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Adaptive Robust Motion Control of Single-Rod
Hydraulic Actuators: Theory and Experiments

Bin Yao, Member, IEEE, Fanping Bu, John Reedy, and George T.-C. Chiu

Abstract—High-performance robust motion control of
single-rod hydraulic actuators with constant unknown in-
ertia load is considered. In contrast to the double-rod hydraulic
actuators studied previously, the two chambers of a single-rod
hydraulic actuator have different areas. As a result, the dynamic
equations describing the pressure changes in the two chambers
cannot be combined into a single load pressure equation. This
complicates the controller design since it not only increases the
dimension of the system to be dealt with but also brings in the
stability issue of the added internal dynamics. A discontinuous
projection-based adaptive robust controller (ARC) is constructed.
The controller is able to take into account not only the effect of
parameter variations coming from the inertia load and various
hydraulic parameters but also the effect of hard-to-model non-
linearities such as uncompensated friction forces and external
disturbances. The controller guarantees a prescribed output
tracking transient performance and final tracking accuracy in
general while achieving asymptotic output tracking in the presence
of parametric uncertainties. In addition, the zero error dynamics
for tracking any nonzero constant velocity trajectory is shown to
be globally uniformly stable. Extensive experimental results are
obtained for the swing motion control of a hydraulic arm and
verify the high-performance nature of the proposed ARC control
strategy. In comparison to a state-of-the-art industrial motion
controller, the proposed ARC algorithm achieves more than a
magnitude reduction of tracking errors. Furthermore, during
the constant velocity portion of the motion, the ARC controller
reduces the tracking errors almost down to the measurement
resolution level.

Index Terms—Adaptive control, electrohydraulic system,
motion control, robust control, servo control.

I. INTRODUCTION

H YDRAULIC systems have been used in industry in a wide
number of applications by virtue of their small size-to-

power ratios and the ability to apply very large force and torque;
examples like electrohydraulic positioning systems [1], [2], ac-
tive suspension control [3], and industrial hydraulic machines
[4]. However, hydraulic systems also have a number of char-
acteristics which complicate the development of high-perfor-
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mance closed-loop controllers. The dynamics of hydraulic sys-
tems are highly nonlinear [5]. Furthermore, the system may be
subjected to nonsmooth and discontinuous nonlinearities due to
control input saturation, directional change of valve opening,
friction, and valve overlap. Aside from the nonlinear nature of
hydraulic dynamics, hydraulic systems also have a large extent
of model uncertainties. The uncertainties can be classified into
two categories:parametric uncertaintiesanduncertain nonlin-
earities. Examples of parametric uncertainties include the large
changes in load seen by the system in industrial use and the
large variations in the hydraulic parameters (e.g., bulk mod-
ulus) due to the change of temperature and component wear [6].
Other general uncertainties, such as the external disturbances,
leakage, and friction, cannot be modeled exactly and the non-
linear functions that describe them are not known. These kinds
of uncertainties are called uncertain nonlinearities. These model
uncertainties may cause the controlled system, designed on the
nominal model, to be unstable or have a much degraded perfor-
mance. Nonlinear robust control techniques, which can deliver
high performance in spite of both parametric uncertainties and
uncertain nonlinearities, are essential for successful operations
of high-performance hydraulic systems.

In the past, much of the work in the control of hydraulic sys-
tems has used linear control theory [1], [2], [7]–[9] and feedback
linearization techniques [10], [11]. In [3], Alleyne and Hedrick
applied the nonlinear adaptive control to the force control of
an active suspension driven by a double-rod cylinder, in which
only parametric uncertainties of the cylinder are considered.
They demonstrated that nonlinear control schemes can achieve
a better performance than conventional linear controllers.

In [12], the adaptive robust control (ARC) approach proposed
by Yao and Tomizuka in [13]–[15] was generalized to provide
a rigorous theoretic framework for the high performance robust
control of a double-rod electrohydraulic servo system by taking
into account the particular nonlinearities and model uncertain-
ties of the electrohydraulic servo systems. The presented ARC
scheme uses smooth projections [13], [16] to solve the design
conflicts between adaptive control technique and robust con-
trol technique, which is technical and may not be convenient
for practical implementation. In [17], the recently proposed dis-
continuous projection-method-based ARC design [15] is gen-
eralized to solve the practical problems associated with smooth
projections [12].

