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Abstract
This paper presents a nonlinear active suspension

controller, which achieves high pefiormance by
compensating for the hydraulic actuator dynamics. The
control design problem is decomposed into two loops.
At the top is the main loop, which calculates the desired
force signal by using a standardLQ design process. An
Adaptive Robust Control technique is used to design a
force controller such that it is robust against actuator
uncertainties. Both State feedback and output feedback
algorithms are presented. Simulation results show that
the proposed controller works well compared with
conventional controllers.

1. Introduction
Automotive suspension systems have been developed

over the last 100 years to a very high level cf
sophistication. Complex kinematic configurations were
designed to strike a balance between the complicated
functions to be carried out by the suspensions. Most
passive suspension systems mainly employ some type &
springs in combination with hydraulic or pneumatic
shock absorbem It is commonly accepted that passive
suspensions have limited pdorrnance because their
components can only store or dissipate energy. The idea
of adding active components was introduced to improved
vehicle handling and ride.

Optimal control techniques have been used
intensively in designing active suspension control
algorithms ever since the very early days of active
suspensions. The Linear Quadratic Gaussian technique,
in p~icul~, ~ popular because trade-offs between
multlple objectives (ride quality, handling, packaging,
etc.) can be takencare ofnaturdly. Despite a long list cf
researchpaperspublished in this area(see Hrovat 1997), a
closer examination shows that many of these algorithms
assume that the suspension force can be controlled
accurately. Actuators that can push/pull those 2500-
pound vehicles at tlequencies up to several Hz, however,
are extremely expensive. When a less-capable actuator is
used, a sub-loop (force control loop) control design needs
to be carried out. In actual implementations, an
electronically controlled hydraulic actuator is commonly
chosen due to its high power to weight ratio. Hydraulic
actuators, however, interact with the vehicle dynamics
and thus good force tracking is difficult to achieve,
especially at high tkquencies. As a result, despite of the
abundance of simulation results published in the
literature, a few experimental verifications have been
reported and they are all confined to low disturbance and
low frequency regions.
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Engelman and Rizzoni (1993)
LQG controller fails to achieve the

reported that their
desired performance

since the actuator force had to be kept small to prevent
instability. In a recent study conducted at the University
of Michigan (Strathearn 1996), LQG controllers werE
implemented on a quarter-car test rig and they were fmd
to be stable in experiments only at low control gains
which give minor performance improvement. It should be
noted that in both of these studies, linearized actuator
dynamics were used and the LQG controllers were
designed based on the augmented plant. It seems t%irto
say that the control of active suspensions with hydraulic
actuators is not trivial, especially fm fkquencies higher
than a fw hertz. We believe the difficulty mainly arises
from two sources: small stability margins of LQG designs
and the interaction between actuator and vehicle
dynamics.

The stability of LQG con~ollers for quarter car
models with ideal actuators was studied by Ulsoy et al.
(1994). This study shows that LQG controllers have
small stability margins, especially when suspension
stroke is the sole measured signal. The loop bansfer
recovery technique was suggested to improve the margin.
However, performance will be sacrificed (Birdwell 1990).
An alternative solution is to confront the actuator
dynamics directly by focusing on the fome control loop
design. The later approach is taken in our study.

In this paper, we will report the design and
simulation results of a nonlinear active suspension
controller which achieves high performance by
compensating for the hydraulic actuator dynamics. The
control design problem is decomposed into two loops.
In the main loop, the desired fdrce signal is calculated
from a standard LQ design process. In the sub-loop, we
will apply the Adaptive Robust Control (ARC) technique
to design a force control law. Since LQ designs fm active
suspensions have been amply reported in the literature,
this paper will focus on the design of the sub-loop. In
general, a force sensor is necessary fix implementing the
force control sub-loop. However, due to the fact that good
fome sensors are usually expensive, another goal of this
paper is to design a sub-loop without using fme sensors.
An asymptotic force observer similar to that proposed by
Hedrick (1994) is used where a force sensor is replaced by
two accelerometers. Finally, the ARC technique
suggested by Yao and Tomizuka (1997) was modified to
guarantee force tracking performance when a force observer
is used.

