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Abstract—Dynamic routing is desirable because of its substan-
tial improvement in communication bandwidth and intelligent
adaptation to faulty links and congested traffic. However, im-
plementation of adaptive routing in a network-on-chip system
is not trivial and is further complicated by the requirements of
deadlock-free and real-time optimal decision making. In this pa-
per, we present a deadlock-free routing architecture which em-
ploys a dynamic programming (DP) network to provide on-the-fly
optimal path planning and network monitoring for packet switch-
ing. Also, a new routing strategy called k-step look ahead is
introduced. This new strategy can substantially reduce the size
of routing table and maintain a high quality of adaptation which
leads to a scalable dynamic-routing solution with minimal hard-
ware overhead. Our results, based on a cycle-accurate simulator,
demonstrate the effectiveness of the DP network, which outper-
forms both the deterministic and adaptive-routing algorithms in
average delay on various traffic scenarios by 22.3%. Moreover, the
hardware overhead for DP network is insignificant, based on the
results obtained from the hardware implementations.

Index Terms—Adaptive routing, Bellman equation, dynamic
programming (DP), DP network, network-on-chip (NoC).

I. INTRODUCTION

INTERCONNECT performance is rapidly deteriorating with

the continuous scaling in technology processes. As pre-

dicted by the International Technology Roadmap for Semicon-

ductors (ITRS) in Fig. 1, there is a significant performance

gap between interconnection RC delay and the gate delay, and

this gap will be increasing exponentially (9:1 with the 65-nm

technology, according to ITRS 2005 report [1]). The gap will

continue to grow even with the help of new interconnect mate-

rials and aggressive interconnect optimization [2], [3]. Further-

more, because of the tightly packed wires, capacitances that are

attributed to interconnect parasitic also increase drastically. As

a result, multilevel interconnect networks have become the pri-
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Fig. 1. Projected relative delay for local and global wires and for logic gates
in technologies of the near future. [1].

mary limit on the productivity, performance, energy dissipation,

and signal integrity of gigascale integration [4].

Recently, network-on-chip (NoC) has been proposed as a

promising solution to the increasingly complicated on-chip

communication challenges [5]–[7]. Such architectures consist

of a network of regular tiles where each tile can be an

implementation of general-purpose processors, DSP blocks,

memory blocks, and embedded reconfiguration modules, etc.

Communications among these tile-based modules are follow-

ing a packet-switch or circuit-switch scheme where messages

are transmitted among the processing elements. The NoC

architecture would be an ideal solution to provide effective

integration for multiple modular blocks [8] and can potentially

mitigate the gigascale integration challenge [9], [10].

In such an NoC environment, the routing of flits (or packets)

becomes a critical issue, which determines the interprocessor

communication performance. Routing provides a protocol for

moving data through the NoC infrastructure and also deter-

mines the path of data transport. The selection of commu-

nication pathway would greatly affect the latency of packets

transmitted from the source to the destination and, therefore,

can have significant impact on the overall traffic flow in the

network. An intelligent routing mechanism is required to uti-

lize the communication bandwidth and minimize transportation

latency.

Dynamic routing (or adaptive routing) has been widely used

in computer and data network design. Utilizing the online

communication patterns and real-time information, dynamic
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routing can effectively avoid hot spots or faulty components

and can reduce the possibility of packets being continuously

blocked. Several partially adaptive-routing algorithms within

the context of NoC were proposed, and the evaluations of their

performances were reported. For example, implementation of

wormhole-adaptive odd–even routing was described in [8],

[11], and [12]. In [13], a minimal routing mechanism with

partially adaptive protocols was proposed. However, implemen-

tation of adaptive routing in an NoC system is not trivial and

is further complicated by the requirements of deadlock-free

and real-time optimal decision making. Also, the previously

proposed adaptive approaches only exploit local traffic which

lead to a moderate improvement in packet latency and traffic

load balancing. Optimal path planning and routing adaptations,

which were considered as hardware expensive as their counter-

parts in computer networks, are rarely studied.

In this paper, we introduce a novel methodology to enable

dynamic routing in an NoC. A massive parallel and high-

throughput network architecture, namely, dynamic program-

ming (DP) network, that provides real-time computation for

shortest path problems is presented. This network couples

with the NoC to enable optimal traffic control based on the

online network status and, thus, provides optimal path planning

and dynamic routing with novel routing mechanics. The DP

network presents a simple, reliable, and efficient methodology

to enable adaptive routing in NoCs. The major contributions of

this paper are as follows.

1) A novel DP network for high speed and parallel shortest

path computation is presented. The characteristics of

the DP network, such as discrete and continuous-time

formulations, network dynamics, and convergence, are

discussed, and two numerical examples are presented

to exemplify the high-gain and versatility properties.

(Section III)

2) Integration of DP network and NoC architecture as a dual

network is introduced. Routing mechanics and routing-

table updating strategies, such as fully optimal and sub-

optimal k-step look ahead (KLSA), are presented. The

dual network enables a tradeoff between the routing op-

timality and memory consumption. Network scalability

and deadlock issues are also discussed. (Section IV)

3) Performances and merits of the DP network are investi-

gated thoroughly through experimental studies based on

SystemC cycle accurate simulator. The new method is

compared with other popular routing schemes, such as

XY and odd–even, in different traffic benchmarks and

large-scale NoC architectures. (Section V). The proposed

DP-network architecture is realized using Xilinx field-

programmable gate array (FPGA) device, and hardware

overhead and performances are evaluated. (Section VI)

II. PRELIMINARIES

A. Routing in NoC

NoC is an architecture inspired by data-communication net-

works, such as Internet, communication [14], and wireless

networks [15], with interprocessor communication supported

by a packet-switched and circuit-switched networks [5], [6].

The basic idea of NoC is to communicate across the chip in

a way similar to that of messages transmitted over the Internet

as the methods and architectures from the computer network

could be borrowed and adopted to the on-chip communication

and can potentially resolve the interconnect scaling challenges.

It has been reported that the NoC architecture can effectively

overcome the long-wire disadvantages from bus architectures

as on-chip switches are connected in a regular topology with

point-to-point basis, and long wires can be eliminated from

the architecture [10]. Also, the architecture is decoupled into

different layers, such as transaction and physical layers. Thus,

the layered architecture enables independent optimization and

design for each independent abstract layer.

Given an NoC architecture, routing becomes the most impor-

tant design strategy to consider, which determines the overall

system performance. Routing strategies can be categorized into

deterministic and adaptive schemes. In a deterministic routing

strategy, source and destination determine the traversal path.

Popular deterministic routing schemes for NoC are source

routing and XY routing, which are also referred to as 2-D

dimension-order routing [16]. In source routing, the source core

specifies the route to the destination. In XY routing, the packet

follows the rows first then moves along the columns toward

the destination, or vice versa. XY routing can be implemented

using algorithmic routing logic but is limited to regular network

topologies.