This paper continues the work done in [17] and will gen-
eralize the results to the electrohydraulic systems driven by
single-rod actuators. In contrast to the double-rod hydraulic
actuators studied in [17], the areas of the two chambers of a
single-rod hydraulic actuator are different. As a result, the two
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dynamic equations relating the pressure changes in the two
chambers to the servovalve opening cannot be combined into
a single equation that relates the load pressure to the valve
opening as in [3], [5], [12], and [17]. This complicates the
controller design since it not only increases the dimension of
the system to be dealt with but also brings in the stability issue
of the resulting internal dynamics. A discontinuous projection
based ARC controller will be constructed to handle various
parametric uncertainties and uncertain nonlinearities. Stability
of the resulting internal dynamics will be discussed and it will
be shown that the zero error dynamics under nonzero constant
velocity tracking is globally uniformly stable, which is thefirst
theoretical result available in the literature on the stability of
zero error dynamics for single-rod hydraulic actuators.

To test the proposed advanced nonlinear ARC strategy, a
three-link robot arm (a scaled-down version of the industrial
hydraulic machine arm) driven by three single-rod hydraulic
cylinders has been set up. Extensive comparative experimental
results have been obtained for the swing motion control of
the hydraulic arm. Experimental results verify the high-per-
formance nature of the proposed nonlinear ARC approach; in
comparison to a state-of-the-art industrial motion controller,
the proposed ARC algorithm achieves more than a magnitude
reduction of tracking errors. Furthermore, during the constant
velocity portion of the motion, the ARC controller reduces the
tracking errors almost down to the measurement resolution
level.

This paper is organized as follows. Problem formulation and
dynamic models are presented in Section II. The proposed non-
linear ARC strategy is given in Section III. Experimental setup
and results are presented in Section IV, and conclusions are
drawn in Section V.

II. PROBLEM FORMULATION AND DYNAMIC MODELS

The system under consideration is the same as that in [12] and
[17], but with a single-rod hydraulic cylinder. The schematic of
the system is depicted in Fig. 1. The goal is to have the inertia
load to track any specified motion trajectory as closely as pos-
sible; an examples would be a machine tool axis [18].

The dynamics of the inertia load can be described by

(1)

where
displacement of the load;
mass of the load;

and pressures inside the two chambers of the
cylinder;

and ram areas of the two chambers;
combined coefficient of the modeled
damping and viscous friction forces on
the load and the cylinder rod;
modeled Coulomb friction force;
lumped uncertain nonlinearities due to ex-
ternal disturbances, the unmodeled friction
forces, and other hard-to-model terms.

Fig. 1. Single-rod electrohydraulic servo systems.

The actuator (or the cylinder) dynamics can be written as [5]

(2)

where
total control volume of the first
chamber;
total control volume of the second
chamber;

and two chamber volumes when ;
effective bulk modulus;
coefficient of the internal leakage of the
cylinder;
coefficient of the external leakage of
the chamber;
coefficient of the external leakage of
the chamber;
supplied flow rate to the forward (or
cylinder-end) chamber;
return flow rate of the return (or
rod-end) chamber.

and are related to the spool valve displacement of the
servovalve by [5]

for

for
(3)

where
, flow gain coefficients of the servovalve;

supply pressure of the fluid;
tank or reference pressure.

In the experiments, the valve dynamics are neglected and the
servovalve opening is directly related to the control input
by a known static mapping. However, for the completeness of
the theory development, the valve dynamics used by other re-
searchers [19] is included in the following to illustrate how to
take into account the effect of valve dynamics if necessary. As
in [19], the spool valve displacement is related to the control
input by a first-order system given by

(4)
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where and are the time constant and gain of the servovalve
dynamics, respectively.

As in [17], to minimize the numerical error and facilitate the
gain-tuning process, constant scaling factors and are
introduced to the pressures and the valve opening, respectively;
the scaled pressures are , ,

, , and the scaled valve
opening is . Define the state variables

, the
entire system, (1)–(4), can be expressed in a state-space form as

(5)

where , ,
, ,

, , ,
, ,

, , ,
and the nonlinear functions and are defined by

for

for (6)

in which and is the sign function.
Given the desired motion trajectory , the objective is

to synthesize a bounded control inputsuch that the output
tracks as closely as possible in spite of various

model uncertainties.

