinear constraints and achieves higher solution
stability [34]. Also, this paper improves on previous works em-
ploying SOCP relaxation and SCP in the context of robust power
system optimizations [35,36], as they are restricted to radial
networks. The algorithmic order in [35] guarantees robustness
only against the uncertainty boundaries, and [36] ensures AC
2

feasibility only for the worst uncertainty realization. Indeed, the |
proposed methodology extends robustness guarantees to more
general uncertainty characterizations compared to the full AC
OPF literature [9–11,24].

The rest of the paper is organized as follows. Section 2 formulates
the multiperiod AC OPF model and the extension to an adaptive robust
counterpart. Section 3 proposes the solution methods, i.e., a C&CG
procedure for tractability and a SCP procedure for AC feasibility. Sec-
tion 4 presents the results and discusses the computational and practical
performance of the solution methods. Section 5 concludes the paper.

2. Mathematical models

2.1. Augmented multiperiod SOCP AC OPF

A nonconvex formulation of the deterministic AC OPF and the SOCP
relaxation is introduced; then, the convexified problem is augmented
with linearized constraints to tighten the relaxation gaps.

For notation simplicity but with no loss of generality, one generator,
one load, and one shunt element are assumed to be located at each bus,
and a maximum of one branch connects two buses. The power network
can be represented as a simple directed graph with || vertices and ||
edges.

ℜ(⋅), ℑ(⋅), (⋅)∗, and arg(⋅) denote the real value, the imaginary value,
he conjugate, and the angle of complex numbers, respectively, and
𝑖𝑗𝑡 = 𝑣𝑖𝑡𝑣∗𝑗𝑡 and 𝓁𝑖𝑗𝑡 = |𝑖𝑖𝑗𝑡|

2 are defined as lifted voltage and current
ariables.

The multiperiod AC OPF seeks to minimize generation cost:

in 𝑓 = min
∑

𝑡∈

∑

𝑖∈
𝐶2𝑖ℜ

(

𝑠𝑔𝑖𝑡
)2 + 𝐶1𝑖ℜ

(

𝑠𝑔𝑖𝑡
)

+ 𝐶0𝑖. (1)

Voltage magnitude limits (2), generator capability curve (3), avail-
ble power from generators (4), generator ramping limits (5), and nodal
ower balance (6) hold ∀𝑖 ∈ , 𝑡 ∈  :

2
𝑖 ≤ 𝑤𝑖𝑖𝑡 ≤ 𝑉

2
𝑖 (2)

𝐴𝑖𝑘ℜ
(

𝑠𝑔𝑖𝑡
)

+ 𝐵𝑖𝑘ℑ
(

𝑠𝑔𝑖𝑡
)

≤ 1 ∀𝑘 (3)

ℜ
(

𝑠𝑔𝑖𝑡
)

≤ 𝑝𝑔𝑖𝑡 (4)

− 𝑅𝑑
𝑖 ≤ ℜ

(

𝑠𝑔𝑖𝑡 − 𝑠𝑔𝑖(𝑡−1)
)

≤ 𝑅𝑢
𝑖 (5)

𝑠𝑔𝑖𝑡 − 𝑠𝑑𝑖𝑡 = 𝑌 ∗
𝑖 𝑤𝑖𝑖𝑡 +

∑

(𝑖,𝑗)∈
𝑠𝑖𝑗𝑡 +

∑

(𝑗,𝑖)∈
𝑠𝑖𝑗𝑡, (6)

here 𝐴𝑖𝑘 and 𝐵𝑖𝑘 capture the generators’ ranges of active power,
eactive power, and power factor; 𝑝𝑔𝑖𝑡 models the time-dependent active

power available from VREs; 𝑠𝑔𝑖𝑡, 𝑠
𝑑
𝑖𝑡, 𝑌

∗
𝑖 𝑤𝑖𝑖𝑡, and 𝑠𝑖𝑗𝑡 are power injections

from the generators, loads, shunt elements, and branches, respectively.
Voltage angle difference limits (7), flow limits (8), and power flow

equations (9)–(12) hold ∀(𝑖, 𝑗) ∈ , 𝑡 ∈  :

𝜋∕2 < 𝜃𝑖𝑗 ≤ 𝜃𝑖𝑗𝑡 ≤ 𝜃𝑖𝑗 < 𝜋∕2 (7)

|

|

|

𝑌𝑖𝑗
|

|

|

2 (
𝑤𝑖𝑖𝑡 +𝑤𝑗𝑗𝑡 − 2ℜ

(

𝑤𝑖𝑗𝑡
))

≤ 𝐼
2
𝑖𝑗 (8a)

|

|

|

𝑠𝑖𝑗𝑡
|

|

|

2
≤ 𝑆

2
𝑖𝑗 ,

|

|

|

𝑠𝑗𝑖𝑡
|

|

|

2
≤ 𝑆

2
𝑖𝑗 (8b)

𝑠𝑖𝑗𝑡 = 𝑌 ∗
𝑖𝑗𝑤𝑖𝑖𝑡 − 𝑌 ∗

𝑖𝑗𝑤𝑖𝑗𝑡 (9a)

𝑠𝑗𝑖𝑡 = 𝑌 ∗
𝑖𝑗𝑤𝑗𝑗𝑡 − 𝑌 ∗

𝑖𝑗𝑤
∗
𝑖𝑗𝑡 (9b)

𝑠𝑖𝑗𝑡 + 𝑠𝑗𝑖𝑡 = 𝑍𝑖𝑗𝓁𝑖𝑗𝑡 (10a)

𝑤𝑖𝑖𝑡 −𝑤𝑗𝑗𝑡 = 2ℜ
(

𝑍𝑖𝑗𝑠
∗
𝑖𝑗𝑡

)

− |

|

|

𝑍𝑖𝑗
|

|

|

2
𝓁𝑖𝑗 (10b)

𝑤𝑖𝑗𝑡
|

|

|

2
= 𝑤𝑖𝑖𝑡𝑤𝑗𝑗𝑡 (11a)

𝑠𝑖𝑗𝑡
|

|

|

2
= 𝑤𝑖𝑖𝑡𝓁𝑖𝑗𝑡 (11b)
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𝜃𝑖𝑗𝑡 = arg
(

𝑤𝑖𝑗𝑡
)

(12a)

𝜃𝑖𝑗𝑡 = arg
(

𝑤𝑖𝑖𝑡 −𝑍∗
𝑖𝑗𝑠𝑖𝑗𝑡

)

. (12b)

where 𝐼 𝑖𝑗 and 𝑆𝑖𝑗𝑡 denote branch current and power limits, respec-
ively, and 𝑍𝑖𝑗 = 𝑌 −1

𝑖𝑗 is the branch impedance. The explanation and
xtensions of (8)–(12) to the full transmission branch model are given
n [37].