In an adaptive-routing strategy, the traversal path is decided

on a per-hop basis. Adaptive schemes involve dynamic arbi-

tration and next-hop selection mechanisms, i.e., based on local

link congestions. There are several adaptive-routing algorithms

that have been proposed within the context of NoC [17]. For

example, a methodology that focuses on deadlock-free adaptive

routing has been proposed in [18], which provides a framework

to design routing tables that can outperform the turn-model-

based deadlock-free routing algorithm. Other schemes, such as

the adaptive odd–even [8], [12] and adaptive selection node-

on-path (NoP) [13], also provide routing adaptability but only

exploit local traffic or conditions of neighbors. There is a great

potential to improve communication efficiency by consider-

ing the global traffic at runtime using adaptive routing, such

as global traffic monitoring [19] and adaptive global routing

[20]. However, these approaches employ either a rule-based

approach or heuristics for traffic adaptation. Utilizing an on-

demand shortest path computation could improve the routing

optimality and adaptability effectively.

Minimal-cost (or shortest path) computation is fundamental

among different dynamic-routing strategies. The basic idea is

that the routing algorithm always chooses the least congested

path toward the destination through optimal path planning. The

least congested route can be found based on the shortest path

computation where the path cost is obtained at runtime. Since

the network status, such as traffic intensity and conditions, is

changing at runtime, the dynamic-routing algorithm should be

able to discover the congestions and perform shortest path com-

putation at the same time. A novel DP-network architecture that

provides real-time shortest path computation and optimal path

planning is proposed in this paper. The background of shortest
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TABLE I
NOTATIONS USED IN THIS PAPER

path computation and the parallel computation architecture are

described in the following.

B. Shortest Path Computation

DP is a powerful mathematical technique for making a

sequence of interrelated decisions. Bellman formalized the term

DP and used it to describe the process of solving problems

where one needs to find the best decision one after another

[21], [22]. It provides a systematic procedure for determining

the optimal combination of decisions which takes much less

time than naïve methods [23]. In contrast to other optimization

techniques, such as linear programming (LP), DP does not

provide a standard mathematical formulation of the algorithm.

Rather, DP is a general type of approach to problem solving,

and it restates an optimization problem in recursive form, which

is known as Bellman equation [21], [22]. The Bellman equation

for optimal-value function V (·) is unique and can be defined as

the solution to the recursive equation [22], [24].

The shortest path problem can be described as follows: Given

a directed graph G = (V,A) with n = |V| nodes, m = |A|
edges, and a cost associated with each edge u → v ∈ A, which

is denoted as Cu,v , the edge cost can be defined subject to

different applications, and the cost is defined as the number

of flits or packets in a buffer in this paper. The total cost

of a path p = 〈n0, n1, . . . , nk〉 is the sum of the costs of its

constituent edges: Cost(p) =
∑k

i=1 Ci−1,i. The shortest path of

G from ni to nj is then defined as any path p with cost that is

min
∑k

i=1 Ci−1,i for all constituent edges ni. The notations are

summarized in Table I.

The shortest path problem as a linear optimization problem

can be formally stated. Suppose that node nw is the destination

node and it aims to compute the shortest path cost d(v, w) ∀v ∈
V . To express this as a linear program, the constraint becomes

d(v, w) ≤ d(u, w) + Cu,v to denote that the cost of the shortest

path from any node nv to destination nw is less than or equal

to the shortest path from node nu plus the cost of a direct

path from node nu to node nv . The destination node nw vertex

initially receive a value d(w, w) = 0. Thus, the following LP

formulation can be obtained:

minimize
∑

∀v∈V
d(v, w)

subject to d(v, w) ≤ d(u, w) + Cv,u ∀v, u ∈ V
d(w, w) = 0.

The previous formulation yields the shortest path from any

nodes in V to destination nw, which is known as multiple-

source–single-destination shortest path problem. Solution of an

LP problem can be resolved readily using any standard LP

solver [25].

Alternatively, the shortest path problem can be stated in the

form of Bellman equation, which defines a recursive procedure

in step k and can lead to a simple parallel architecture to

speed up the computation. To find the cost of the shortest path

from nv to nw, it requires the notion of DP value or, namely,

cost-to-go function, which is the expected cost from nv to

nw. This expected cost is being updated recursively based on

the previous estimates until it reaches its optimality criteria.

This algorithm is known as DP. We denote the DP value for

nv to nw at the kth iteration as V (k)(v, w), and V ∗(v, w) is

the optimal DP value, which is equal to the resolved variable

d(v, w) from the aforementioned LP formulation. The Bellman

equation becomes

V (k)(v, w) = min
∀u∈V

{

V (k−1)(u, w) + Cv,u

}

(1)

where V (w, w) = 0. If the recursion is expanded from n0 to

nk, the DP value can be expressed as the total cost of the path

from node n0 to node nk

V ∗
k (n0, nk) = min

{n0,n1,...,nk}∈P k
n0,nk

{

k
∑

i=1

Ci−1,i

}

(2)

where destination node nw = nk and P k
i,j are the set of paths

from ni to nj , all of which have k edges. In addition, the

optimal decisions at each node ni that lead to the shortest path

can be readily obtained from the argument of the minimum

operator at the Bellman equation as follows:

nv = arg min
∀u∈V

{V ∗(u, w) + Cv,u} (3)

where the optimal decision becomes µ(v, w). Both the LP and

DP can yield the optimal solution for shortest path problems.

However, the DP approach presents an opportunity for solving

the problem using a parallel architecture and can greatly im-

prove the computational speed.

III. SHORTEST PATH COMPUTATION USING DP NETWORK

A. General Architecture

Mapping Bellman recursive DP to a parallel computation

platform can be realized with the introduction of a DP-network

architecture. The network has a parallel architecture and can be
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Fig. 2. Unit interconnection in a general DP-network architecture, where 1 ≤
i, j, k ≤ n; k �= i, j. Unit (i, j) outputs the cost-to-go value V (i, j), which
will be the input of other units according to the problem network structure.
At each unit, there are |N (i)| sites, which correspond to the total number of
neighboring nodes of i, to carry out the inference operations as defined in the
site function.

used to derive DP solution through the simultaneous propaga-

tion of successive inferences. Originally, it provides an efficient

platform for checking data inconsistency due to results from

different inference paths [26]. In [26], with close resemblance

to the deterministic-type DP formulation on closed semiring,

Lam and Tong introduced a continuous-time ordinary differ-

ential equation (ODE) network to solve a set of graph opti-

mization problems with an asynchronous and continuous-time

computational framework. This new class of inference network

is inherently stable in all cases, and it has been shown to be

robust and with arbitrarily fast convergence rate [26]. A similar

parallel computational network for DP has also been proposed

in [24]. The network was proven to converge to optimal solution

even under an asynchronous network.

A DP network is formed by the interconnection of self-

contained computational units. Fig. 2 shows the structure of a

unit and the connections in a general inference network. Each

unit is to represent a binary relation 〈i, j〉 between two objects

i and j and is denoted by U(i, j). At each unit, there are |N (i)|
sites, which correspond to the total number of neighboring

nodes of i, to carry out the inference operations, as defined in

the site function. The value of the corresponding relationship

between i and j is then determined by resolving the conflict

among all of the site outputs. In essence, if Sk(i, j) represents

the site output at the kth site and g(i, j) stands for the unit

output of unit (i, j), then

Sk(i, j) = g(i, k) ⊗ g(k, j) (4)

g(i, j) = ⊕∀k∈N (i) Sk(i, j) (5)

where ⊗ is the inference operator for the site function (which is

usually the same at all of the sites) and is the conflict-resolution

operator for the unit function. Also, the computational unit ⊕
denotes the unit which resolves the binary relation (i, j).

The shortest path problem can be mapped to the DP network.