The remainder of this paper is organized as follows:
The modeling of the quarter-car suspension system
studied in this paper is presented in Section 2. The
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control designs are shown in Section 3. The proposed
ARC control algorithm is compared against several
standard active suspension design techniques in a
simulation study in Section 4. Finally, Conclusions are
drawn in Section 5.

2. Modeling
A quarter-car suspension system (Fig. 2.1) is studied

in this paper. In Fig. 2.1, m~ denotes the vehicle sprung
mass, mu~ is the unsprung mass, k~ is the suspension
stiffhess, km is the tire stiffness, c~ is the suspension
damping, and Cu$ is the tire damping. xc, XW and -%

are the displacement of the vehicle, wheel and road,
respectively. An actuator is assumed to present which can
exert a force Fa in between m~ and mu~.
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Fig. 2.1 Quarter-CarModel
The linear dynamic equations fdr this quarter-car

suspension are:
m~Xc =k~(xw -xc)+ c~(xw –&)+Fa (2.1)
mu~ .jw =ku~(xr –XW)+CU~(Xr–~w)

(2.2)
–k~(xw–xc) –c~(iw-ic)-~a.

which can be written in a state-space form as:
X= AIX+Bp (2.3)

whae X=[xr-xW, xW,xW–xc, xc]rrmd u=[Fa,.ir]~.

The hydraulic actuator is assumed to consist of a
spool valve (servo-valve) and a hydraulic cylinder, and is
shown in Fig. 2.2. Ps and Pr are the pressure of the
hydraulic fluid entering and leaving the spool valve
respectively. x~P is the spool valve position. Pu and PI

are the oil pressure in the upper and lower cylinder
chambers. Xw– xc is the hydraulic piston displacement.
As the spool valve moves upward (positive x~p), the

cylinder upper chamber is connected to the supply line
and its pressure increases. In the meantime, the lower
chamber is connected to the return line and its pressure
reduces. Due to this pressure diffkmce, the hydraulic
cylinder will extend (McCloy 1973).

The spool valve displacement ( x~P) is assumed to

relate to the servo-valve current ( i~v) through the
following lineartransferfunction:

Xsp(s) Ksv—. —,
IsV(s)

(2.4)
rs+l

However, this dynamics are assumed to be sufficiently @t
and will not be used in controller design process. By
assuming that (i) the valve opening area is linearly related
to the spool valve displacement, (ii) the upstream area is
much larger than the orifice are% (iii) the fluid is
incompressible, (iv) the piston inertia is negligible, and
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(v) changes in magnitude of pressures in the two
chambers are approximately equal, i.e.
A%= –AP1 = AP, the force dynamics are

~a=&Ap@Kxd
x~p .Sign Ps - sign(x~p)Fa JAP

v

+2. Ap2. /3.Kas
o(iw – it),

v
(2.5)

whtxeAp is the average piston area, V is the average
volume of each chamber at equilibrium, /3 is the fluid
bulk modulus, Kxd is the orifice flow coefficien~ and
Kas is the average ratio between suspension stroke and
actual actuator cylinder displacement.

~
,&

Hydraulic Cylinder

Fig. 2.2 The Electro-Hydraulic Actuator
In summary, Eqs.(2.3) and (2.5) will be used for the

controller designs. In simulations, however, a more
complicated model will be used. In the simulation
model, a more complex version of Eq.(2.5) will be used,
which includes cylinder pressures as states. Furthermore,
the spool valve dynamics (Eq.(2.4)) will also be
included.

3. Controller Design
The objective of the fome control loop is to

manipulate the spool-valve motion so that the actual tbrce
closely tracks the desired fme requested by the main
loop. The inputioutput ( i~v and Fa) relationship of this
control problem is shown in Fig.3. 1.
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Fig 3.1 Transfer function from servo-valve current
to actuator force.

Notice the dips in the magnitude plot at around 1 and 10
Hz are caused by zeros of the transfer t%nction.
Traditional design methods such as PID cannot reduce
the dips in the closed loop transfer function significantly
unless excessively high gains are used. Since the full
benefits of active suspensions can be realized only when
good tracking up to 5-10 Hz is achievet more advanced
controllers need to be designed. Controllers based on
pole-zero cancellation methods can be used only if most
of the system parameters are accurately known. However,
this is not true fm our suspension system. Parametem



such as the hydraulic fluid’s bulk modulus can change
significantly as the system age. Furthermore,
nonlinearity in the hydraulic actuator makes it even more
difficult to design good force tracking controllers. This
fhct was recognized and nonlinear actuator models were
included in several ~cent designs (Alleyne et al. (1993,
1995), Hedrick et al. (1994), Lin et al. (1997)).