Constraints (11) and (12) are nonconvex. To mitigate the corre-
ponding complexity, the angle relations (12) are dropped, and the
uadratic constraints (11) are relaxed to second-order cones [37]:

2𝑤𝑖𝑗𝑡
𝑤𝑖𝑖𝑡 −𝑤𝑗𝑗𝑡

‖

‖

‖

‖

‖ 2
≤ 𝑤𝑖𝑖𝑡 +𝑤𝑗𝑗𝑡 (13a)

‖

‖

‖

‖

‖

2𝑠𝑖𝑗𝑡
𝑤𝑖𝑖𝑡 − 𝓁𝑖𝑗𝑡

‖

‖

‖

‖

‖ 2
≤ 𝑤𝑖𝑖𝑡 + 𝓁𝑖𝑗𝑡 (13b)

As a result, the extended solution space also includes solutions that
re infeasible to the original nonconvex problem. The distance of a
olution from feasibility is quantified by relaxation gaps:

𝑞 𝑖𝑗𝑡 = 𝑤𝑖𝑖𝑡𝑤𝑗𝑗𝑡 −
|

|

|

𝑤𝑖𝑗𝑡
|

|

|

2
(14a)

𝑔𝑞 𝑖𝑗𝑡 = 𝑤𝑖𝑖𝑡𝓁𝑖𝑗𝑡 −
|

|

|

𝑠𝑖𝑗𝑡
|

|

|

2
(14b)

𝑔𝜃 𝑖𝑗𝑡 =
|

|

|

𝜃𝑖𝑗𝑡 − arg
(

𝑤𝑖𝑗𝑡
)

|

|

|

(15a)

𝑔𝜃 𝑖𝑗𝑡 =
|

|

|

𝜃𝑖𝑗𝑡 − arg
(

𝑤𝑖𝑖𝑡 −𝑍𝑖𝑗𝑠𝑖𝑗𝑡
)

|

|

|

(15b)

To tighten the relaxation gaps, the relaxed problem is augmented
by linearizing (11) and (12) at an initial point �̃�:

�̃�𝑖𝑖𝑡𝑤𝑗𝑗𝑡 + �̃�𝑗𝑗𝑡𝑤𝑖𝑖𝑡 − 2ℜ(�̃�𝑖𝑗𝑡𝑤
∗
𝑖𝑗𝑡)

−�̃�𝑖𝑖𝑡�̃�𝑗𝑗𝑡 + |�̃�𝑖𝑗𝑡|
2 ≤ 𝛾𝑞 𝑖𝑗𝑡

(16a)

�̃�𝑖𝑖𝑡𝓁𝑗𝑗𝑡 + 𝓁𝑗𝑗𝑡𝑤𝑖𝑖𝑡 − 2ℜ(�̃�𝑖𝑗𝑡𝑠∗𝑖𝑗𝑡)

−�̃�𝑖𝑖𝑡𝓁𝑗𝑗𝑡 + |�̃�𝑖𝑗𝑡|
2 ≤ 𝛾𝑞 𝑖𝑗𝑡

(16b)

|

|

|

|

|

|

𝜃𝑖𝑗𝑡 − arg
(

�̃�𝑖𝑗𝑡
)

−
ℑ
(

�̃�∗
𝑖𝑗𝑡𝑤𝑖𝑗𝑡

)

|

|

|

�̃�𝑖𝑗𝑡
|

|

|

2

|

|

|

|

|

|

≤ 𝛾𝜃 𝑖𝑗𝑡 (17a)

𝜃𝑖𝑗𝑡 − arg
(

�̃�𝑖𝑖𝑡 −𝑍∗
𝑖𝑗 �̃�𝑖𝑗𝑡

)

− �̃�𝑖𝑖𝑡ℑ
(

𝑍𝑖𝑗𝑠∗𝑖𝑗𝑡
)

+||
|

𝑍𝑖𝑗𝑡
|

|

|

2
ℑ
(

�̃�𝑖𝑗𝑡𝑠∗𝑖𝑗𝑡
)

+ℑ
(

𝑍𝑖𝑗 �̃�∗𝑖𝑗𝑡
)

𝑤𝑖𝑖𝑡
|

|

|

≤ 𝛾𝜃 𝑖𝑗𝑡
(17b)

𝛾𝑞 𝑖𝑗𝑡 ≥ 0 𝛾𝜃 𝑖𝑗𝑡 ≥ 0, (18)

where the slack variables 𝛾𝑞 𝑖𝑗𝑡 and 𝛾𝜃 𝑖𝑗𝑡 approximate the relaxation
gaps.

In (11)–(17), (a) and (b) present alternative formulations. Thus,
the same symbols are used for alternative relaxation gaps and slack
variables for notation simplicity without indicating equality.

Because the slack variables have no upper bound, the feasible region
is not restricted by (16) and (17) . A penalty function, comprised of the
weighted summation of the slack variables, is included in the objective
function:

𝑝 =
∑

𝑡∈

∑

(𝑖,𝑗)∈

(

𝜏𝑞 𝑖𝑗𝑡𝛾𝑞 𝑖𝑗𝑡 + 𝜏𝜃 𝑖𝑗𝑡𝛾𝜃 𝑖𝑗𝑡
)

(19)

The penalty coefficients 𝜏𝑞 𝑖𝑗𝑡 and 𝜏𝜃 𝑖𝑗𝑡 are parameters set by the SCP
procedure, explained in Section 3.2.

The resulting optimization problem is summarized in Table 1 for
bus injection (BIM) and branch flow model (BFM) representations.

2.2. Power injection uncertainty sets

Due to their inherent uncertainty, the available power from VREs
(𝑝𝑔𝑖𝑡 in (4)) and load power demand (𝑠𝑑𝑖𝑡 in (6)) deviate from the hourly
oint forecast. To characterize the intrahour uncertainty, the authors
3

n

Table 1
Representations of augmented multiperiod SOCP AC OPF: variables (V), objective
function (OF), and constraints (C).

BIM BFM Compact form

V 𝑠𝑔𝑖𝑡, 𝑤𝑖𝑖𝑡, 𝑤𝑖𝑗𝑡,
𝜃𝑖𝑗𝑡, 𝛾𝑞 𝑖𝑗𝑡, 𝛾𝜃 𝑖𝑗𝑡

𝑠𝑔𝑖𝑡, 𝑤𝑖𝑖𝑡, 𝑠𝑖𝑗𝑡, 𝑠𝑗𝑖𝑡,
𝓁𝑖𝑗𝑡, 𝜃𝑖𝑗𝑡, 𝛾𝑞 𝑖𝑗𝑡, 𝛾𝜃 𝑖𝑗𝑡

𝒙

OF (1) + (19) (1) + (19) 𝑓 (𝒙) + 𝑝(𝒙)

C (2)–(7), (8a), (9)
(13a), (16a), (17a), (18)

(2)–(7), (8b), (10)
(13b), (16b), (17b), (18)

𝑔(𝒙) ≤ 0

denote the uncertain variables at hour 𝑡 by 𝒖𝑡 ∈ R𝑑𝑢 and their estimated
mean and covariance by �̂�𝑡 and 𝜮𝑡, respectively. If some variables are
tightly correlated, or if any variable has minute variance, the covari-
ance matrix is ill-conditioned for inversion. Hence, the uncertainty set
proposed by Golestaneh et al. [29] is adapted using PCA [38]:

𝜮𝑡 = 𝑹𝑡𝜦𝑡𝑹𝑡
−1, (20)

where 𝜦𝑡 is a diagonal matrix of eigenvalues (𝜆𝑘𝑡) and 𝑹𝑡 is a matrix
hose columns are the right eigenvectors of 𝜮𝑡. Because 𝜮𝑡 is sym-
etric, 𝑹𝑡 is orthonormal, i.e., 𝑹−1

𝑡 = 𝑹𝑇
𝑡 . The smallest eigenvalue

corresponds to the direction along which the variance is minimal. We
dismiss eigenvalues that are smaller than a fraction 𝛼 of the maximum
eigenvalue max(𝜆𝑘𝑡) and the associated eigenvectors to obtain 𝜦′

𝑡 ∈
R𝑑𝑣𝑡×𝑑𝑣𝑡 and 𝑹′

𝑡 ∈ R𝑑𝑢×𝑑𝑣𝑡 .
The principal components of 𝒖𝑡 are derived as 𝒗𝑡 = 𝑹′

𝑡
𝑇 (

𝒖𝑡 − �̂�𝑡
)

,
hose covariance matrix is 𝜦′

𝑡. Hence, the uncertainty set is represented
s

𝑡 = {𝒖𝑡 ∈ R𝑑𝑢 ∶ 𝒖𝑡 = 𝑹′
𝑡𝒗𝑡 + �̂�𝑡,

‖

‖

‖

‖

𝜦′
𝑡
− 1

2 𝒗𝑡
‖

‖

‖

‖

≤ 𝛤𝑡}, (21)

where ‖⋅‖ is a 1-norm or ∞-norm for a polytopic set, which is more
efficient than other sets, such as ellipsoidal [29]; 𝛤𝑡 is the scale param-
eter. If the probability distribution of 𝒖𝑡 is known, 𝛤𝑡 can be selected
such that the realizations of 𝒖𝑡 lie inside 𝑡 with a certain probability.