For the original problem graph, each node refers to a processor

unit. However, in the DP network, each computational unit

U(i, j) represents the binary relation, i.e., the expected distance

between node i and j. When the network has converged,

the solution of the problem would be found at the output of

each computational unit. In general, if there are m nodes in

the original graph, then the DP network (based on the Bell-

man equation) will have m − 1 functional units with U(i, j),
where i = 1, 2, . . . , j − 1, j + 1, . . . , m.. By supposing that the

interconnection network has a fixed topology, the multiple-

source–multiple-destination solutions can be obtained by ap-

plying the DP network m times for computing the shortest paths

for m different destinations.

Let g(i, k) = Ci,k and g(k, j) = V (k, j). The architecture of

the DP network can then be defined as follows. A DP network

for the shortest path problem can be stated in terms of network

structure as ⊗ is substituted by “+” and ⊕ is substituted by

“min” as

Sk(i, j) = g(i, k) + g(k, j) (6)

g(i, j) = min
∀k∈N (i)

Sk(i, j). (7)

The computational units are interconnected and resemble the

shortest path problem structure. Each unit represents a node,

and an interconnection represents an edge. With the realization,

the network converges, and the optimal solution can be read-

ily implemented using a distributed network. Note that when

the network resolves, the optimal cost-to-go function can be

obtained as V ∗(i, j) = g(i, j). Also, this network architecture

encompasses the advantage of simplicity and parallelization,

which presents a great opportunity to be applied for on-chip

routing and optimization.

B. Discrete and Continuous-Time Formulations

The recursive formulation of the Bellman equation only

specifies the mechanism to update value V (u, v), as can be

found from the classical Value Iteration algorithm [23], [27].

Therefore, the priority and order of the updating process are

not relevant, and the value V (u, v) can be computed asyn-

chronously. This allows an opportunity to design distributed

computation system to realize the DP network with distributed

computational units without synchronous control. Furthermore,

the asynchronous property can be further exploited to consider

a continuous-time framework of the DP network, as opposed

to the discrete-time DP network. The continuous-time formu-

lation provides an analytical framework to study the network

properties, such as network convergence. In the following, both

the discrete and continuous-time formulations are discussed.

1) Continuous-Time Formulation: Consider a DP network

that is constructed based on the original shortest path problem.

Computational unit i is interconnected with adjacent node j,

∀j ∈ N (i), where Ci,j is finite. Assume that the min and +
operators require an infinitesimal time δt; the output of the

operator at time t + δt can be expressed as [26]

gt+δt(i, j) = min
∀k∈N (i)

{g(k, j) + Ci,k} (8)

Assuming that the transition costs between the current node and

the nonadjacent nodes are infinite, minimizing only over the set

of neighboring nodes in (8) is equivalent to minimizing over all

nodes. Also, minimizing only over the adjacent nodes leads to

a hardware realization with smaller cost. Suppose that the cost

function Ci,j is a constant and the min and + operators require

an infinitesimal time, each computational unit U(i, j) could
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then behave dynamically as a first-order system. The whole

network can be described by a set of differential equations

dg(i, j)

dt
= −λig(i, j) + λi min

∀k∈N (i)
{g(k, j) + Ci,k},∀i (9)

where λi is the system pole for unit U(i, j), which controls the

rate of how g(i, j) may change. If λi = 0, then |dg(i, j)/dt| =
0, and g(i, j) becomes a constant, and the unit is said to

be fully constrained and has a fixed memory. Whereas, for

a memoryless unit with λi = ∞, it has an infinite power to

change because |dg(i, j)/dt| can be made arbitrarily large.

Also, the units are interconnected based on N (i), which defines

the set of adjacent nodes of unit U(i, j). Therefore, g(k, j) is

the output of unit U(k, j), which is an adjacent unit of U(i, j)
in N (i).

2) Discrete-Time Formulation: The equivalent discrete for-

mulation can be obtained based on (9). Let δt = 1. The system

of differential equations (9) then becomes

gt+1(i, j) = λi min
∀k∈N (i)

{gt(k, j) + Ci,k}∀i (10)

where λi defines the converging time constant, which controls

the convergence speed of the system, as will be shown in the

next section.

C. Convergence of the Network

There are two important considerations in using a DP net-

work. First, will the network always converge to the desired

solution? Second, what are the parameters or conditions that

affect the convergence rate of the network? The answer to

the first question is a “yes” because it follows directly from

the principle of the Bellman optimality equation which states

that the constituent optimal expected value of all states are

optimal. The local minimization based on the Bellman equation

performed at each distinct unit, in fact, is driving the network to

a global optimal state, which is the desired solution. To measure

the “distance” of the network from this global minimum and in

line with Hopfield’s energy modeling in [28], the computational

energy E(t) can be defined as the root-mean-square (rms) error

if the system deviates from the optimal solution. From (9), the

energy function for the continues-time ODE can be stated as

E(t) =
∑

∀i

(

−λig(i, j) + λi min
∀k∈N (i)

{g(k, j) + Ci,k}
)2

(11)

where E(t) = 0 when the network has converged. To determine

the convergence rate of the network, an explicit expression for

dE(t)/dt has to be evaluated. By differentiating the energy

function in (11), the following expression is obtained:

dE(t)

dt
=

dE(t)

dg(i, j)
· dg(i, j)

dt

=
∑

∀i

[

d

dg(i, j)

(

− λig(i, j) + λi min
∀k∈N (i)

{g(k, j)

+ Ci,k}
)2

· dg(i, j)

dt

]

. (12)

By evaluating the first term in (12), the following expression

is obtained:

dE(t)

dt
=

∑

∀i

[

−2λi

(

−λig(i, j)+λi min
∀k∈N (i)

{g(k, j)+Ci,k}
)

·dg(i, j)

dt

]

(13)

=
∑

∀i

[

−2λi

(

dg(i, j)

dt

)2
]

. (14)

Note that in order to establish the aforesaid expression, it

is assumed that all outputs of units g(i, j) do not provide a

feedback to the unit itself. Thus, in the set of neighboring nodes,

∀k ∈ N (i), k �= i. Hence, all the factors that make up the sum

of the right-hand side of (14) are nonnegative. In other words,

the energy function E(t) defined in (11) is a monotonically

decreasing function of time as

dE(t)

dt
≤ 0. (15)

From the definition of (11), note that the function E(t) is

bounded. The time evolution of the continuous DP-network

model described by the system of first-order differential equa-

tions in (9) represents a trajectory in the station space, which

seeks out the minima of the energy function E(t) and comes

to a stop at such fixed point. From (14), note that the derivative

dE(t)/dt vanishes only at the point that satisfies the Bellman

optimal criterion

dg(i, j)

dt
= 0 ∀i. (16)