III. ARC OF SINGLE-ROD HYDRAULIC ACUTATORS

A. Design Model and Issues to be Addressed

In general, the system is subjected to parametric uncertain-
ties due to the variations of , , , , , , ,

, and . For simplicity, in this paper, we only consider the
parametric uncertainties due to, , the leakage coefficients

, , and , and (the nominal value of the distur-
bance ). Other parametric uncertainties can be dealt with in the
same way if necessary. In order to use parameter adaptation to
reduce parametric uncertainties for an improved performance,

it is necessary to linearly parametrize the state-space equation
(5) in terms of a set of unknown parameters. To achieve this, de-
fine the unknown parameter set as

, , ,
, , . The

state-space equation (5) can, thus, be linearly parametrized in
terms of as

(7)

where .
For simplicity, following notations are used throughout the

paper: is used for theth component of the vectorand the
operation for two vectors is performed in terms of the cor-
responding elements of the vectors. The following practical as-
sumption is made.

Assumption 1:The extent of parametric uncertainties and
uncertain nonlinearities are known, i.e.,

(8)

where
and are known.

Physically, and . So it is also assumed that
and .

At this stage, it is readily seen that the main difficulties in con-
trolling (7) are: 1) the system has unmatched model uncertain-
ties since parametric uncertainties and uncertain nonlinearities
appear in equations that do not contain control input; this diffi-
culty can be overcome by employing backstepping ARC design
as done in the following; 2) the nonlinear static flow mappings

and are functions of also and arenonsmoothsince they
depend on the sign of ; this prohibits the direct application of
the general results in [15] to obtain an ARC controller, which
need the differentiability of all terms; and 3) as will become
clear later, the “relative degree” [14] of the system is four. Since
the system state has a dimension of five, there exists a one-di-
mensional internal dynamics after an ARC controller is synthe-
sized via backstepping [20]. It is, thus, necessary to check the
stability of the resulting internal dynamics, which is a unique
feature associated with the control of single-rod hydraulic actu-
ators.

In the following, the discontinuous projection-based ARC de-
sign for double-rod hydraulic cylinders [17] will be generalized
to overcome the first two difficulties to obtain an ARC controller
for (7). To this end, the following notations are introduced.
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B. Notations and Discontinuous Projection Mapping

Let denote the estimate ofand the estimation error (i.e.,
). Viewing (8), a simple discontinuous projection can

be defined [21], [22] as

if and
if and
otherwise

(9)

where . By using an adaptation law given by

(10)

where , is a
diagonal adaptation rate matrix, andis an adaptation function
to be synthesized later. It can be shown [13] that for any adapta-
tion function , the projection mapping used in (10) guarantees

(11)

For simplicity, let , , and represent the calculable part
of the , , and , respectively, which are given by

(12)

C. ARC Controller Design

The design parallels the recursive backstepping ARC design
in [15] and [17] with an added difficulty as follows.

Step 1: Noting that the first equation of (7) does not have any
uncertainties, an ARC Lyapunov function can be constructed
for the first two equations of (7) directly. Define a switching-
function-like quantity as

(13)

where is the output tracking error, is
the desired trajectory to be tracked by, and is any positive
feedback gain. Since is a
stable transfer function, making small or converging to zero is
equivalent to making small or converging to zero. Therefore,
the remainder of the design is to makeas small as possible
with a guaranteed transient performance. Differentiating (13)
and noting (7)

(14)

Define the load pressure as . It is, thus, clear
from (14) that can be thought as the virtual control input to
(14), and the resulting equation has almost the same form as the
design equation in Step 1 of the ARC algorithm for double-rod

actuators in [17]. Thus, the same ARC design technique can be
used to construct an ARC control function
for the virtual control input such that the output tracking
error converges to zero or a small value with
a guaranteed transient performance. The resulting control func-
tion and adaptation function are given
by

(15)

where a positive-definite (p.d.) constant diagonal matrix
to be specified later, is any positive scalar, is a positive
weighting factor, and

(16)

In (15), functions as an adaptive control law used to achieve
an improved model compensation through online parameter
adaptation given by (10), and as a robust control law, in
which is any function satisfying the following conditions:

condition 1

condition 2
(17)

where is a positive design parameter which can be arbitrarily
small. Essentially, condition 1 of (17) represents the fact that

is synthesized to dominate the model uncertainties coming
from both parametric uncertaintiesand uncertain nonlineari-
ties with a control accuracy measured by the design parameter

, and condition 2 is to make sure that is dissipating in
nature so that it does not interfere with the functionality of the
adaptive control part . How to choose to satisfy con-
straints like (17) can be found in [14] and [15].

Let denote the input discrepancy. For
the positive-semidefinite (p.s.d.) function defined by

, using the same technique as in [17], it can
be shown that

(18)

Step 2: In Step 1, as seen from (18), if , output
tracking would be achieved by noting (17) and using the stan-
dard ARC arguments [15]. Therefore, Step 2 is to synthesize a
virtual control function such that converges to zero or a small
value with a guaranteed transient performance as follows. From
(7) and (15)

(19)
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where

(20)

In (20), represents the calculable part ofand can be used
in the control function design while is the incalculable part
due to various uncertainties and has to be dealt with by certain
robust feedback as follows.