In addition to solving the numerical issues in covariance matrix in-
version, the proposed methodology enhances computational efficiency
by reducing the uncertainty dimension. Moreover, the proposed un-
certainty characterization allows straightforward derivation of the ver-
tices’ coordinates; in the case of 1-norm (or ∞-norm), the 2𝑑𝑣𝑡 (or
2𝑑𝑣𝑡 ) vertices are affine images of 𝑑𝑣𝑡-dimensional points in the form

of [0,… ,±𝜆
1
2
𝑘,𝑡,… , 0]𝑇 (or [±𝜆

1
2
1,𝑡,… ,±𝜆

1
2
𝑑𝑣𝑡 ,𝑡

]𝑇 ).

2.3. Adaptive robust AC OPF

This section formulates a two-stage robust optimization problem, in
which the first-stage decisions, denoted as 𝒙𝑏, refer to the base-case
operation plan, and the second-stage decisions, denoted as 𝒙𝒖𝑡 , refer
to the recourse actions. The first stage optimizes the hourly dispatch
schedule, while the second stage determines the subhourly redispatch
according to the uncertainty realization. Indeed, the system operator is
given full-recourse opportunity to adapt the dispatch schedule in real
time in response to the deviation of the uncertain power injections from
the point forecast. Unlike affine recourse policy, which distributes the
forecast error among conventional generators according to predefined
participation factors, the full recourse reoptimizes the dispatch sched-
ule and ensures load balancing by including the nodal power balance
(6) also in second-stage constraints. Respecting the electricity markets,
the first stage captures energy and reserve procurement, and the second
stage represents reserve activation.

The first- and second-stage decisions are linked via

− 𝑅−
𝑖 ≤ ℜ

(

𝑠𝑔𝑖
𝒖𝑡 − 𝑠𝑔𝑖𝑡

𝑏
)

≤ 𝑅+
𝑖 ∀𝒖𝑡, (22)

hich imposes the subhourly ramping reserve limits and will be de-
oted as ℎ(.) henceforth. We also represent the penalty function (19)
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and the constraint function (Table 1) of both stages with 𝑝(.) and 𝑔(.),
espectively. The adaptive robust optimization is formulated as

in
𝒙𝑏

[𝑓 (𝒙𝑏) + 𝑝(𝒙𝑏) + max
𝒖𝑡

min
𝒙𝒖𝑡

𝑝(𝒙𝒖𝑡 )] (23a)

s.t. 𝑔(𝒙𝑏) ≤ 0 (23b)

ℎ(𝒙𝑏,𝒙𝒖𝑡 ) ≤ 0 ∀𝑡 (23c)

𝑔(𝒙𝒖𝑡 ) ≤ 0 ∀𝑡 (23d)

𝒖𝑡 ∈ 𝑡 ∀𝑡, (23e)

hich certifies robustness against every realization within the un-
ertainty sets 𝑡,∀𝑡. Yet, (23) in not overconservative because the
bjective function does not include the worst-case operation costs,
amely max𝒖𝑡 min𝒙𝒖𝑡 𝑓 (𝒙𝒖𝑡 ).

. Solution methods

Section 3.1 introduces a decomposition procedure for enhancing
omputational tractability, Section 3.2 presents a SCP procedure for
ecovering AC feasibility, Section 3.3 describes the overall solution
ramework to the adaptive robust OPF, and Section 3.4 discusses the
heoretical limitations of the proposed solution framework.

.1. Column-and-constraint generation

Due to the uncountability of 𝑡, the problem (23) has infinitely
many decision variables 𝒙𝒖𝑡 and infinitely many constraints of the form
(23c) and (23d). Because 𝑡 is a polytopic set, and constraints (23c)
and (23d) are convex with respect to 𝒙𝒖𝑡 , the penalty function 𝑝(𝒙𝒖𝑡 )
chieves its maximum at a vertex of 𝑡 [32]. This property is used to
ecompose (23) to a master problem (24) and || subproblems (25),
here  is the vertex set of 𝑡 for all 𝑡. Further, if VRE power can
e flexibly curtailed, an exact Pareto reduction technique can reduce 

by excluding dominated vertices, corresponding to scenarios with more
abundant VRE power.

The master problem includes the first-stage decision variables (𝒙𝑏)
and a subset of the second-stage decision variables (𝒙𝑣, 𝒗 ∈ 𝑠 ⊆ ),
which pertain to the binding subproblems identified so far:

min 𝑓 (𝒙𝑏) + 𝑝(𝒙𝑏) + 𝜂 (24a)

s.t. 𝑔(𝒙𝑏) ≤ 0 (24b)

𝜂 ≥ 0 (24c)

ℎ(𝒙𝑏,𝒙𝑣) ≤ 0 ∀𝒗 ∈ 𝑠 (24d)

𝜂 ≥ 𝑝(𝒙𝑣) ∀𝒗 ∈ 𝑠 (24e)

𝑔(𝒙𝑣) ≤ 0 ∀𝒗 ∈ 𝑠 (24f)

After solving the master problem, the first-stage decision variables
are fixed, and the feasibility of each remaining subproblem 𝒗 ∈ ∖𝑠

is checked by solving

min 𝑝(𝒙𝑣) (25a)

s.t. ℎ(𝒙𝑏∗,𝒙𝑣) ≤ 0 (25b)

𝑔(𝒙𝑣) ≤ 0. (25c)

The master problem and the subproblems are incorporated in an
iterative C&CG procedure, expressed in Algorithm 1. Each iteration
augments the master problem with a binding subproblem, in which the
feasible region is empty or the relaxation penalty is larger than those of
previous binding subproblems. Although the iterations of Algorithm 1
are sequential, the subproblems within each iteration are independently
solvable, enabling high gains from parallel computation.

Ref. [25] also uses C&CG to solve adaptive robust AC OPF, except
that the worst-case realization of the uncertainty is determined using
4

an iterative procedure. The proposed methodology, on the other hand,
Algorithm 1: C&CG Procedure

1. Initialize 𝑠.
2. Solve the master problem (24) to obtain 𝒙𝑏∗ and 𝜂∗.
3. Given the master problem solution, solve subproblems (25) for

𝒗 ∈ ∖𝑠.
4. If 𝑝(𝒙𝑣) ≤ 𝜂∗ for all 𝒗 ∈ ∖𝑠, terminate; otherwise, proceed to

step 5.
5. Set 𝑠 = 𝑠 ∪ {argmax𝒗∈∖𝑠 𝑝(𝒙𝑣)†}, and go to step 2.

† The objective value of an infeasible subproblem is +∞.

Algorithm 2: SCP Procedure

1. Initialize 𝜖𝑞∕𝜃† , 𝜖𝑓 , 𝑐𝑞∕𝜃 , 𝜏𝑞∕𝜃 , 𝜇, 𝜇, and 𝑖𝑡𝑒𝑟 = 1.

2. If 𝑖𝑡𝑒𝑟 = 1, 𝜏𝑏∕𝑣
‡

𝑞∕𝜃 𝑖𝑗𝑡 = 0.
If 𝑖𝑡𝑒𝑟 = 2, 𝜏𝑏∕𝑣𝑞∕𝜃 𝑖𝑗𝑡 = 𝑐𝑞∕𝜃𝑓

(

𝒙𝑏1
)

.

If 𝑖𝑡𝑒𝑟 ≥ 3, 𝜇𝑏∕𝑣
𝑞∕𝜃 𝑖𝑗𝑡 = min

(

𝜇,max
(

𝜇, 𝑔𝑏∕𝑣𝑞∕𝜃 𝑖𝑗𝑡∕𝜖𝑞∕𝜃
))

,

𝜏𝑏∕𝑣𝑞∕𝜃 𝑖𝑗𝑡 = min
(

𝜏𝑞∕𝜃 , 𝜇
𝑏∕𝑣
𝑞∕𝜃 𝑖𝑗𝑡𝜏

𝑏∕𝑣
𝑞∕𝜃 𝑖𝑗𝑡

)

.