Recently, an Adaptive Robust Control (ARC)
method was introduced (Yao and Tomizuka 1997) which
combines the benefits of Deterministic Robust Control
and Adaptive Control techniques. A major advantage of
ARC is that both transient and steady-state tracking
accuracy can be guaranteed. Furthermore, asymptotic
tracking can be achieved when no general uncertainty
exists. ARC technique produces a continuous control
law as opposed to switching laws commonly deployed in
variable structure controllers such as sliding mode
controls (Alleyne and Hedrick 1995). Switching controls
rue undesirable because they excite high frequency
resonance of the fluid in the hydraulic system.

3.1 Sate Feedback ARC
Consider the force dynamics (see Eq. (2.5)):
Fa =ol[kl(iw–xc)–k2Fa +k3u]+d (3.1)

where kl = 2AP2, k2 = Kp and k3 = fiApKXd am

Pknown parameters, 01 = ~ is an unknown parameter, d

denotes general uncertainties arise fi-om unmodeled
dynamics and disturbances, and

u = X.P 4 – sgn(xsP)Fa I AP (3.2)

is the redefined control signal. 01 and d are assumed to
be bounded and their bounds are known:
0< Olm<0< el~ and Id< d~. It should be note that
an extra term ( k2 ) was added to make the model more
general, as this term is used by several other researchers.

Let Fdto denote the desired force and el = Fa – Fd be
the tracking error, a Lyapunov fimction is chosen to be:

12
~ =~el (3.3)

By following a procedure outline in a paper by Yao (Yao
1997), we obtained an ARC control law that consists of
two parts: an adaptive part (w.) and a robust part (uI.). In
particular,

U=zqa+zq$. (3.4)

The adaptive part is chosen to be

~{-kl (iw - ic) + k2Fa
‘la = k3

+.1

(3.5)

‘(~d+plel)),
el~

.
where (31Zis a bounded projected estimate of 01, pl is a
tunable parameter, and the adaptation law is chosen to be

& = y1e1[k1z2-kz~a +kya] where VI >0. The

robust control part is chosen to be:
1

ul~ = -el —(~z1M2(kl(~w –ic)
4~mk3 &l1

–k2Fa + k3u1a)2 +~dM2), (3.6)
El 2

where ~~M is a positive number such that,

~lM 2 61X,Vf, and &l1 and &12 me adjustable small

positive numbers. Using the control law shown in
Eqs.(3.4)-(3.6), it is easy to show that

i) VIS–ple12 +.SII+S12, (3.7)

ii) when d = O, V1S -~e12 + 81zr1 (3.8)
where Z1= el (kl (iw – ic) - k2Fa + k3UIa)). Eq.(3.7)
shows that the system is stable and the fome tracking
error (e]) is bounded. The transient and final tracking
accuracy are adjustable by changing pl, El1 and E12 and
the Lyapunov function is bounded by

V(t) S V(0) exp(–2pl . t) +
2p~

(&~~+s~~)
(1- exp(-~ .t)).

In addition, Eq. (3.8) implies that the f- tracking error
converges to zero if the disturbance (d) vanishes. The
original control signal x~p can then be found from the

Eq. (3.2), i.e.

x~p(t)=
u(t)

P~- sgn(u(t))Fa / AP “
(3.9)

3.2 ~
Since force sensors are usually costly and difficult to

install, a force observer is implemented. This observer
uses three sensors to measure vehicle body acceleration,
wheel acceleration and suspension displacement. The
main advantage of this observer is that its estimation
converges to the true value asymptotically when there is
no sensor noise. From Eq.(2. 1), we have

Fa =m~ic -k$(xw -xc) -c~(~w -iC) (3.10)
Assuming that all the parameters are known and..
XC*Xw -xc are measured, we only need to estimate
Xw- ic to obtain an estimate of Fa. An intuitive

estimation for iw – ic is:
(3.11)~ = Af~ + B@ + L(y - Cf?)