In (19), the valve opening cannot be treated as the virtual
control input for dynamics since both and

contain ; this important fact has been
neglected in most of the previous research due to certain tech-
nical requirements. Here, we use a similar strategy as in [12] and
[17] to overcome this technical difficulty. Namely, a new virtual
control input is introduced as

(21)

By doing so, it is readily seen that (19) has essentially the same
structure as the design equation in Step 2 of the ARC design [17]
for double-rod actuators (although (19) is much more compli-
cated in form). Thus, the same design strategy can be applied
to construct a virtual ARC control law
for . The resulting ARC control function and adaptation
function are given by

(22)

where is a positive weighting factor, is a constant,
and are p.d. constant diagonal matrices, and

(23)

Similar to (17), is a robust control function satisfying the
following two conditions:

condition 1

condition 2

(24)

in which is a positive design parameter.
Let be the input discrepancy. Consider the

augmented p.s.d. function given by .
Noting (18), (19), and (22), by straightforward substitutions as
in [17], it can be shown that

(25)

where denotes under the condition that (or
).

Step 3: Noting the last equation of (7), Step 3 is to synthesize
an actual control law for such that tracks the virtual con-
trol function with a guaranteed transient performance. The
problem here is that is not differentiable at since it
contains . Fortunately, noting that is differentiable
anywhere except at the singular point of and iscontin-
uous everywhere, its left and right derivatives at exist
and are finite. Thus, an actual control inputcan still be syn-
thesized to accomplish the job as follows.1 By the definitions of

, , and , it can be checked out that the derivative of
is given by

(26)

where ,
, and

. Noting (7) and (12), can be
grouped into three terms as

(27)

where

1Such an input may experience a finite magnitude jump atx = 0, but is
allowed in implementation.
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(28)

In (27), and represent the calculable and incalculable
parts of , respectively, except the terms involving the control
input . Similarly, can be grouped into two terms as

(29)

where

(30)

Thus, similar to (19), the dynamics can be obtained as

(31)

To design an ARC law for the control inputsuch that
, converge to zero or small values, let us consider the

augmented p.s.d. function given by

(32)

where . Noting (25) and (31) with (28) and (30), it is
straightforward to show that

(33)

where denotes under the condition that (or
), and

.
In viewing (33), the following ARC control law

and the associated adaptation function are proposed:

(34)

where , and are p.d. constant diagonal matrices,
and is a robust control function satisfying

1)

2)

(35)

in which is a design parameter.

D. Main Results

Theorem 1: If controller parameters
, and

in (15), (22), and (34) are chosen such that
, then, the control

law (34) with the adaptation law (10) guarantees the following.

1) In general, the output tracking error and the trans-
formed states are bounded. Fur-
thermore, given by (32) is bounded above by

(36)

where and
.

2) If after a finite time , , i.e., in the presence of
parametric uncertainties only, then, in addition to results
in 1), asymptotic output tracking (or zero final tracking
error) is achieved, i.e., as .

Remark 1: Results in 1) of Theorem 1 indicate that the pro-
posed controller has an exponentially converging transient per-
formance with the exponentially converging rate and the
final tracking error being able to be adjusted via certain con-
troller parameters freely in aknownform; it is seen from (36)
that can be made arbitrarily large, and , the bound
of (an index for the final tracking errors), can be made ar-
bitrarily small by increasing feedback gains
and/or decreasing controller parameters . Such
a guaranteed transient performance is especially important for
practical applications since execute time of a run is short. The-
oretically, this result is what a well-designed robust controller
can achieve. In fact, when the parameter adaptation law (10) is
switched off, the proposed ARC law becomes a deterministic
robust control law and results 1) of the Theorem remain valid
[13], [14].

Result 2) of Theorem 1 implies that the effect of parametric
uncertainties can be eliminated through parameter adaptation
and an improved performance is obtained. Theoretically, result
2) is what a well-designed adaptive controller can achieve.

Remark 2: It is seen from (36) that the transient output
tracking error may be affected by the initial value , which
may depend on the controller parameters, also. To further
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reduce transient tracking error, the reference trajectory initial-
ization can be used as in [14], [15], and [20]. Namely, instead
of simply letting the reference trajectory for the controller be
the actual desired trajectory or position [i.e., ],
the reference trajectory can be generated using a stable
fourth-order filter with four initials chosen
as

(37)

Such a trajectory initialization guarantees that
and . Thus, the transient output tracking

error is reduced. It is shown in [14] and [20] that such a trajec-
tory initialization is independent from the choice of controller
parameters and and can be performed offline once the initial
state of the system is determined.