3. Solve (23) to obtain 𝒙𝑏∕𝑣𝑖𝑡𝑒𝑟.
4. If max

(

𝑔𝑏∕𝑣𝑞 𝑖𝑗𝑡

)

≤ 𝜖𝑞 and max
(

𝑔𝑏∕𝑣𝜃 𝑖𝑗𝑡

)

≤ 𝜖𝜃 , proceed to step 5;
otherwise, jump to step 6.

5. If 𝑖𝑡𝑒𝑟 = 1 or |

|

|

𝑓
(

𝒙𝑏𝑖𝑡𝑒𝑟
)

− 𝑓
(

𝒙𝑏𝑖𝑡𝑒𝑟−1
)

|

|

|

≤ 𝜖𝑓 .𝑓
(

𝒙𝑏𝑖𝑡𝑒𝑟−1
)

, terminate;
otherwise, proceed to step 6.

6. Update the linearization points, i.e., �̃�𝑏∕𝑣 = 𝒙𝑏∕𝑣𝑖𝑡𝑒𝑟.
7. Set 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1 and go to step 2.

† 𝑞∕𝜃 denotes parameters pertaining to quadratic and angle constraints.
‡ 𝑏∕𝑣 denotes first- and second-stage variables and parameters.

solves the subproblems in parallel and has the flexibility of augmenting
the master problem with multiple subproblems at a time. Other primal
decompositions (e.g., Benders decomposition and constraint genera-
tion) are also applicable when the recourse decision variables are
restricted to affine functions of the uncertain variables [39,40]. While
primal decompositions rely on fixing complicating variables 𝒙𝑏, dual
decompositions [41,42] could be used to separate the subproblems by
relaxing complicating constraints (24d). The number of complicating
constraints is proportional to ||, which renders dual decompositions
unsuitable for large uncertainty dimensions.

3.2. Sequential convex programming

Although (23) penalizes the linearized relaxation gaps, the relax-
ation tightness is only preserved with a suitable choice of the lineariza-
tion point and of penalty coefficients. SCP systematically updates the
linearizations and the coefficients until the relaxation gaps are within
tolerance and the objective value converges in successive iterations.
The authors adapt the SCP procedure proposed in [37] and inspired
by [34], which has proven effective in retrieving near-global solutions
to power flow optimizations. The procedure is generalized to a two-
stage multiperiod optimization and is detailed in Algorithm 2. The first
iteration solves (23) with penalty coefficients set to zero. Therefore,
the solution gives a lower bound on the objective value of the full AC
problem, and if the relaxation gaps are tight, the solution is globally op-
timal; otherwise, the algorithm augments the objective function with a
linearization of the relaxation gaps and resolves (23). The linearization
and the solution steps are repeated until the relaxation gaps are within
tolerance and the objective value converges in successive iterations.
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Fig. 1. Flowchart of the overall solution framework.

.3. Overall solution framework

The C&CG procedure is integrated within the SCP algorithmic loop
or solving (23) (Step 3 of Algorithm 2) as depicted in Fig. 1. Therefore,
he nonconvexity of the power flow equations is abstracted from the
nner loop (Algorithm 1) and treated in the outer loop (Algorithm 2).
uch an approach allows the C&CG procedure to guarantee robustness
gainst the entire uncertainty sets by enumerating the finite number
f vertices, while the SCP procedures ensures the relaxation gaps are
ight in the master problem and the subproblems. Hence, the proposed
ethodology transcends the state of the art by certifying robustness

nd AC feasibility simultaneously. Updating the linearization points in
lgorithm 2 does not affect the feasible region of individual subprob-

ems. As a result, the set of binding subproblems can only change due to
ifferent penalty values over the iterations of Algorithm 2. Hence, the
omputational efficiency is enhanced by warm starting, namely, the set
𝑠 in Algorithm 1 is initialized to ∅ in the first iteration of Algorithm

2; in the next iterations, the set is initialized to the latest 𝑠.

3.4. Theoretical limitations

1. The convergence of Algorithm 2 to a feasible solution is not
theoretically guaranteed. Indeed, the NP-hardness of AC fea-
sibility precludes such a guarantee for any polynomial-time
solution algorithm [43,44]. Nevertheless, computational exper-
iments demonstrate consistent convergence of Algorithm 2 to
feasible solutions within 3–17 iterations.

2. The proposed solution framework ensures AC feasibility for un-
certainty realizations corresponding to the point forecast and the
vertices of the uncertainty sets. Yet, AC feasibility is not guaran-
teed for the interior points of the uncertainty sets. It remains a
challenge to theoretically ensure AC feasibility for uncountable
uncertainty sets. Computational experiments, however, confirm
the AC feasibility of the solutions under > 99.98% of the samples
from the interior of the uncertainty sets.
5

Table 2
Test systems summary.

#Buses 14 118 588

#Branches 20 186 686
#Conventional generators 5 54 95
#Solar farms 3 6 6
#Wind farms 4 6 10
Conventional generators capacity (MW) 399 6515 23 614
Solar farms capacity (MW) 66 1327 3079
Wind farms capacity (MW) 142 2067 8117
Average power demand (MW) 259 4242 13 995

4. Computational results

The test systems are taken from PGLib v20 [45] and modified to host
VRE units with a total penetration of 80% as summarized in Table 2.
Because the performance of each power flow representation (Table 1)
depends on network topology [37], the experiments use the BIM for the
strongly meshed 14- and 118-bus systems and the BFM for the weakly
meshed 588-bus system. Ramping and ramping reserve limits are set to
0.5 p.u./h for conventional generators.

The models are coded in MATLAB with YALMIP [46]. The exper-
iments are performed on a node with two 64-core AMD EPYC 7742
processors and 512 GB RAM, using MOSEK and IPOPT as SOCP and
nonconvex solvers.

VRE generation and load time series are retrieved from [47] in 5-
min and 30-min resolutions, respectively. The simulation day is divided
into six four-hour intervals; the adaptive robust OPF is run for each
interval. The VRE units can operate with a power factor of 0.95 lag
to lead [48], and their output power can be curtailed if needed. For
VRE uncertainty characterization (21), we use the 1-norm and a scale
parameter 𝛤𝑡 = 𝛥

√

𝑑𝑣𝑡, where 𝛥 is varied from 0 to 1.5, and the
covariance matrix for each forecast hour is estimated using exponen-
tial smoothing [49] of the same hour over the 30 days prior to the
forecasting date. Load uncertainty can be treated in the same manner
but is disregarded given the relatively small intrahour load variability.

4.1. Uncertainty dimension reduction

The PCA is tuned by examining various thresholds 𝛼max(𝜆𝑘𝑡) for
dismissing eigenvalues. The uncertainty sets 𝑡 ∀𝑡 are constructed
with a size of 𝛥 = 1 and threshold ratios 𝛼 ∈ [10−4, 5 ⋅ 10−1]. The
optimization (26) computes the distance of each realization 𝒖𝑟𝑡 from the
corresponding uncertainty set 𝑡, and (27) computes the forecast error.

𝑑𝑟 = min
𝒖𝑡∈𝑡

‖

‖

𝒖𝑟𝑡 − 𝒖𝑡‖‖2 (26)

𝑒 =
∑

𝑟 𝑑
𝑟

∑

𝑟
‖

‖

𝒖𝑟𝑡‖‖1
(27)

Fig. 2 shows that the forecast error decreases with reducing the thresh-
old ratio, but there remains a residual forecast error, which indicates
that 𝑡 with the selected uncertainty size does not cover every realiza-
tion. We select a threshold ratio of 𝛼 = 0.01 at the curves’ knees, which
results in a forecast error of 0.7%–1.1%.