D. Numerical Examples

Example 1: Computing the Expected Costs in a Ten-Node

Array: A ten-state random-walk problem can be solved by

a ten-unit continuous-time DP network. The ten states are

indexed by Si, i = 1, 2, . . . , 10. The outputs of the ten units

of the network, signifying the expected costs to the destina-

tion, are described by a vector V (Si, S10), i = 1, 2, . . . , 10,

which has a semantic meaning of the expected reward of

V (Si, S10), i = 1, 2, . . . , 10. Also, the transition cost is defined

as Ci,i+1 = 1 and Ci+1,i = 1 for all i, j = 1, 2, . . . , 9, and

Ci,j = ∞ for all j �= i + 1 and j �= i − 1. The continuous-time

DP network can be modeled by a set of differential equations

on the ten nodes Si. The expected rewards V (Si, S10) evolve

as first-order lag controlled by λ, which is the reciprocal of

the network-convergence-time constant. In particular, it relates

to the computational delay of each computational unit in a

network implementation, and the latency of information prop-

agates throughout the network. The discount factor γ is a

problem-related parameter, which defines the discount factor

for multistage cost. The value is independent of the network
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Fig. 3. Convergence of a DP network for the ten-node array random-walk
problem where the time constant 1/λ = 1 ns. Each curve corresponds to the
output of each unit and represents the cost-to-go value from that node to the
destination node S10.

implementation and is subject to the requirements of the objec-

tive function

dV (S1, S10)

dt
= − λV (S1, S10) + λγV (S2, S10) (17)

dV (Si, S10)

dt
= − λV (Si, S10)

+ λ min{Ci,i−1 + γV (Si−1, S10), Ci,i+1

+ γVS(i+1, S10)} ∀i = 2, 3, . . . , 9

(18)

V (S10, S10) = 0. (19)

Equation (17) describes the boundary node S1 which has a

single “right” action. For nodes Si, i = 2, 3, . . . , 9, they have

both left and right actions and can be readily shown to follow

the equations as typified in (18). A destination-node value

V (S10, S10) is defined to be zero, as in (19).

Given arbitrary positive initial values of V (Si, S10) ∀i,
the converged values of the respective differential equations

[(17)–(19)] can be verified to be identical with the optimal

values governed by the Bellman equations. Fig. 3 shows the

convergence results obtained by using Matlab ODE solver1

for the differential equations. The converged values are found

to be [6.10, 5.67, 5.20, 4.68, 4.10, 3.44, 2.71, 1.90, 1.00, 0].

The results are verified correctly against the results computed

using the well-known Bellman–Ford algorithm for shortest path

problems. Also, note that node S9 is the quickest to converge,

whereas S1 is the slowest. This is because there is a dependence

1The differential equation solver is based on ode45, which is provided in
the Matlab. The ode45 is based on an explicit Runge–Kutta formula, the
Dormand–Prince pair.

Fig. 4. Convergence of the cost-to-go values of all the nodes from a 10 × 10
mesh network. (a) t = 1 ns. (b) t = 5 ns. (c) t = 10 ns. (d) t = 20 ns.

on the expected cost, and it takes the longest time for informa-

tion to propagate to S1 from S10.

Example 2: Computing the Expected Costs in a 10 × 10

Mesh: Consider a 100-node network with 10 by 10 mesh

interconnection. Each node only connects to a maximum of four

adjacent nodes, while each node at the edges connects to three,

and each node at the corners connect to two. The nodes are

oriented as a perfect square. All transitions would result in a

cost of one, and the destination node at the center would have

an expected cost of zero.

Similar to Example 1, the continuous-time DP network can

be modeled by 100 differential equations on the 100 nodes

Sij ∀i, j = 1, 2, . . . , 10. The expected cost V (Sij , Sij) ∀i, j =
1, 2, . . . , 10 evolves as first-order lag controlled by λ.

Let 1/λ = 2 ns and the destination node to be S5,5. The

values of the expected cost are shown in Fig. 4. At time

t = 1 ns, the expected costs are randomly initialized, and

V (S5,5, S5,5) = 0 as S5,5 is the destination node. The network

begins to converge to the optimal solution at time t = 20 ns,

and the intermediate results are also shown in the figure. The

convergence of the DP network in the 2-D mesh depends on λ,

which, in this example is equal to 0.5. The network settles to the

desired solution at t = 20 ns. By increasing λ, the time needed

for the network to settle decreases. Also, even if λ is a large

value (e.g., λ = 0.9), the network still converges to the optimal

solution.

Fig. 5 shows the convergence of the network with different λ
values. The results are rms errors between the VS output from

the network and the values obtained using the Bellman–Ford

algorithm, averaged over the 10 × 10 mesh example. Clearly,

λ is the reciprocal of the network time constant, which governs

the time required to obtain the optimal solutions.

E. Summary

In this section, the characteristics of the DP network have

been discussed. The DP network can be formulated in discrete

and continuous-time forms. The monotonic property of the
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Fig. 5. RMS error of the DP network for computing shortest paths in a 10 ×
10 mesh network with different λ values, where λ is the reciprocal of the
network time constant.

continuous-time network has been shown, and the network

convergence has been discussed. The convergence rate of the

network depends on λ, which is the time constant that varies

based on the different implementation platforms. In the fol-

lowing, the embedding of the DP network in NoC, to provide

shortest path computation on-the-fly, and the dynamic routing,

to enhance the network utilization, are discussed.

IV. NoC ROUTING WITH DP NETWORK

A. Routing Architecture

An interesting feature of an on-chip communication network

or NoC is that the communication network itself defines the

graph of the shortest path problem. This provides an opportu-

nity to compute the optimal path by embedding a DP unit at

each node. Unlike the general computer network, the shortest

path routing computation is solely attributed to the processors at

each node. The NoC environment demands tighter timing and

performance constraints as well as more flexible implementa-

tion methodologies, which can be achieved by implementing a

DP-network architecture.

The DP network shown in Fig. 6 consists of distributed

computational units and links between the units. The topology

of the network resembles the defined graph topology, which is

the communication structure of an NoC. At each node, there is

a computational unit, which implements the DP unit equations

in (10). The numerical solution of the unit will be propagated to

the neighboring units via the neighborhood interconnects. The

DP network is tightly coupled with the NoC, and each compu-

tational unit locally exchanges control and system parameters

with the tile or core. The DP network quickly resolves the

optimal solution, as will be shown later in this paper, and will

pass the control decisions to the router or other controllers in the

tile, while the real-time information, such as average queuing

time, will be inputted to the computational unit.

The DP network presents several distinguishing features to

an on-chip communication system. First, the distributed archi-

tecture enables a scalable real-time monitoring functionality for

the NoC. Each computational unit acquires local information,

and, through communication with neighboring units, a global

optimization can be achieved. Second, because of the simplicity

of the computational unit, the dedicated DP network provides a

Fig. 6. Example of a 3 by 3 mesh network coupled with a DP network.

real-time response and will not consume any data-flow network

bandwidth. Third, because of the convergence property, as

discussed in Section III-C, the DP network provides an effective

solution to optimal path planning and dynamic routing.

1) DP Routing Mechanics: Consider a node–table-routing

architecture in which the routing table is stored at each router.

The destination of the header flit will be checked, and it will

decide the routing direction based on the routing-table entries.

In contrast to the table-based routing in which a routing algo-

rithm computes the route or next hop of a packet at runtime,

algorithmic routing is more restrictive to simple routing algo-

rithms and can only be applied on regular topologies, such as

a mesh topology. The routing-table approach enables the use

of per-hop network state information, such as queue lengths,

to select among several possible next-hop at each stage of the

route.

Algorithm 1 presents an algorithm for updating the routing

table with a DP network. At each node unit, there are k inputs

from the k neighbor nodes for the expected costs. The output

of the unit at node ni is the updated expected cost V (i, j) and

is sent to all adjacent nodes. The main algorithm is outlined

in lines 4–10. For each destination j and direction k, the

expected cost will be computed, and the minimum cost will be

selected, as stated in line 8. The optimal direction for routing is

selected and used to update the routing table, as stated in line 9.