Proof of Theorem 1:Substituting the control law (34) into
(33), it is straightforward to show that

(38)

Thus, following the standard discontinuous projection-based
ARC arguments as in [15] and [17], the theorem can be
proved.2

E. Internal Dynamics and Zero Dynamics

Theorem 1 shows that, under the proposed ARC con-
trol law, the four transformed system state variables,

, are bounded, from which
one can easily prove that the position, the velocity , and
the load pressure are bounded. However,
since the original system (7) has a dimension offive, there
exists a one-dimensional internal dynamics, which reflects the
physical phenomenon that there exist infinite number sets of
pressures in the two chambers of the single-rod actuator to
produce the same required load pressure . In
other words, the fact that the load pressure
and the valve opening are bounded does not necessarily
imply that the pressures and in the two chambers of the
single-rod cylinder are bounded. It is, thus, necessary to check
the stability of the resulting internal dynamics to make sure
that the two pressures and are bounded for a bounded

2The details are quite tedious and can be obtained from the authors.

control input in implementation. Although simulation and
experimental results seem to verify that the two pressures
are indeed bounded when tracking a nonzero speed motion
trajectory, it is of both practical and theoretical interest to see if
we can prove this fact, which is the focus in this section.

Rigorous theoretical proof of the stability of the internal dy-
namics of a nonlinear system tracking an arbitrary time-varying
trajectory is normally very hard and tedious, if not impossible
[23]. Bearing this fact in mind, in the following, we take the
following pragmatic approach, which is a standard practice in
the nonlinear control literature [23]. Namely, instead of looking
at the stability of the general internal dynamics directly, we will
check the stability of the zero error dynamics for tracking certain
typical motion trajectories. For the particular problem studied
in this paper, it is easy to verify that the zero error dynamics for
tracking a desired trajectory is the same as the internal
dynamics when . Thus, if the zero error dynamics
is proven to be globally uniformly asymptotically stable, then,
it is reasonable to expect that all internal variables are bounded
when the proposed ARC law is applied, sinceis guaranteed to
converge to a small value very quickly by Theorem 1.

Since most industrial operations of hydraulic cylinders in-
volve the tracking of a constant velocity trajectory (e.g., the
large portion of the typical point-to-point movement is under
constant velocity tracking as shown in the experiments), we will
focus on the zero error dynamics associated with the tracking
of a nonzero constant velocity trajectory. For these operations,
compared with the large control flows needed to maintain the
required speed, the leakage flows are typically very small and
can be neglected in the analysis for simplicity. The results are
summarized in the following theorem.

Theorem 2: Assume that the leakage flows can be neglected
and the system is absent of uncertain nonlinearities, i.e.,

and in (7). When tracking any nonzero
constant velocity trajectory (i.e., is a nonzero
constant), the following results hold.

1) The corresponding pressures of the two chambers and the
valve opening have a unique equilibrium; when ,
the unique equilibrium point is given by

(39)

and when ,
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(40)

where , , and are the equilibrium values of
the two pressures and and the valve opening ,
respectively.

2) The resulting zero error dynamics is globally3 uniformly
asymptotically stable with respect to the equilibrium
values given by (39) or (40).

Proof of Theorem 2:When tracking a trajectory with a
constant velocity of perfectly, the actual position and ve-
locity would be and , respectively.
From (7), under the assumption made in Theorem 2, the equi-
librium values of the two pressures and the valve opening should
satisfy the following equations:

(41)

When , , which is physically intuitive
(for positive constant velocity, the valve opening has to
be positive). Thus, and

. It is, thus, straightfor-
ward to verify that (39) is the unique solution to (41). Similarly,
when , and it can be verified that (40) is the
unique solution to (41). This completes the proof of 1) of the
theorem.

To prove 2) of the theorem, in the following, we will consider
the case when only since the case for can
be worked out in the same way. The zero error dynamics—the
internal dynamics for tracking such a trajectory perfectly (i.e.,

and )—is described by

(42)

From the first equation of (42),

(43)

and

(44)

Substituting the last two equations of (42) into (44), the valve
opening of the zero error dynamics is obtained as

(45)

Noting that , , and
all have to be positive to be physically

meaningful,4 from (45), for positive . Thus,

and (46)

3For all pressures within physical limits.