The Pareto reduction technique is used to further relieve the compu-
tational burden. Table 3 reports the number of subproblems for the test
systems in each time interval after applying the dimension reduction
techniques. More significant reduction is achieved for night hours,
when the solar plants have zero output, while the average dimension
reduction is 32.4%–40.3% (Table 3, last column).

4.2. Recovering AC-feasible solutions

For assessing the effectiveness of the SCP procedure in recovering
AC-feasible solutions, the infeasibility measure is defined as the max-
imum of the normalized relaxation gaps, i.e., max

{

max
(

𝑔𝑏∕𝑣
)

∕𝜖 ,
𝑞 𝑖𝑗𝑡 𝑞



Electric Power Systems Research 216 (2023) 109082B. Akbari and G. Sansavini

g
r
a
r
u
a
p
v
o
o
e
p
i
w

o
t
p
t
i
A
c

Fig. 2. Evolution of forecast error by varying threshold ratio 𝛼 in the PCA (uncertainty
size 𝛥 = 1).

Fig. 3. Total cost of deterministic schedules under realized uncertainty. The error bars
show the standard deviations.

Table 3
Number of subproblems after dimension reduction (uncertainty Size 𝛥 = 1).

Test system Hour range Dimension

1–4 5–8 9–12 13–16 17–20 21–24 reduction avg

14-bus system 26 32 42 46 40 31 35.4%
118-bus system 42 51 65 83 65 38 40.3%
588-bus system 72 71 101 121 95 59 32.4%

max
(

𝑔𝑏∕𝑣𝜃 𝑖𝑗𝑡

)

∕𝜖𝜃
}

. If the infeasibility measure is below 1, the relaxation
aps are within tolerance, and the solution is deemed feasible. Table 4
eports the impact of the SCP procedure on the infeasibility measures
nd the objective values, averaged over the 6 time intervals. The
elaxed solutions have high infeasibility values, especially for larger
ncertainty sizes. The SCP procedure reduces the infeasibilities by
factor of 1.3 ⋅ 104 to 3.6 ⋅ 106, yielding solutions appropriate for

ractical use. Remarkably, the SCP procedure increases the objective
alues merely 0.1%−1.9% on average. The objective value of the global
ptimum lies between the objective values of the relaxed solution and
f the identified feasible solution. The tightness of this interval in the
xperiments confirms the quality of the solutions retrieved by the SCP
rocedure. However, the objective values alone should not be used to
nfer the quality of the relaxed solutions (without the SCP procedure),
hich may be highly infeasible.

As discussed in Section 3.4, the AC feasibility of the solutions is the-
retically guaranteed only for uncertainty realizations corresponding to
he point forecast and the vertices of the uncertainty sets. Therefore, ex-
eriments are designed to assess the AC feasibility under samples from
he interior of the uncertainty sets. A modified exponential spacing [50]
s used to draw 1000 samples from the uncertainty set of each hour.

full AC OPF is solved to check the feasibility of adapting the base-
ase solutions to each uncertainty sample. Table 5 reports the ratio of
6

Table 4
SCP procedure results: The impact on AC feasibility and objective value.

Uncertainty size (𝛥) 0 0.25 0.5 0.75 1 1.25 1.5

14-bus system

Initial infeasibility (×103) 3.000 3.000 3.000 3.000 3.000 3.000 3.000
Final infeasibility 0.006 0.013 0.012 0.024 0.034 0.037 0.021
Objective value ratio 1.001 1.001 1.001 1.002 1.002 1.001 1.001

118-bus system

Initial infeasibility (×103) 3.713 3.709 3.769 3.808 3.830 3.846 3.851
Final infeasibility 0.235 0.221 0.205 0.201 0.298 0.249 0.257
Objective value ratio 1.004 1.004 1.005 1.004 1.005 1.005 1.005

588-bus system

Initial infeasibility (×106) 1.599 1.636 2.646 2.694 2.711 2.713 2.716
Final infeasibility 0.845 0.780 0.735 0.679 0.795 0.800 0.756
Objective value ratio 1.019 1.019 1.018 1.018 1.018 1.018 1.018

Table 5
Ratio of AC-feasible samples from uncertainty sets.

Uncertainty Without SCP With SCP

size (𝛥) 0.5 1 1.5 0.5 1 1.5

14-bus system 99.96% 99.92% 99.92% 100.00% 100.00% 100.00%
118-bus system 86.97% 49.98% 86.97% 100.00% 100.00% 100.00%
588-bus system 30.08% 27.42% 32.50% 99.99% 99.99% 99.98%

feasible samples for the three systems under various uncertainty sizes.
The SCP procedure achieves a high coverage of the uncertainty sets,
while the solutions without SCP show low feasibility ratios for large
systems.

4.3. Verification with realized uncertainty

The effectiveness of the proposed framework is verified by assessing
robustness against the actual realizations of available VRE power and
demand power under a real-world setting of power system operation.
The hourly dispatch schedule is retrieved from the robust optimization,
and the subhourly redispatch under the realized uncertainty is com-
puted by solving a full nonconvex AC OPF for each 5-minute interval
over the course of 24 h. To avoid infeasibility, load shedding is allowed
at a cost of 4000 $/MWh [25].

Table 6 shows the key results as average hourly values. Increasing
the uncertainty size (𝛥) leads to higher generation costs, but lower load
shedding costs; the operator can use 𝛥 as a lever to control robustness
and achieve the desired compromise between economics and security of
supply. The average total cost is minimal at 𝛥 = 1 for the 14-bus system
and at 𝛥 = 0.75 for the other two systems. The standard deviation
of the total cost is generally decreasing in 𝛥. Comparing the robust
case with minimal cost to the deterministic case (𝛥 = 0) shows that
the robust schedules achieve 2.0%–13.6% cost savings and reductions
of cost standard deviation by 43%–81%. Load shedding can be fully
avoided by a sufficiently large 𝛥, but this reduces VRE utilization,
because conventional generators replace some renewable generation to
ensure enough generation, should VRE output plunge.

The same verification procedure is used for assessing the impact
of the SCP procedure under the actual uncertainty realizations. Fig. 3
depicts the total cost associated with deterministic schedules (𝛥 = 0)
with and without SCP for the three test systems. The values are ex-
pressed with respect to the average total cost of the cases without SCP.
Feasibility recovery using SCP reduces load shedding and thereby cuts
the average and the standard deviation of total cost by 0.5%–33.7%
and 2.2%–29.8%, respectively.

4.4. Computational performance

Table 7 shows the computational results of solving adaptive robust

AC OPF averaged over the instances with uncertainty sizes of 𝛥 ∈ {0.25,
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Table 6
Practical performance of the proposed robust optimization with different uncertainty sizes under realized uncertainty.
Uncertainty size (𝛥) 0 0.25 0.5 0.75 1 1.25 1.5

14-bus system

Total cost avg ($) 1978 1978 1906 1716 1708 1715 1719
Total cost std ($) 1476 1476 1125 305 281 281 280
Generation cost ($) 1692 1692 1693 1700 1708 1715 1719
Shedding cost ($) 287 287 213 16 0 0 0
Shedding ratio (%) 0.03 0.03 0.02 0.00 0.00 0.00 0.00
VRE utilization (%) 99.59 99.59 99.35 97.52 95.39 93.58 92.47

118-bus system

Total cost avg ($) 83075 83005 76934 74688 75012 75705 76262
Total cost std ($) 44572 44569 23801 15024 14165 13820 13460
Generation cost ($) 73335 73334 73572 74244 75012 75705 76262
Shedding cost ($) 9740 9671 3362 445 0 0 0
Shedding ratio (%) 0.06 0.06 0.02 0.00 0.00 0.00 0.00
VRE utilization (%) 99.55 99.55 99.39 97.02 93.41 89.98 86.96

588-bus system

Total cost avg ($) 340206 339058 335900 333386 335193 336914 338383
Total cost std ($) 82116 82151 59395 46915 46575 46605 46871
Generation cost ($) 326502 326741 329649 332112 333857 335396 336491
Shedding cost ($) 13704 12316 6250 1274 1336 1518 1892
Shedding ratio (%) 0.03 0.02 0.01 0.00 0.00 0.00 0.00
VRE utilization (%) 98.25 98.09 96.32 93.21 90.58 88.23 86.76
Table 7
Computational performance of Algorithm 2 in solving 4-hour adaptive robust AC
OPF.