Although the algorithm consists of two for loops, this can be

realized in a hardware with a parallel architecture, and the

computational-delay complexity can be reduced to linear.

Algorithm 1 Update routing table for destination nj

1: Inputs: V (i, j), i ∈ N (i), where N (i) returns all

neighbor nodes of ni, and i = 1, 2, . . . , N
2: Outputs: V ∗(i, j)
3: Definitions:

ni is the current node;

Ci,k is input queue-length node i from direction k
4: for all i such that ni ∈ V do
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5: for all k directions such that k ∈ N (i), where N (i)
return all neighbor nodes of ni do

6: V ′(i, k, j) = V (k, j) + Ci,k

7: end for

8: V ∗(i, j) = min∀k V ′(i, k, j)
9: µ(i, j) = arg min∀k V ′(i, k, j) {Update routing table}

10: end for

Many routers use routing tables either at the source (source

routing) or at each hop (node–table routing) along the route

to implement the routing algorithm. In adaptive routing, the

routing table is updated dynamically or periodically, such that

the communication traffic can be altered subject to the choice

of switching mechanisms. The DP network does not interact

or interfere with the packet-switching mechanisms but alter the

routing table at runtime. Also, a mesh-network topology will be

used throughout this paper for illustrating the idea. However,

the proposed methodology is not limited to the mesh topology,

and simple modifications can be made for tackling network

of different forms, such as torus, butterfly fat tree, and other

custom-designed topology, based on the flexible routing-table-

based design. Also, the numerical accuracy of the cost estimates

might affect the network performance. Due to the nature of the

DP-based decision making, the absolute cost is not crucial to

the decisions but the difference between the costs. A reasonable

bit width is adopted, e.g., 8 b, to be allocated to realize the DP

computation throughout this paper.

Deadlock can effectively be avoided by adopting one of

the deadlock-free turn model. In this paper, the west-first [29]

turn model is used. It prohibits all turns to the south–west

and north–west direction. The dynamic-routing scheme will be

switched to XY routing whenever the destination node is within

these directions. In this case, the north–west and south–west

turns are removed, and thus, the routing dependences will never

form a cycle in the network. Alternatively, other turn models,

such north-last, can also be applied in the DP network to

avoid deadlock, with a similar performance, at the designer’s

disposal.

2) DP Network Computational Complexity: The delay of

the DP network converges to an optimal routing solution de-

pending on the network topology, which determines the delay

information propagates within the network and the delay of

each computational unit. It can be seen that each unit involves

O(|A|) additions and comparisons, where |A| is the number

of edges. Note that the number of additions corresponds to the

number of adjacent nodes, and |A| is an upper bound, which

corresponds to the configuration of a fully connected network.

Hence, the worst case solution time is O(k|A|), where k is

the number of iterations evaluated by each unit. In software

computation, k is equal to the number of nodes in the network;

thus, k = |V|, which guarantees that all nodes have been up-

dated [23]. However, in hardware implementation with parallel

execution, k is determined by the network structure, and A
additions can be executed in parallel. Each computational unit

can simultaneously compute the new expected cost for all

neighboring nodes. Therefore, the solution time becomes the

time for the updated value to be distributed to every other node,

TABLE II
CONVERGENCE ANALYSIS OF A DP NETWORK

FOR DIFFERENT NETWORK TOPOLOGIES

Fig. 7. Comparing the two routing strategies, where the shaded area repre-
sents the nodes covered in the routing table and ns is the source and nt is
the destination. (a) Optimal decision can be made at ns. (b) Since V (s, u) ≤
V (s, w) and the Manhattan distances for nu to nt and nw to nt are the same,
nu is selected as transition node in the suboptimal path to nt.

and the computational complexity becomes O(1). Also, it is

assumed that the comparator delay is transient in time and

is independent of the network size. For a more conservative

estimation of computational delay, we can assume a binary-

tree comparator to be implemented, and the computational

complexity becomes O(log2(|A|)). Consider a mesh network

with N nodes with
√

N rows and
√

N columns. The longest

path in this network is 2
√

N − 1, which is the minimum time

required for updating the expected costs at all nodes. Therefore,

the network convergence time is proportional to the network

diameter, which is the longest path in the network. The DP-

network convergence time for some of the network topologies

are summarized in Table II.

B. Optimality and Memory Tradeoff

One concern for the table-based routing mechanics is the

routing-table size, which requires allocation of memory or

registers. Even though the adaptive routing brings in substan-

tial advantage in routing delay and throughput, the memory

requirement could sometimes become a hindrance for the sys-

tem to scale up [16]. In this Section, a new method, namely,

KSLA, is introduced. This method yields a suboptimal solution

in dynamic routing but can substantially reduce the memory

requirement.

Instead of storing routing decisions for all destinations in a

routing table, storing a table that provides optimal decision to

local premises can enable a suboptimal path to the destinations

with a substantial reduction on the storage requirement. The

idea is that each router computes the routing decisions for nodes

that are k steps away from the current node. A k-step region

is shown in the shaded area in Fig. 7(b). If the destination is

within the k-step region, an optimal decision is readily available

in the routing table. Otherwise, a transition node nu is selected
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such that the sum of the DP value to the transition node and

the Manhattan distance from that node to the destination is the

smallest. These procedures repeat at each hopping step, and

eventually, the packet arrives at the destination in a suboptimal

route. Fig. 7 shows the two strategies graphically.

Algorithm 2 KSLA Routing Algorithm

1: Inputs: Destination node nt

2: Outputs: Routing direction µ(s, t)
3: Definitions:

ns is the current node;

D(s, t) returns the number of steps from s to t;
µ(s, t) returns the routing direction of destination t at

node s;

k(s) returns a set of nodes that are k steps away from s;

M(i, j) returns the Manhattan distance from ni to nj .

4: if D(s, t) ≤ k then

5: return µ(s, t)
6: else

7: for all nodes i such that i ∈ k(s) do

8: V ′(s, i, t) = V (s, i) + M(i, t)
9: end for

10: µ(s, t) = arg min∀i∈k(s) V ′(s, i, t)
11: end if

12: return µ(s, t)

The KSLA algorithm is presented in Algorithm 2. The inputs
are the destination nodes, which are the same as the router
designed for the global optimal path planning. For every flit or
packet, the algorithm checks whether this destination is within
the k-step region. This can be achieved differently for different
topologies. For a mesh, this can be checked by analyzing the
coordinates and comparing the Manhattan distances. Extension
of KSLA to irregular and other topologies requires implemen-
tation of other heuristics, which will be studied in our future
work. This step is line 8 in Algorithm 2. If the destination is
within the k-step region, the optimal routing decision can be
readily retrieved from the routing table. If the destination is
outside the region, which is not covered in the routing table,
the algorithm finds a node within the region that is closest to
the destination and with minimal cost. In line 10, the condition
ensures that the node chosen is the closest to the destination.
Lines 7–10 are aiming to find a node that is leading to the
destination node with the minimal expected cost. Finally, in
line 11, this node within the region will be output as the next-
hop direction.