T
where 2=[.?1,?2] , i?l= ;W–~c and ?2= ~w–~c m

the estimated suspension stroke and speed, respectively.
il is the measured accelerations (= [iW,i!c]T), y is the
measured Xw- xc, L is the observer gain, and

‘f=E :lBf=r ~117 ad cf=[l)O] ‘hce
AY, Bf and Cf are constant matrices, they can be used

in the observer without uncertainties. Neglecting sensor
noises and denoting 2 as the estimation error (i.e.,
2 =z–?), we obtain

; =(AJ –LCf)~. (3.12)

With this observer, we can proceed to design a controller
to chive the estimated force ( ~a ) to converge to the desire
force( Fd) asymptotically. The asymptotic observer then
guarantees that Fa, the actual actuator force, also
converges to Fd asymptotically.
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estimated force equation can be written as:

F= = 131[kl?2– k2~a + k3u]+ d +C#ll~l
(3.13)

+(c~a2+ c#jk2 +Olkl)Z2
Note thatEq. (3.13) has extra terms in comparison to Eq.
(3.1). The output f~dback ARC controller can be
designed in a fashion similar to that of the state f-
ARC except that a nonlinear damping term is added to
counteract the destabilizing em of the observer @rstic
1995). The Lyapunov fimction is chosen to be

V=~e12+ZTP?. (3.14)

where P is the positive definite solution of a Lyapunov
equation P(AY -LCf)+(Af –LCf)TP=-Q. The

[

Pll+~ll o
matrix Q =

o 1
where all, a12 w

plz +012 ‘

arbitrary positive numbers and pl 1,pl 2 are control
parameters that can be freely selected. The ARC control
law for u(r) consists of three parts: an adaptive part, a
robust part, and a darnping part. In particular,

u = Ula+ ul~ + ul~ (3.15)
The adaptive part is chosen as

~(k2&-k122 +~~d-~el)
‘la = k3

(3.16)

where 61Z is a bounded projected estimate of fi and PI
is used fir tuning the controller. The adaptation law is

chosen to be al = ylrl = y1e1[k122– k2F. + ~3ual,

wh~ Y1 >0 is a tunable gain. The robust control part

is chosen as:
1 ,.

qs .–— e1{~K2(k122 – k2Fa
401mk3 El1

(3.17)

+k3ula)2 + ~dM2},
El2

where &l1 and &lz are small positive numbers. Final]y,
the damping part is chosen as

1
uld = –

1
— el {—
401mk3

(c~a~)2 +~@2}, (3.18)
P11 P12

where pl 1,p12>0, K is the bound of the projected
estimation error, and @ is a bound of the absolute value
of the term multiplying @ in Eq.(3. 13).

With the above defined control law, it can be shown
that

i) V<–ple12 +Ell +E12 -C11Z12 – crl@ (3.19)

and

ii) V<-W+blzq, when d=O, (3.20)

where W = ~(el)2 + q 1212+cr12.Z22. Eq. (3.19)

implies that the estimated force tracking error ( ~a- Fd) is
bounded and its transient and final tracking accuracy can
be adjusted by changing pl, c11 and .512. In addition,
Eq.(3.20) implies that the estimated form tracking error
converges to zero if no disturbance (d) is present.

Since F= is not measured, x~p cannot be calculated

from Eq. (3.9). We choose to use an alternative approach
which allows discontinuity in the control law. For
example, x~Pcan be calculated from:

u
‘SP =

(3.21)
~ - sgn(u)(fa – sgn(el)~~)/ Ap

whereVM 2 C$2\, Vr. When Eq. (3.21) is used to

calculate X,p, the inequality in Eq (3.19) and (3.20) will

be preserved.

4. Simulation Results
Two sets of simulations were carried out to verifi the

perfbnnance of the proposed Active Suspension (AS)
controller. In the first set of simulations, we assumed
that all the states are available and the actuator force is
also measured. In the second set of simulations, only
three signals are assumed to be measured: sprung and
unsprung mass accelerations, and suspension stroke.