Test system Computation time (s) #Iter. avg

Total avg Total std Iter. 1 avg Iter. >1 avg
per iter.

14-bus system 6.8 1.6 4.0 1.4 3.0
118-bus system 72.6 25.9 38.3 10.1 4.4
588-bus system 3774.4 853.8 962.3 310.0 10.4

0.5, 0.75, 1.0, 1.25, 1.5} and the 6 time intervals. The maximum total
computation times for the 14-, 118-, and 588-bus systems are 10.7
s, 114.3 s, and 5964.1 s, respectively, well shorter than the planning
horizon of 4 h. Comparing the time spent in the initial and in the
next iterations of Algorithm 2 reveals that the proposed warm-starting
technique almost triples the convergence speed of the C&CG procedure.
As a result, a significant fraction of the computation time is spent in the
first iteration of the SCP procedure, which amounts to a conventional
convex robust optimization without AC feasibility recovery. The SCP
procedure converges in 3–16 iterations in all of the 108 instances.

To assess scalability, the solution framework is also used to solve
adaptive robust optimization with a planning horizon of 24 h. While a
threshold ratio of 𝛼 = 0.01 is used for the smaller test systems, 𝛼 = 0.10
is used for the 588-bus system to restrict the RAM usage to the allocated
512 GB. The average computation times for the 14-, 118-, and 588-bus
systems are 1, 6, and 267 min, respectively, and the number of SCP
iterations is 3–17. Fig. 4 collects the computational results of 4-hour
and 24-hour planning horizons. The computation time almost linearly
increases with the number of subproblems.

5. Conclusion

This paper proposes a reliable solution framework for robust multi-
period optimal power flow under intrahour power injection uncertain-
ties. SOCP relaxation is used to address the computational complexity
arising from the full recourse and the nonconvexity of power flow
constraints. To close the relaxation gaps, a sequential convex program-
ming (SCP) procedure is developed, while a column-and-constraint
generation (C&CG) procedure is used to enhance the computational
tractability.

The experiments on test systems of various sizes show that the
7

proposed framework recovers high-quality AC-feasible solutions for all
Fig. 4. Computation time of Algorithm 2 for solving adaptive robust OPF.

uncertainty sizes within 3–17 iterations of the SCP procedure. Thanks
to the convex relaxation and the proposed technique to warm start the
C&CG procedure, the solution framework remains computationally fast
for systems of moderate size.

The results indicate that the robust optimization can reduce the
operation costs by 2.0%–13.6%, while enhancing the security of supply.
Curtailing renewable power becomes inevitable in power systems with
high VRE penetration to ensure robustness against sharp declines in
VRE power. This finding motivates investigating the installation of new
fast-ramping units and storages to increase renewable utilization.

Transmission and generation asset contingencies are among the
other short-term uncertainties that power systems face. Thus, an exten-
sion of the proposed framework entails integrating security constraints
similarly to the subproblems related to uncertain power injections.

CRediT authorship contribution statement

Behnam Akbari: Conceptualization, Methodology, Software, For-
mal analysis, Investigation, Data curation, Writing – original draft,
Visualization. Giovanni Sansavini: Conceptualization, Methodology,
Resources, Writing – review & editing, Supervision, Funding acquisi-
tion.



Electric Power Systems Research 216 (2023) 109082B. Akbari and G. Sansavini
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work is supported by the Swiss National Science Foundation
- Project funding in Mathematics, Natural and Engineering Sciences
(Division II) - Project number 200021_182529 and the Swiss Federal
Office of Energy’s SWEET programme as part of the PATHFNDR project.
The authors gratefully acknowledge the five anonymous reviewers for
their helpful comments and suggestions.

References

[1] International Energy Agency, World Energy Outlook 2022, World Energy
Outlook, OECD, 2022, http://dx.doi.org/10.1787/3a469970-en.

[2] EWEA, Wind Energy - the Facts: A Guide To the Technology, Economics and
Future of Wind Power, Earthscan, London, 2009.

[3] N. Navid, G. Rosenwald, Market solutions for managing ramp flexibility with
high penetration of renewable resource, IEEE Trans. Sustain. Energy 3 (4) (2012)
784–790, http://dx.doi.org/10.1109/TSTE.2012.2203615.

[4] M.I. Alizadeh, M.P. Moghaddam, N. Amjady, Multistage multiresolution robust
unit commitment with nondeterministic flexible ramp considering load and wind
variabilities, IEEE Trans. Sustain. Energy 9 (2) (2018) 872–883, http://dx.doi.
org/10.1109/TSTE.2017.2764061.

[5] J. Deane, G. Drayton, B.Ó. Gallachóir, The impact of sub-hourly modelling in
power systems with significant levels of renewable generation, Appl. Energy 113
(2014) 152–158, http://dx.doi.org/10.1016/j.apenergy.2013.07.027.

[6] L.A. Roald, et al., Power systems optimization under uncertainty: A review of
methods and applications, Electr. Power Syst. Res. 214 (2023) 108725, http:
//dx.doi.org/10.1016/j.epsr.2022.108725.

[7] Y. Dvorkin, Y. Wang, H. Pandzic, D. Kirschen, Comparison of scenario reduction
techniques for the stochastic unit commitment, in: 2014 IEEE PES Gen. Meet,
2014, pp. 1–5, http://dx.doi.org/10.1109/PESGM.2014.6939042.

[8] A. Antenucci, G. Sansavini, Gas-constrained secure reserve allocation with large
renewable penetration, IEEE Trans. Sustain. Energy 9 (2) (2018) 685–694,
http://dx.doi.org/10.1109/TSTE.2017.2756091.

[9] A. Nasri, A.J. Conejo, S.J. Kazempour, M. Ghandhari, Minimizing wind power
spillage using an OPF with FACTS devices, IEEE Trans. Power Syst. 29 (5) (2014)
2150–2159, http://dx.doi.org/10.1109/TPWRS.2014.2299533.

[10] M. Isuru, E.Y.S. Foo, H.B. Gooi, A piecewise-affine decision rule based stochastic
AC optimal power flow approach, in: 2020 IEEE Power Energy Soc. Gen. Meet.
PESGM, 2020, pp. 1–5, http://dx.doi.org/10.1109/PESGM41954.2020.9281413.

[11] L. Roald, G. Andersson, Chance-constrained AC optimal power flow: Reformula-
tions and efficient algorithms, IEEE Trans. Power Syst. 33 (3) (2018) 2906–2918,
http://dx.doi.org/10.1109/TPWRS.2017.2745410.

[12] A. Venzke, L. Halilbasic, U. Markovic, G. Hug, S. Chatzivasileiadis, Convex re-
laxations of chance constrained AC optimal power flow, IEEE Trans. Power Syst.
33 (3) (2018) 2829–2841, http://dx.doi.org/10.1109/TPWRS.2017.2760699.

[13] Y. Yi, G. Verbič, Fair operating envelopes under uncertainty using chance
constrained optimal power flow, Electr. Power Syst. Res. 213 (2022) 108465,
http://dx.doi.org/10.1016/j.epsr.2022.108465.

[14] Y. Guo, K. Baker, E. Dall’Anese, Z. Hu, T.H. Summers, Data-based distributionally
robust stochastic optimal power Flow—Part I: Methodologies, IEEE Trans.
Power Syst. 34 (2) (2019) 1483–1492, http://dx.doi.org/10.1109/TPWRS.2018.
2878385.