With the optimal routing scheme, the total cost to go from
node ns to nt is

V ∗(n0, t) = min
∀ni∈P m

n0,nm

⎧

⎨

⎩

m
∑

j=1

Ci−1,i

⎫

⎬

⎭

(20)

where i = 0, 1, . . . , m and nm = nt. In other words, each
router is able to look ahead for all possible paths Pm

n0,nm
to

the destination and choose the one with minimal delay. For the
KSLA approach, the routers can only look ahead for k steps

Fig. 8. Theoretical estimates for the approximation error of the KSLA ap-
proach with respect to optimal DP values and routing-table size in terms of the
address space for the corresponding k values.

at each round. Therefore, the total expected cost W k(n0, t)
becomes the sum of the ⌊m/k⌋ rounds of k-step propagations
plus the expected cost of the last round, which requires steps
that are less than or equal to k

W k
t (n0) =

⌊m/k⌋
∑

l=0

min
∀ni∈P k

nlk,n(l+1)k

⎧

⎨

⎩

(l+1)k
∑

j=lk+1

Ci−1,i

⎫

⎬

⎭

+ min
∀ni∈P m

n⌊m/k⌋k,nm

⎧

⎨

⎩

m−⌊m/k⌋k
∑

j=⌊m/k⌋k+1

Ci−1,i

⎫

⎬

⎭

(21)

where m ≥ k, i = 0, 1, . . . , m and nm = nt. Suppose that the
intermediate nodes in the KSLA are the same as those in
the optimal path Pm

n0,nm
, the path produced by KSLA is the

optimal. In this case, the lower error bound for KSLA is
zero, with W k(n0, t) = V ∗(n0, t). Furthermore, the expected
cost between the optimal and KSLA cases have an interesting
proven2 relationship, which can be expressed by the following:

W k−1(n0, t) ≥ W k(n0, t) ≥ V ∗(n0, t) (22)

where m ≥ k > 1. This expression implies that the KSLA
approximation error decreases monotonically when k increases.
Note that there is no theoretical upper bound for the expected
cost for the KSLA approach. If the packet is trapped at a node
with a single path to the destination and this path is faulty, the
packet will not reach the destination. Similar to other routing
algorithms, such as XY and odd–even, backtracking or special
rescue routines are required to help the packet to escape from
the trapped node. Nonetheless, this situation is rare, and the
KSLA can approximate the optimal path in most cases, as
shown in the Monte Carlo simulation.

A Monte Carlo simulation has been performed to verify the

theoretical results. The relative error of KSLA with respect

to the optimal DP values and with different parameter k is

2This can be derived using the inequality min∀P m
n0,n2

{C0,1 + C1,2} ≤

min
∀P k

n0,n1
C0,1 + min

∀P
m−k
n1,n2

C1,2, where Ci,j ≥ 0, ∀i → j ∈ A
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shown in Fig. 8. For each k, the optimal path cost and the

cost using KSLA are obtained and computed. The relative error

is equal to the differences between the path costs using the

two approaches. The figure presents an average relative error

of 1000 networks with randomly generated path costs. The

result consistently shows the monotonicity of the parameter

k in KSLA. Also, it is interesting to observe that the error

decreases drastically between k = 1 and k = 4. For the case of

k = 4, the error can be reduced to 10%. Consider the substantial

requirement in memory, a relatively small k in KSLA can

already provide a good-quality suboptimal routing solution.

For any n-node network, the memory addresses required can

be reduced to k(k + 1), where k ≤ √
n and a 4-ary network

topology is assumed. In general, there are 2k(k + 1) nodes

within the k-step region. Using the west-first turn model to

avoid deadlock, only k(k + 1) destination cost are required to

be evaluated and stored. Selecting an appropriate k enables a

tradeoff between memory consumption and routing optimality

at the designer’s disposal. Fig. 8 shows the size of the routing-

table requirement for each k, as well as the relative error for the

KSLA routing. For the case of k = 4, the number of memory

addresses required is only 20 for the KSLA approach versus 63

for a full routing table.

V. RESULTS AND DISCUSSION

A. Simulation Environment

In order to perform a complete evaluation of the proposed

routing algorithm, the open Noxim [30], which is an open-

source SystemC simulator for NoC of different structures,

is employed. The Noxim simulator provides a virtual cycle-

accurate NoC architectural model where various performance

metrics, including throughput and delay of the on-chip commu-

nication methodologies, can be evaluated. In order to evaluate

the performance of the proposed DP network, additional ports

for communicating the DP values are added to the Noxim

NoC router architecture. Routing tables and the table-updating

scheme, as described in the previous section, are also intro-

duced to the simulator. A new DP routing function is imple-

mented for realizing both the global path planning and KSLA.

Although a mesh topology is considered in our experiments, the

Noxim-based NoC architecture can be easily extended to other

topological structures by modifying the interconnection of ports

of the routers. The traffic-pattern benchmarks embedded in

Noxim are used for the routing performance evaluation. These

traffic patterns, such as hot-spot random traffic and transpose,

provide a comprehensive evaluation for the routing capability,

as shown in other related works [13].

By varying the packet injection rate, different routing al-

gorithms produce different average packet-delivery delay and

saturation point. The average packet-delivery delay is used as

a metric to evaluate the routing algorithm. The DP network

provides the shortest path planning, by minimizing the packet-

delivery delay at every node. For a mesh topology, the conver-

gence time of the network is 2
√

n − 1 cycles. The sampling

frequency of the DP network has to be aligned with this con-

vergence time. Therefore, the cost and routing-table updating

periods are also the same as the network convergence time,

Fig. 9. Average packet delay in random traffic with four hot-spot nodes at the
center of an 8 × 8 mesh network.

which is 2
√

n − 1 cycles. Also, the maximum packet-delivery

delay is used to evaluate the routing performance, which is

important for NoC real-time applications. The experiments

carried out refer to an 8 × 8 size NoC. Traffic sources generate

8-flit packets with an exponential distribution, the parameters

of which depend on the packet injection rate. The first in, first

out (FIFO) buffers have a capacity of 16 flits. Each simulation

was initially run for 1000 cycles to allow transient effects to

stabilize and, afterward, executed for 20 000 cycles. Since it is a

mesh topology, the convergence time of the network is 2
√

n − 1
cycles, and thus, it is 15 cycles in this experiment. The updating

period for individual routing table is then set to be 15 cycles.

B. Results for Average Packet Delay

In order to evaluate the DP-network performance, the aver-

age packet delay between the DP and four other well-known

routing algorithms, namely, XY [16], DyAD [8], odd–even

[12] and odd–even routing with an NoP selection scheme [13],

are compared. Each packet is generated randomly from the

processors following a traffic pattern and comprises from two to

ten flits. A fully optimal DP-network dynamic routing is applied

for the experiments in this section. The results for using KSLA

will be presented in the next section.

Fig. 9 shows the results of a random traffic with hot spots.

This type of traffic pattern is considered to be more realistic

than random traffic with uniform distribution. In most of the

applications, certain processors or tiles are more frequently

accessed than others, such as memory nodes and input/output

nodes. In this scenario, there are four hot spots located in the

center of the network with 20% hot-spot traffic. When traffic is

directed to the center of the network, the central region will

be substantially congested. Deterministic routing algorithms,

however, would still divert traffic to these regions. Routing al-

gorithms, such as NoP and DP, can slightly outperform other al-

gorithms with deterministic routings. The DyAD routing adopts

a scheme that switches between XY and odd–even dynamically

and, thus, presents a result in between the two algorithms.
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Fig. 10. Average packet delay in random traffic with hot-spot nodes at the
four corners of an 8 × 8 mesh network.