We simulated the following systems: a passive
suspension (the worst case), an AS with PID sub-loop, an
AS with ARC sub-loop and an LQ AS without sub-loop
dynamics (the best case). The main loop controllers tix
all of the AS cases are designed using standard LQ
techniques. The cost linction was chosen to be:

m

JJ= q(xr–xw)2+ l/q(ic)2+q(xw–xc)2

o
(4.1)

+qFa2dt
Four sets of weights were used: [rl ,r2~3] = [500,10,3e-
10], [400,10,3 e-10], [300,10,3e-10] and [200,10,3e-10].
Measurement noise and uncertainty in actuator dynamics
were also created. In particular, the fluid bulk modulus
was assumed to be 75°/0 lower than its nominal value.
Fig. 4.1 shows the cost (integrate Eq.(4.1) for 10 see) of
each design. The values are normalized against the cost
of the passive system. It can be seen that the ARC
controller performs much better than the PID controller.

0s

1- 1
01 I

1 2 3 4
Weight No.

Fig. 4.1 Cost Comparison (Case 1).
In the second (output-feedback) case, only three

measurements were used: XW-XC, .iC, and XW. Hence,
the main loop controller was replaced with an LQG
controller. The force observer described in section 3 was
used to provide force estimates for all the AS designs.
The ARC controller was replaced by the output f-k
ARC controller. Furthermore, a single-loop design
(Engelman et al. 1993) which included a linearized
actuator dynamic was also designed using LQG
techniques. For the state fkedback part of this controller,
the ahve cost timction was modified to include a very
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small weighting on the new control signal (~sp ). For

the observer part, designing a Kahnan filter is
stmightfonvard since data on measurement noises and
road excitations are known. Fig 4.2 shows the
comparisons of cost values (integrate Eq. 4.1 for 10 see)
of each system. It can be seen that the proposed ARC
controller performs best (close to the ideal controller).

COslCmpatisic+w (*2)

;=

0.5I + -& I
‘J~

WeightNo.
Fig 4.2 Cost Comparison (Case2)

Tables 4.1 and 4.2 show details of the simulation
results. A set of data from each case is presented. Except
for the cost (J), other entries in this table are the root
mean square value of the corresponding signal. It could be
seen that the perfonmmce gain by the ARC controller
partially results from its higher controller signal. The
LQG have higher control signal than that of the LQG-PID
controller but petiorms much worst. It can also be seen
that the LQG-ARC controller performs better than the
LQ-ARC controller. This is due to the higher control
signal used by the LQG-ARC controller resulted from the
extra damping term.

Table”4. I-Detail of Simulation Results for Case 1

Passive LQ- LQ- LQ-
ideal PID ARc

Xr –Xw 2.4e-3 1.7e-3 2,3e-03 2.le-3

xc 0.67 0.6 1.0 0.56

2 J 4.9e-2 2,5e-2 4.8e-2 3.le-2

Xsp N/A N/A 3.7e-05 5.2e-5

Table 4.2 Detail Simulation Results for Case 2

Passive LQ- LQ- LQ-
ideal PID ARc LQG

I ‘t’ ‘xv I 2.4e-3 I 1.7c-3 12.3e-3 I 1.8e-3 13.7e-3 I

It should be noted that these controllers may pertbnn
well in simulations if their gains are high enough.
However, it is clear that high gain controllers may cause
instability in actual applications. To ensure that each
controller has some degree of stability margin, extra poles
were added athigh frequency ( 100Hz) and the gain of each
controllers (fm the PID and ARC controllers) wem
maintained so that the system is stable. In addition, a 10
Hz pre-filter was also used to supply id which is
required by the ARC controllers.

5. Conclusions and Future Works
In this paper, we designed a controller fm fbrce

control loop. One of the main benefits of this approach is
that, if a good force control loop is obtained, it is likely
that many of the existing AS controllers can be
implemented with improved performance. A modified
ARC technique was proposed to maintain stability when
fbrce sensor is removed form the system. Simulation
results show that the proposed ARC controllers work
very well compare to a PID controller. These
comparisons are between controllers with the same two-
loop approach. A linear LQG controller that is a single-
loop design was also introduced for comparison.
However, this controller performs poorly.

Future works include experimental verifications and
extra simulations. Simulations using other weights am
necessary to provide a better overview of the performance
improvement.
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