Let and be the pressure pertur-
bations from their equilibrium values. Substituting (45) into the
last equation of (42), we have

(47)

Noting (46), (43), and (39) for ,

(48)

Thus, (47) becomes

(49)

where

(50)

Noting that , , , and are all positive func-
tions, defined by (50) is a positive function and is uniformly
bounded below by a positive number, i.e., there exists a
such that . Thus, from (49), the derivative of the Lya-
punov function is

(51)

which is negative definite with respect to . Thus, the origin
of the dynamics is globally uniformly asymptotically stable,
and is bounded. Similarly, it can be proved that the origin
of the dynamics is also globally uniformly stable. This com-
pletes the proof of 2) of the theorem.

Remark 3: For the regulation problem (i.e., the desired tra-
jectory is a constant), , and it is seen from (41)
that the equilibrium pressures are not unique; in fact, any pres-
sures and which satisfy

are a set of equilibrium values. Thus, the zero dynamics
for the regulation problem will be at most marginally stable but
not asymptotically stable. Further study is needed for the sta-
bility of the internal dynamics for the regulation problem, which
is one of the focuses of our future research.

IV. COMPARATIVE EXPERIMENTS

A. Experiment Setup

To test the proposed nonlinear ARC strategy and study funda-
mental problems associated with the control of electrohydraulic
systems, a three-link robot arm (a scaled-down version of an
industrial hydraulic machine arm) driven by three single-rod
hydraulic cylinders has been set up at the Ray W. Herrick
Laboratory of the School of Mechanical Engineering, Purdue
University, West Lafayette, IN. The three hydraulic cylinders

4h (x ) andh (x ) represent the effect of the control volumes of the two
chambers, which are positive for any operations.g andg represents the flow
gains due to the square roots of pressure drops, which are positive.
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Fig. 2. Experimental setup.

(Parker D2HXTS23A, DB2HXTS23A, and DB2HXT23A)
are controlled by two proportional directional control valves
(Parker D3FXE01HCNBJ0011) and one servovalve (Parker
BD760AAAN10) manufactured by Parker Hannifan Company.
Currently, experiments are performed on the swing motion con-
trol of the arm (or the first joint) with the other two joints fixed.
The schematic of the system is shown in Fig. 2. The swing
circuit is driven by a single-rod cylinder (Parker D2HXTS23A
with a stroke of 11 in) and controlled by the servovalve.
The cylinder has a built-in LVDT sensor, which provides the
position and velocity information of the cylinder movement.
Pressure sensors (Entran’s EPXH-X01-2.5KP) are installed on
each chamber of the cylinder. Due to the contaminative noises
in the analog signals, the effective measurement resolution for
the cylinder position is around 1 mm and the resolution for the
pressure is around 15 lbf/in. Since the range of the velocity
provided by the LVDT sensor is too small (less than 0.09 m/s),
backward difference plus filter is used to obtain the needed
velocity information at high-speed movement. All analog
measurement signals (the cylinder position, velocity, forward
and return chamber pressures, and the supplied pressure) are
fed back to a Pentium II PC through a plugged-in 16-bit A/D
and D/A board. The supplied pressure is 1000 lbf/in.

B. System Identification

For the swing motion shown in Fig. 2, due to the nonlinear
transformation between the joint swing angleand the cylinder
position , the equivalent mass of a constant swing in-
ertia seeing at the swing cylinder coordinate depends on the
swing angle or the cylinder position as well. However, by
restricting the movement of the swing cylinder in its middle
range, this equivalent mass will not change much and, thus,
can be treated as constant as assumed in the paper; the equiva-
lent mass is around 2200 kg for the no-load situation. Although
tests have been done to obtain the actual friction curve shown
in Fig. 3, for simplicity, friction compensation is not used in
the following experiments [i.e., let in (1)] to test
the robustness of the proposed algorithm to thesehard-to-model

Fig. 3. Friction force.

terms. The cylinder physical parameters are in ,
in , in , and in .

By assuming no leakage flows and moving the cylinder at dif-
ferent constant velocities, we can back out the static flow map-
ping of the servovalve (3). The estimated flow gains are

in psi s and in psi s ,
where the unit for the servovalve opening is normalized in terms
of the control voltage supplied to the servovalve at the steady
state. Dynamic tests are also performed and reveal that the ser-
vovalve dynamics is of second order with a bandwidth around 10
Hz. The effective bulk modulus is estimated around
Pa.