Fig. 11. Average packet delay in matrix-transpose traffic in an 8 × 8 mesh
network.

The results are consistent with literature [8]. Fig. 10 shows the

results of another hot-spot traffic where the hot spots are located

in the corners of the network. In this case, there will be no

congested traffic at the center of the network. The dynamic-

routing algorithm has a larger degree of freedom to divert

the packets to the destination via a potentially smaller delay

path. The results demonstrate the performance advantage of

adaptive algorithms, such as DP and NoP, with respect to static

algorithms, such as XY. These adaptive algorithms provide

a larger bandwidth when the network is less congested. The

performance advantage from using dynamic routing is more

substantial in this case. In particular, DP outperforms the other

routing algorithms by 24.7%.

Figs. 11 and 12 show the results for a transpose and butterfly

traffic, respectively. The transpose traffic emulates an interest-

ing communication pattern that frequently appears in system-

on-chip design, such as traffic in the fast Fourier transform

architectures, which is very similar to a matrix transpose [16].

It can be observed that the performances of XY routing and

Fig. 12. Average packet delay in butterfly traffic in an 8 × 8 mesh network.

TABLE III
COMPARISONS FOR PACKET INJECTION RATES BETWEEN THE DP

AND FOUR OTHER ROUTING ALGORITHMS

DyAD are poor due to the congested routes along the horizontal

hopping, which coincide with results reported in literature

[8], [11], [13]. The DP routing can delay the saturation point

significantly because of the optimal path planning, which is

able to utilize the throughput of the network effectively. It

is interesting to observe that NoP also provides an efficient

routing scheme which adapts to the congestions by delaying

the saturated packet injection rate to 0.02 in transpose traffic.

DP outperforms the other routing schemes by 28.4% and 28.9%

for the transpose and butterfly traffic, respectively.

We also compared the maximum packet injection rate for

a fixed average delay with different routing algorithms. The

results are summarized in Table III. In this scenario, a larger

injection rate implies a better utilization of network throughput.

The results show that DP outperforms the other routing algo-

rithm by 22.3% with the utilization of real-time traffic informa-

tion. The other dynamic-routing scheme, odd-even routing with

NoP selection, also outperforms the other deterministic routing

algorithms, such as XY.

C. Results for KSLA

The recently proposed NoP approach in [13] is a special case

of the KSLA. In NoP, each router chooses the routing direction

based on the queue information that is two steps away from the

current node. A hill-climbing heuristic is implemented for the

routing. However, the NoP approach does not compute the DP

values for the destination nodes, whereas a score value, which

resembles the DP expected delay, is computed on demand. For

the DP network, the DP value is computed by the DP network
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Fig. 13. Comparison of average packet delay between KSLA, odd–even using
an NoP selection, XY, and DP routing approaches. An 8 × 8 mesh network with
packet injection rate of 0.02 packet per cycle per node and look-ahead steps for
k = 0, 1, . . . , 8 are considered.

and distributed to all routers. This provides a fast decision time

as only a simple lookup table is required when the header flit

arrives. In the following, the experimental results of comparing

the NoP and KSLA algorithms are discussed.

A special transpose-traffic scenario is considered with a

packet injection rate of 0.02 packet per cycle per node. The

performances of KSLA with different k, XY, and NoP routings

are shown in Fig. 13. When k = 0, KSLA has the same perfor-

mance as XY. This is because the routing table is initialized

following the XY routing scheme, and the routing table is

never updated. For the case of k = 2, KSLA provides a similar

performance as NoP (the average delay is equal to 124 for NoP

and 108 for DP). This suggests that NoP resembles a special

case of KSLA routing, specifically, when k = 2. By increasing

the k value, the average routing delay is further reduced until it

converges to 42 packet delay per cycle per node, where KSLA

resembles DP. These results confirm the tradeoff in routing

optimality with different k steps, as shown in the earlier Monte

Carlo simulation in Fig. 8.

D. Summary

This section has presented a novel DP network for adaptive

routing in NoC. The DP network provides on-the-fly shortest

path computation using distributed DP and enables dynamic

routing based on the real-time traffic conditions and conges-

tions. Also, a KSLA routing strategy has been presented. It

can provide tradeoff between routing optimality and mem-

ory consumption. Experimental results demonstrate the perfor-

mance and merits of optimal routing over other deterministic

and adaptive-routing approaches, which are based on partial

or local traffic information. The optimal DP-network-based

routing outperforms XY routing by 28.9% and also improves

other adaptive-routing strategies, such as adaptive odd–even, by

18.4%. It is interesting to observe that the new KSLA approach

Fig. 14. Schematic design of a standard NoC router except that a DP computa-
tion unit is integrated to enable dynamic routing. The “queue-length prediction”
block allows realization of different cost-function estimators that provide the
cost value for the DP network. The DP computational unit interconnects with
other DP units located at adjacent tiles. The DP unit also updates the routing
direction in the routing table.

is a generalization of other adaptive-routing algorithm, which

applies hill-climbing heuristics for route planning.

Also, the DP network provides shortest path computation

conditioned on constant inputs of cost function. Given that the

hop costs, which are the queue depths, can change faster than

the convergence time of the DP algorithm, then the convergence

of the network cannot be guaranteed. Additional circuits are

required to smooth out the input costs, such that the fluctuation

of the cost function does not affect the convergence of the

network.

VI. HARDWARE IMPLEMENTATION

There is a number of different implementation strategies that

can be investigated for the proposed DP network. For example,

DP network can be realized using analog circuit which could

enable high-performance and low-power on-chip adaptation

[31], [32]. Alternatively, digital synchronous and asynchronous

designs would result to different hardware and timing charac-

teristics. Investigations on the implementation strategies are out

of the scope of this paper. In this section, we aim to study the

hardware overhead of a DP implementation based on a simple

synchronous network.

In this section, an implementation of the DP network and

the dynamic-routing-enabled NoC architecture are presented.

Comparisons on the utilization of hardware resources and clock

frequencies are discussed.

A. Router Architecture

Fig. 14 shows the architecture of a router, which enables

dynamic routing. The router design is similar to that used in

NoC [8]. An additional block implements the dynamic-routing

algorithm. The queue-length prediction unit captures the queue
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Fig. 15. Realization of the DP computational unit using standard logic. The
circuit implements the discrete form of Bellman equation and outputs the
updated cost-to-go value. The decision variables can also be obtained via
the multiplexer. Since a mesh network is considered here, there are four routing
directions that can be encoded using two bits D0 and D1, where D1 is the
most significant bit.

length from the input FIFO and evaluates the communication

cost for that particular direction. The routing table stores the

routing directions, which are constantly updated by the DP

network. Successive updating of all entries in the table relies

on a synchronous controller, and units in the network are

synchronized using counters. The counter provides a reference

to indicate which node is regarded as the destination and also

provides an address reference to the routing table. The DP unit

outputs zero if the current node is the destination; otherwise,

it outputs the result of the DP computation. The shortest path

computation and optimal routing mechanics are implemented

using the DP computational unit, which is shown in Fig. 15.

Computation units from different routers are interconnected so

as to form a DP network. This figure signifies that the compu-

tational network is simultaneously computing the shortest path

while the router keeps feeding the new cost estimates into the

network.