[15] L. Yao, X. Wang, Y. Li, C. Duan, X. Wu, Distributionally robust chance-
constrained AC-OPF for integrating wind energy through multi-terminal VSC-
HVDC, IEEE Trans. Sustain. Energy 11 (3) (2020) 1414–1426, http://dx.doi.org/
10.1109/TSTE.2019.2927135.

[16] R.A. Jabr, Distributionally robust CVaR constraints for power flow optimization,
IEEE Trans. Power Syst. 35 (5) (2020) 3764–3773, http://dx.doi.org/10.1109/
TPWRS.2020.2971684.

[17] N. Amjady, S. Dehghan, A. Attarha, A.J. Conejo, Adaptive robust network-
constrained AC unit commitment, IEEE Trans. Power Syst. 32 (1) (2017)
672–683, http://dx.doi.org/10.1109/TPWRS.2016.2562141.

[18] H. Ye, Z. Li, Robust security-constrained unit commitment and dispatch with
recourse cost requirement, IEEE Trans. Power Syst. 31 (5) (2016) 3527–3536,
http://dx.doi.org/10.1109/TPWRS.2015.2493162.
8

[19] D. Lee, K. Turitsyn, D.K. Molzahn, L. Roald, Robust AC optimal power flow with
robust convex restriction, IEEE Trans. Power Syst. (2021) 1, http://dx.doi.org/
10.1109/TPWRS.2021.3075925.

[20] A. Attarha, N. Amjady, A.J. Conejo, Adaptive robust AC optimal power flow
considering load and wind power uncertainties, Int. J. Electr. Power Energy Syst.
96 (2018) 132–142, http://dx.doi.org/10.1016/j.ijepes.2017.09.037.

[21] L. Zeng, H.-D. Chiang, D. Liang, Robust optimal power flow under renewable
uncertainty with pairwise convex hull and non-affine AGC redispatch strategy,
Electr. Power Syst. Res. 210 (2022) 108136, http://dx.doi.org/10.1016/j.epsr.
2022.108136.

[22] R. Louca, E. Bitar, Robust AC optimal power flow, IEEE Trans. Power Syst. 34
(3) (2019) 1669–1681, http://dx.doi.org/10.1109/TPWRS.2018.2849581.

[23] H. Yang, D.P. Morton, C. Bandi, K. Dvijotham, Robust optimization for electricity
generation, Inf. J. Comput. (2020) http://dx.doi.org/10.1287/ijoc.2020.0956.

[24] T. Soares, R.J. Bessa, P. Pinson, H. Morais, Active distribution grid management
based on robust AC optimal power flow, IEEE Trans. Smart Grid 9 (6) (2018)
6229–6241, http://dx.doi.org/10.1109/TSG.2017.2707065.

[25] Á. Lorca, X.A. Sun, The adaptive robust multi-period alternating current optimal
power flow problem, IEEE Trans. Power Syst. 33 (2) (2018) 1993–2003, http:
//dx.doi.org/10.1109/TPWRS.2017.2743348.

[26] M. Chamanbaz, F. Dabbene, C.M. Lagoa, Probabilistically robust AC optimal
power flow, IEEE Trans. Control Netw. Syst. 6 (3) (2019) 1135–1147, http:
//dx.doi.org/10.1109/TCNS.2019.2921300.

[27] C. Coffrin, H.L. Hijazi, P. Van Hentenryck, The QC relaxation: A theoretical and
computational study on optimal power flow, IEEE Trans. Power Syst. 31 (4)
(2016) 3008–3018, http://dx.doi.org/10.1109/TPWRS.2015.2463111.

[28] S.H. Low, Convex relaxation of optimal power Flow—Part II: Exactness, IEEE
Trans. Control Netw. Syst. 1 (2) (2014) 177–189, http://dx.doi.org/10.1109/
TCNS.2014.2323634.

[29] F. Golestaneh, P. Pinson, H.B. Gooi, Polyhedral predictive regions for power
system applications, IEEE Trans. Power Syst. 34 (1) (2019) 693–704, http:
//dx.doi.org/10.1109/TPWRS.2018.2861705.

[30] J. Cheng, R. Li-Yang Chen, H.N. Najm, A. Pinar, C. Safta, J.-P. Watson,
Distributionally robust optimization with principal component analysis, SIAM J.
Optim. 28 (2) (2018) 1817–1841, http://dx.doi.org/10.1137/16M1075910.

[31] B. Zeng, L. Zhao, Solving two-stage robust optimization problems using a column-
and-constraint generation method, Oper. Res. Lett. 41 (5) (2013) 457–461,
http://dx.doi.org/10.1016/j.orl.2013.05.003.

[32] K. Margellos, P. Goulart, J. Lygeros, On the road between robust optimization
and the scenario approach for chance constrained optimization problems, IEEE
Trans. Automat. Control 59 (8) (2014) 2258–2263, http://dx.doi.org/10.1109/
TAC.2014.2303232.

[33] A. Castillo, P. Lipka, J.-P. Watson, S.S. Oren, R.P. O’Neill, A successive linear
programming approach to solving the IV-ACOPF, IEEE Trans. Power Syst. 31 (4)
(2016) 2752–2763, http://dx.doi.org/10.1109/TPWRS.2015.2487042.

[34] R.R. Jha, A. Dubey, Network-level optimization for unbalanced power distri-
bution system: Approximation and relaxation, IEEE Trans. Power Syst. 36 (5)
(2021) 4126–4139, http://dx.doi.org/10.1109/TPWRS.2021.3066146.

[35] Ahmed R. Sayed, C. Wang, J. Zhao, T. Bi, Distribution-level robust energy
management of power systems considering bidirectional interactions with gas
systems, IEEE Trans. Smart Grid 11 (3) (2020) 2092–2105, http://dx.doi.org/
10.1109/tsg.2019.2947219.

[36] J. Zhang, M. Cui, Y. He, Multi-period fast robust optimization for partial
distributed generators (DGs) providing ancillary services, Energies 14 (16) (2021)
4911, http://dx.doi.org/10.3390/en14164911.

[37] B. Akbari, G. Sansavini, Sequential second-order cone programming for AC load
maximization problems, in: 2022 IEEE Int. Energy Conf. ENERGYCON, 2022,
http://dx.doi.org/10.1109/ENERGYCON53164.2022.9830451.

[38] S. Wold, K. Esbensen, P. Geladi, Principal component analysis, Chemometr.
Intell. Lab. Syst. 2 (1-3) (1987) 37–52, http://dx.doi.org/10.1016/0169-7439(87)
80084-9.

[39] Á. Lorca, X.A. Sun, E. Litvinov, T. Zheng, Multistage adaptive robust optimization
for the unit commitment problem, Oper. Res. 64 (1) (2016) 32–51, http://dx.
doi.org/10.1287/opre.2015.1456.

[40] A. Venzke, S. Chatzivasileiadis, Convex relaxations of probabilistic AC optimal
power flow for interconnected AC and HVDC grids, IEEE Trans. Power Syst. 34
(4) (2019) 2706–2718, http://dx.doi.org/10.1109/TPWRS.2019.2895122.

[41] S. Mhanna, G. Verbič, A.C. Chapman, Adaptive ADMM for distributed AC optimal
power flow, IEEE Trans. Power Syst. 34 (3) (2019) 2025–2035, http://dx.doi.
org/10.1109/TPWRS.2018.2886344.

[42] J. Iria, P. Scott, A. Attarha, D. Gordon, E. Franklin, MV-LV network-secure
bidding optimisation of an aggregator of prosumers in real-time energy and
reserve markets, Energy 242 (2022) 122962, http://dx.doi.org/10.1016/j.energy.
2021.122962.

[43] K. Lehmann, A. Grastien, P. Van Hentenryck, AC-feasibility on tree networks is
NP-hard, IEEE Trans. Power Syst. 31 (1) (2016) 798–801, http://dx.doi.org/10.
1109/TPWRS.2015.2407363.