C. Controller Simplifications

Some simplifications suitable for our experiments have been
made in implementing the proposed ARC control strategy.
First, unlike other experiments [3], [19] where high bandwidth
servovalves with spool position feedback is used, our system
is designed to mimic typical industrial use of electrohydraulic
systems. As such, our system is not equipped with costly
sensors to measure the spool displacement of the servovalve for
feedback. Furthermore, since a standard industrial servovalve
is used, the valve dynamics is actually of a second order with
a not-so-high bandwidth around 10 Hz (as opposed to the
first-order dynamics (4) used by other researchers [19]). This
greatly increases the difficulties in implementing advanced
control algorithms if valve dynamics were to be considered
in the controller design. To deal with this practical issue, the
following pragmatic approach is taken: the valve dynamics are
neglected in the controller design stage (i.e., letting
in the previous ARC controller design) and the closed-loop
stability will be achieved by placing the closed-loop bandwidth
of the ARC controller below the valve bandwidth with a certain
amount of margin as done in the following experiments. With
this simplification strategy, the valve opening is related to
the control input by a static gain given by . Thus,
the ARC control design in Step 3 in Section III-C is not needed
and the actual control inputis directly calculated based on the
control function given by (22) and the static flow mapping
(21) with replaced by . The corresponding adaptation
function is given by in (22). By doing so, the resulting
ARC controller is quite simple and yet sufficient, as shown in
the comparative experimental results.
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The second simplification is made to the selection of the spe-
cific robust control term in (15) and in (22). Let and

be any nonlinear feedback gains satisfying

(52)

in which and is defined in (8). Then,
using similar arguments as in [15] and [17], one can show that
the robust control function of satisfies (15) and
(17), and satisfies (22) and (24).

Knowing the above theoretical results, we may imple-
ment the needed robust control terms in the following two
ways. The first method is to pick up a set of values for

and to calculate the right-hand
side of (52). and can then be determined so that (52)
is satisfied for a guaranteed global stability and a guaranteed
control accuracy. This approach is rigorous and should be
the formal approach to choose. However, it increases the
complexity of the resulting control law considerably since it
may need significant amount of computation time to calculate
the lower bound. As an alternative, a pragmatic approach is
to simply choose and large enough without worrying
about the specific values of , and .
By doing so, (52) will be satisfied for certain sets of values of

, and , at least locally around the
desired trajectory to be tracked. In this paper, the second ap-
proach is used since it not only reduces the online computation
time significantly, but also facilitates the gain tuning process
in implementation.

D. Comparative Experimental Results

Three controllers are tested for comparison:
1) ARC: This is the controller proposed in this paper and de-

scribed in previous sections with the simplification outlined in
Section IV-C. For simplicity, in the experiments, only two pa-
rameters, , and , are adapted; the first parameter represents
the effect of the equivalent mass and the second parameter repre-
sents the effect of the nominal value of the lumped disturbance.
The effect of leakage flows is neglected to test the performance
robustness of the proposed algorithm to these terms. Since the
valve dynamics is neglected and their bandwidth is not so high
(around 10 Hz), not so large feedback gains are used to avoid
instability; the control gains used are .
The scaling factors are and
respectively. Weighting factors are . Adaptation
rates are set at .

2) Deterministic Robust Control (DRC):This is the same
control law as ARC but without using parameter adaptation, i.e.,
letting . In such a case, the proposed ARC con-
trol law becomes a deterministic robust control law [15].

3) Motion Controller: This is the state-of-the-art industrial
motion controller (Parker’s PMC6270ANI two-axis motion
controller) that was bought from Parker Hannifin Company
along with the Parker’s cylinder and valves used for the
experiments. The controller is essentially a proportional plus
integral plus derivative (PID) controller with velocity and
acceleration feedforward compensation. Controller gains are
obtained by strictly following the gain tuning process stated in
theServo Tuner User Guidecoming with the motion controller
[24]. The tuned gains are

, which represent the
P-gain, I-gain, D-gain, the gain for velocity feedforward
compensation, and the gain for acceleration feedforward
compensation, respectively.

The three controllers are first tested for a slow point-to-point
motion trajectory shown in Fig. 4, which has a maximum
velocity of m/s and a maximum acceleration of

m/s . The tracking errors are shown in Fig. 5. As
seen, the proposed DRC and ARC have a better performance
than the motion controller in terms of both transient and final
tracking errors. Due to the use of parameter adaptation as shown
in Fig. 8, the final tracking error of ARC is reduced almost
down to the position measurement noise level of 1 mm while
DRC still has a slight offset. This illustrates the effectiveness
of using parameter adaptation, although the estimates do not
converge to their true values due to other modeling errors, such
as the neglected friction force. The pressures of ARC are shown
in Fig. 6, which are regular and, as predicted, are bounded. The
control input of ARC is shown in Fig. 7, which is regular.