The shortest path computation requires a minimum operation

to evaluate and compare the cost of all actions at each node.

Also, adders are required to sum up the costs at the current

node and the expected cost associated with the action, as shown

in (10). Also, a multiplexer is needed to output the associated

action for the minimum expected cost. Therefore, the basic

circuit in a DP computational unit comprises four adders,

three comparators, and three multiplexers. This circuit can be

further extended to provide multiple inputs by increasing the

number of adders, minimizers, and operators. The continuous-

time formulation of the DP network provides a mathematical

framework and convention for convergence analysis that can be

applied to study the convergence of the system. The actual im-

plementation can be either analog or digital, which corresponds

to the discrete- and continuous-time versions of the network

formulation, respectively. The digital network also converges

but with a different time constant when compared with the

analog realization.

Fig. 16 shows the interconnections between the DP compu-

tational units and its neighboring nodes. The interconnections

provide a means to deliver the expected values from the neigh-

boring nodes to the DP unit and update the optimal routing

direction. The data-flow diagram for the KSLA algorithm is

Fig. 16. Interconnecting the computational units with its adjacent nodes.

shown in Fig. 17. When the destination information is obtained

from the packet, Manhattan distance to the destination from

the current node is calculated. If the distance is smaller than

or equal to k, the routing direction to the destination can be

directly obtained from the routing table. Otherwise, the nodes

within the k-step region are obtained. The nodes in the k-step

region are temporary destinations that are k steps away from

the current node. For a typical mesh topology, it is relatively

trivial to obtain the temporary nodes, which can be done by

using the Manhattan distance and lookup tables. One node is

selected based on an arbitrary selection scheme. Other selection

schemes can be used, such as using the expected costs or traffic.

For simplicity, a node is selected randomly in this experiment.

The address of this node will be inputted to the routing table to

obtain the routing direction.

B. Results of FPGA Implementations

To further evaluate the effectiveness and the hardware cost of

the proposed methodology, a DP network is implemented using

a Xilinx Virtex-4 XC4LX80 FPGA device. A mesh NoC is

implemented using System Generator [33] and synthesis using

the Xilinx ISE synthesis tools. The design has been placed and

routed to obtain the hardware area-consumption results.

The experiment is designed to evaluate the hardware over-

head of the two different routing methods, which are the DP

network and KSLA routing. The DP-network routing employs

a full routing table, which provides optimal routing directions

for all destinations in the network. The KSLA provides routing

directions for destinations that are k steps away. The XY

routing is also implemented as a reference. Algorithmic routing

is employed for computing the routing directions for the XY

routing. Similar to other NoC architecture, a wormhole-routing

mechanism is implemented.

1) Convergence of DP Network in an FPGA: The perfor-

mance and network convergence of the DP network in an FPGA

realization is studied. DP networks with topologies of 3 × 3,
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Fig. 17. Data-flow routine for the KSLA algorithm.

Fig. 18. Convergence of the DP network in an FPGA implementation. The
y-axis is the rms error of the optimal values obtained from the value outputs at
each computational unit. The x-axis is the clock cycle. The period of the clock
cycle is not specified here and varies with different FPGA devices. (a) 3 × 3
network. (b) 4 × 4 network. (c) 5 × 5 network. (d) 6 × 6 network.

TABLE IV
HARDWARE AREA RESULTS FOR THE DP NETWORKS. RESULTS ARE

OBTAINED BASED ON A XILINX VIRTEX-4 XC4VLX40 FPGA

4 × 4, 5 × 5, and 6 × 6 are considered. The network-

convergence rate for evaluating the shortest path problems can

be observed from the outputs of the computational units. These

outputs are captured at each time stamp and compared with

the optimal values in order for the rms errors to be computed.

Fig. 18 shows the errors of the DP network in different clock

cycles and in different network topologies. The hardware area

and clock-frequency results are summarized in Table IV. The

computational units are carefully placed in an FPGA, such

that a significant physical separation between the units is

introduced. In this case, the operating frequency and power

dissipations reasonably indicate the contributions of delay from

wires between the units. It can be observed that the network

converges to the optimal solution from 5 to 11 clock cycles,

depending on the network configurations. The convergence

time of the mesh network is bounded by 2
√

n − 1, where n is

TABLE V
HARDWARE AREA RESULTS FOR THE XY, DP, AND KSLA ROUTERS.

RESULTS ARE OBTAINED BASED ON A XILINX

VIRTEX-4 XC4VLX40 FPGA

the total number of nodes in a mesh. Suppose that the network

is operating at 200 MHz; the convergence time is bounded

by 5(2
√

n − 1) ns. The DP network can rapidly evaluate the

shortest path and provide optimal path planning for dynamic

routing.

2) Hardware Results: The hardware-area consumption for

routers with five input and output ports are summarized in

Table V. The resource consumption for the XY router in this

work is similar to that of the implementation reported in [34].

The overhead of a DP network router is small. The overall

area is slightly larger than the XY router. The DP router uses

20.6% more slices than the XY router. For the KSLA router, the

area overhead is 40.3%. The KSLA employs more hardware re-

sources for the procedures in evaluating the intermediate nodes

for suboptimal routing. In order to verify the memory reduction

by using KSLA, we synthesize the design to distributed regis-

ters, which are located at the reconfigurable tiles. By measuring

the logic utilization, the reduction in memory consumption

can be demonstrated. Table V compares the logic consumption

between DP and KSLA. The approximation scheme can reduce

memory consumption up to 6% for the case when the buffer size

is equal to 16. Although additional logics are required to realize

the KSLA, the reduction in memory consumption outweighs

the extra hardware logic. The router area is still dominated by

the input FIFO buffers; the area overhead for the DP network

can be negligible. As seen in Table V, the DP overhead is

only 23% for a typical buffer size. The DP network with

the continuous-time formulation can be implemented using an

analog circuit as proposed in [31], in which the hardware area

and power consumption could be significantly reduced.

VII. CONCLUSION

This paper has presented a novel DP network for fully

optimal routing in NoC. The DP network provides on-the-fly

shortest path computation by using distributed DP and updating

the routing table for optimal path planning based on the real-

time network status. The mathematical formulations and
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convergence analysis of the network are presented. Two

examples are presented to exemplify the robustness of the

network and the rapid resolution of shortest path problems

in different network structures. The routing mechanics

and the KSLA routing strategy are presented which can

provide tradeoffs between routing optimality and memory

consumption. Experimental results confirm the performance

and merits of optimal routing over other deterministic and

adaptive-routing approaches, which are based on partial and

local traffic information. The optimal DP-network-based

routing outperforms the XY routing by 28.9% and is also better

than the other adaptive-routing strategies, such as the odd–even,

by 18.4%. It has been observed that the new KSLA approach

is a generalization of other adaptive-routing algorithm, which

applies hill-climbing heuristics for latency minimization.

Moreover, the hardware overhead for a DP network has been

examined. It was found that a DP network consumes less

than 20.6% of extra hardware area when compared with the

deterministic routing algorithms for a standard router design.

The results suggest that a DP network offers a new and effective

solution for dynamic minimal routing in NoC and can greatly

enhance the performance of on-chip communication. The DP-

network approach can be further enhanced to enable fault toler-

ance and dynamic power management in NoCs to reduce power

dissipation, which will be investigated in our future work.
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