[44] D. Bienstock, A. Verma, Strong NP-hardness of AC power flows feasibility, Oper.
Res. Lett. 47 (6) (2019) 494–501, http://dx.doi.org/10.1016/j.orl.2019.08.009.

http://dx.doi.org/10.1787/3a469970-en
http://refhub.elsevier.com/S0378-7796(22)01131-2/sb2
http://refhub.elsevier.com/S0378-7796(22)01131-2/sb2
http://refhub.elsevier.com/S0378-7796(22)01131-2/sb2
http://dx.doi.org/10.1109/TSTE.2012.2203615
http://dx.doi.org/10.1109/TSTE.2017.2764061
http://dx.doi.org/10.1109/TSTE.2017.2764061
http://dx.doi.org/10.1109/TSTE.2017.2764061
http://dx.doi.org/10.1016/j.apenergy.2013.07.027
http://dx.doi.org/10.1016/j.epsr.2022.108725
http://dx.doi.org/10.1016/j.epsr.2022.108725
http://dx.doi.org/10.1016/j.epsr.2022.108725
http://dx.doi.org/10.1109/PESGM.2014.6939042
http://dx.doi.org/10.1109/TSTE.2017.2756091
http://dx.doi.org/10.1109/TPWRS.2014.2299533
http://dx.doi.org/10.1109/PESGM41954.2020.9281413
http://dx.doi.org/10.1109/TPWRS.2017.2745410
http://dx.doi.org/10.1109/TPWRS.2017.2760699
http://dx.doi.org/10.1016/j.epsr.2022.108465
http://dx.doi.org/10.1109/TPWRS.2018.2878385
http://dx.doi.org/10.1109/TPWRS.2018.2878385
http://dx.doi.org/10.1109/TPWRS.2018.2878385
http://dx.doi.org/10.1109/TSTE.2019.2927135
http://dx.doi.org/10.1109/TSTE.2019.2927135
http://dx.doi.org/10.1109/TSTE.2019.2927135
http://dx.doi.org/10.1109/TPWRS.2020.2971684
http://dx.doi.org/10.1109/TPWRS.2020.2971684
http://dx.doi.org/10.1109/TPWRS.2020.2971684
http://dx.doi.org/10.1109/TPWRS.2016.2562141
http://dx.doi.org/10.1109/TPWRS.2015.2493162
http://dx.doi.org/10.1109/TPWRS.2021.3075925
http://dx.doi.org/10.1109/TPWRS.2021.3075925
http://dx.doi.org/10.1109/TPWRS.2021.3075925
http://dx.doi.org/10.1016/j.ijepes.2017.09.037
http://dx.doi.org/10.1016/j.epsr.2022.108136
http://dx.doi.org/10.1016/j.epsr.2022.108136
http://dx.doi.org/10.1016/j.epsr.2022.108136
http://dx.doi.org/10.1109/TPWRS.2018.2849581
http://dx.doi.org/10.1287/ijoc.2020.0956
http://dx.doi.org/10.1109/TSG.2017.2707065
http://dx.doi.org/10.1109/TPWRS.2017.2743348
http://dx.doi.org/10.1109/TPWRS.2017.2743348
http://dx.doi.org/10.1109/TPWRS.2017.2743348
http://dx.doi.org/10.1109/TCNS.2019.2921300
http://dx.doi.org/10.1109/TCNS.2019.2921300
http://dx.doi.org/10.1109/TCNS.2019.2921300
http://dx.doi.org/10.1109/TPWRS.2015.2463111
http://dx.doi.org/10.1109/TCNS.2014.2323634
http://dx.doi.org/10.1109/TCNS.2014.2323634
http://dx.doi.org/10.1109/TCNS.2014.2323634
http://dx.doi.org/10.1109/TPWRS.2018.2861705
http://dx.doi.org/10.1109/TPWRS.2018.2861705
http://dx.doi.org/10.1109/TPWRS.2018.2861705
http://dx.doi.org/10.1137/16M1075910
http://dx.doi.org/10.1016/j.orl.2013.05.003
http://dx.doi.org/10.1109/TAC.2014.2303232
http://dx.doi.org/10.1109/TAC.2014.2303232
http://dx.doi.org/10.1109/TAC.2014.2303232
http://dx.doi.org/10.1109/TPWRS.2015.2487042
http://dx.doi.org/10.1109/TPWRS.2021.3066146
http://dx.doi.org/10.1109/tsg.2019.2947219
http://dx.doi.org/10.1109/tsg.2019.2947219
http://dx.doi.org/10.1109/tsg.2019.2947219
http://dx.doi.org/10.3390/en14164911
http://dx.doi.org/10.1109/ENERGYCON53164.2022.9830451
http://dx.doi.org/10.1016/0169-7439(87)80084-9
http://dx.doi.org/10.1016/0169-7439(87)80084-9
http://dx.doi.org/10.1016/0169-7439(87)80084-9
http://dx.doi.org/10.1287/opre.2015.1456
http://dx.doi.org/10.1287/opre.2015.1456
http://dx.doi.org/10.1287/opre.2015.1456
http://dx.doi.org/10.1109/TPWRS.2019.2895122
http://dx.doi.org/10.1109/TPWRS.2018.2886344
http://dx.doi.org/10.1109/TPWRS.2018.2886344
http://dx.doi.org/10.1109/TPWRS.2018.2886344
http://dx.doi.org/10.1016/j.energy.2021.122962
http://dx.doi.org/10.1016/j.energy.2021.122962
http://dx.doi.org/10.1016/j.energy.2021.122962
http://dx.doi.org/10.1109/TPWRS.2015.2407363
http://dx.doi.org/10.1109/TPWRS.2015.2407363
http://dx.doi.org/10.1109/TPWRS.2015.2407363
http://dx.doi.org/10.1016/j.orl.2019.08.009


Electric Power Systems Research 216 (2023) 109082B. Akbari and G. Sansavini
[45] S. Babaeinejadsarookolaee, et al., The power grid library for benchmarking AC
optimal power flow algorithms, 2019.

[46] J. Lofberg, YALMIP: A toolbox for modeling and optimization in MATLAB, in:
2004 IEEE Int. Conf. Robot. Autom, 2004, pp. 284–289, http://dx.doi.org/10.
1109/CACSD.2004.1393890.

[47] Generation and Load, https://aemo.com.au/energy-systems/electricity/national-
electricity-market-nem/data-nem/market-management-system-mms-data/
generation-and-load.
9

[48] J. McDowell, et al., Reactive Power Interconnection Requirements for PV and
Wind Plants: Recommendations To NERC, Tech. Rep. SAND2012-1098, 2012,
1039006, http://dx.doi.org/10.2172/1039006.

[49] V. Zakamulin, A test of covariance-matrix forecasting methods, JPM 41 (3)
(2015) 97–108, http://dx.doi.org/10.3905/jpm.2015.41.3.097.

[50] L. Devroye, Non-Uniform Random Variate Generation, Springer, New York
Heidelberg, 1986.

http://refhub.elsevier.com/S0378-7796(22)01131-2/sb45
http://refhub.elsevier.com/S0378-7796(22)01131-2/sb45
http://refhub.elsevier.com/S0378-7796(22)01131-2/sb45
http://dx.doi.org/10.1109/CACSD.2004.1393890
http://dx.doi.org/10.1109/CACSD.2004.1393890
http://dx.doi.org/10.1109/CACSD.2004.1393890
https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/data-nem/market-management-system-mms-data/generation-and-load
https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/data-nem/market-management-system-mms-data/generation-and-load
https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/data-nem/market-management-system-mms-data/generation-and-load
https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/data-nem/market-management-system-mms-data/generation-and-load
https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/data-nem/market-management-system-mms-data/generation-and-load
http://dx.doi.org/10.2172/1039006
http://dx.doi.org/10.3905/jpm.2015.41.3.097
http://refhub.elsevier.com/S0378-7796(22)01131-2/sb50
http://refhub.elsevier.com/S0378-7796(22)01131-2/sb50
http://refhub.elsevier.com/S0378-7796(22)01131-2/sb50