To test the performance robustness of the proposed algo-
rithms to parameter variations, a 45-kg load is added at the
end of the robot arm, which increases the equivalent mass
of the cylinder to 4000 kg. The tracking errors are shown in
Fig. 9. As seen, even for such a short one-run experiment, the
adaptation algorithm of the ARC controller is able to pick up
the change of the inertial load (the parameter estimateshown
in Fig. 10 drops quicker than the one in Fig. 8) and an improved
performance is achieved in comparison to the nonadaptive
DRC. Again, both ARC and DRC exhibit better performance
than the motion controller.

The three controllers are then run for a fast point–point mo-
tion trajectory shown in Fig. 4, which has a maximum velocity
of m/s and an acceleration of m/s ; both
are near their physical limits. The tracking errors are shown in
Fig. 11. As seen, the motion controller cannot handle such an ag-
gressive movement well and a large tracking error around 15–20
mm is exhibited during the constant high-speed movement. In
contrast, the tracking error of the proposed ARC during the en-
tire run is kept within 5 mm. Furthermore, the tracking error
goes back to the measurement noise level of 1 mm very quickly
after the short large acceleration and deceleration periods. As
seen from the transient pressures of ARC shown in Fig. 12 and
the control input shown in Fig. 13, the system is actually at its
full capacity during the short large acceleration and decelera-
tion periods. During the acceleration period, the control input
exceeds the maximal output voltage of 10 V while the pressure

reaches close to the supplied pressure of 6.897 MPa, and
during the deceleration period, is down to reference pressure
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Fig. 4. Point-to-point motion trajectories.

Fig. 5. Tracking errors for slow point-to-point motion without load.

Fig. 6. Pressures for slow point-to-point motion without load.

Fig. 7. Control input for slow point-to-point motion without load.

Fig. 8. Parameter estimation for slow point-to-point motion without load.

Fig. 9. Tracking errors for slow point-to-point motion with load.

Fig. 10. Parameter estimation for slow point-to-point motion with load.

Fig. 11. Tracking errors for fast point-to-point motion without load.
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Fig. 12. Pressures for fast point-to-point motion without load.

Fig. 13. Control input for fast point-to-point motion without load.

Fig. 14. Parameter estimation for fast point-to-point motion without load.

Fig. 15. Tracking errors for fast sine-wave motion with load.

Fig. 16. Pressures for fast sine-wave motion without load.

while reaches the supplied pressure of 6.897 MPa. Despite
these difficulties, ARC performs very well as seen in Fig. 11.
The parameter estimates are shown in Fig. 14.

Comparative experiments between ARC and DRC are also
run for tracking sinusoidal motion trajectories with different fre-
quencies. For example, the tracking errors for tracking a 1/4-Hz
sinusoidal trajectory of with load are shown
in Fig. 15. As seen, ARC performs better than DRC, which il-
lustrates the effectiveness of using parameter adaptation. The
tracking error of ARC is very small, mostly around the measure-
ment resolution of 1 mm, which verifies the high-performance
nature of the proposed ARC control strategy. The pressures of
ARC are shown in Fig. 16, which are bounded but experience
an abrupt change around when the de-
sired velocity changes the direction at those instances. This re-
sult qualitatively agrees with the result predicted in 1) of The-
orem 2, where the equilibrium values for pressures for positive
desired velocity tracking are much different from the equilib-
rium values for negative desired velocity tracking.

V. CONCLUSIONS

In this paper, a discontinuous projection-based ARC con-
troller has been developed for high-performance robust control
of electrohydraulic systems driven by single-rod actuators.
The proposed ARC controller takes into account the particular
nonlinearities associated with the dynamics of single-rod hy-
draulic actuators and uses parameter adaptation to eliminate the
effect of unavoidable parametric uncertainties due to variations
of inertia load and various hydraulic parameters. Uncertain
nonlinearities such as external disturbances and uncompen-
sated friction forces are effectively handled via certain robust
feedback for a guaranteed robust performance. The controller
achieves a guaranteed transient performance and final tracking
accuracy for the output tracking while achieving asymptotic
output tracking in the presence of parametric uncertainties
only. Furthermore, it is shown that the zero error dynamics for
tracking any nonzero constant velocity trajectory is globally
uniformly stable. Extensive comparative experimental results
are obtained for the swing motion of a hydraulic arm. Ex-
perimental results verify the high-performance nature of the
proposed ARC strategy.
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