
Adaptive RRTs for Validating

Hybrid Robotic Control Systems

Joel M. Esposito1, Jongwoo Kim2, and Vijay Kumar2

1 WSE Department, US Naval Academy, Annapolis, MD 21403, USA
2 MEAM Department, University of Pennsylvania, Philadelphia, PA 19104

esposito@usna.edu,jwk,kumar@grasp.cis.upenn.edu

Abstract. Most robot control and planning algorithms are complex, involving a combination

of reactive controllers, behavior-based controllers, and deliberative controllers. The switching

between different behaviors or controllers makes such systems hybrid, i.e. combining discrete

and continuous dynamics. While proofs of convergence, robustness and stability are often

available for simple controllers under a carefully crafted set of operating conditions, there

is no systematic approach to experimenting with, testing, and validating the performance of

complex hybrid control systems. In this paper we address the problem of generating sets of

conditions (inputs, disturbances, and parameters) that might be used to ”test” a given hybrid

system. We use the method of Rapidly exploring Random Trees (RRTs) to obtain test inputs.

We extend the traditional RRT, which only searches over continuous inputs, to a new algo-

rithm, called the Rapidly exploring Random Forest of Trees (RRFT), which can also search

over time invariant parameters by growing a set of trees for each parameter value choice. We

introduce new measures for coverage and tree growth that allows us to dynamically allocate

our resources among the set of trees and to plant new trees when the growth rate of existing

ones slows to an unacceptable level. We demonstrate the application of RRFT to testing and

validation of aerial robotic control systems.

1 Introduction

Hybrid systems provide mathematical models of discrete/continuous dynamic sys-

tems. Many robotic systems including walking robots, grasping and manipulation,

or logic-based software controlled robots can be modelled under this framework. In

fact most robot control and planning algorithms are complex, involving a combi-

nation of reactive controllers [2], behavior-based controllers [23], and deliberative

controllers [11,16]. While it is possible to analyze each controller in isolation it is

well known that the interaction between discrete and continuous time dynamics of

such systems can produce rich and often unexpected behavior. For this reason, as

these systems grow in complexity and sophistication, the need for automated design

tools increases. The focus to date in the literature has been on the formal verification

of safe operation, via the solution of the reachability problem, initially through sym-

bolic methods [27,17] and later through numerical techniques [3,1,5,24,9]. How-

ever, it soon became apparent that the class of hybrid control systems for which

the reachability problem was decidable is quite limited in both expressiveness and

dimensionality.



Report Documentation Page
Form Approved

OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington

VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it

does not display a currently valid OMB control number. 

1. REPORT DATE 

JUL 2004 
2. REPORT TYPE 

3. DATES COVERED 

  00-00-2004 to 00-00-2004  

4. TITLE AND SUBTITLE 

Adaptive RRTs for Validating Hybrid Robotic Control Systems 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

United States Naval Academy,Department of Weapons and Systems 

Engineering,Annapolis,MD,21402 

8. PERFORMING ORGANIZATION

REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 

NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

Workshop on the Algorithmic Foundations of Robotics, Zeist, Netherlands, July 2004 

14. ABSTRACT 

Most robot control and planning algorithms are complex, involving a combination of reactive controllers,

behavior-based controllers, and deliberative controllers. The switching between different behaviors or

controllers makes such systems hybrid, i.e. combining discrete and continuous dynamics. While proofs of

convergence, robustness and stability are often available for simple controllers under a carefully crafted

set of operating conditions, there is no systematic approach to experimenting with, testing, and validating

the performance of complex hybrid control systems. In this paper we address the problem of generating

sets of conditions (inputs, disturbances, and parameters) that might be used to ?test? a given hybrid

system. We use the method of Rapidly exploring Random Trees (RRTs) to obtain test inputs. We extend

the traditional RRT, which only searches over continuous inputs, to a new algorithm called the Rapidly

exploring Random Forest of Trees (RRFT), which can also search over time invariant parameters by

growing a set of trees for each parameter value choice. We introduce new measures for coverage and tree

growth that allows us to dynamically allocate our resources among the set of trees and to plant new trees

when the growth rate of existing ones slows to an unacceptable level. We demonstrate the application of

RRFT to testing and validation of aerial robotic control systems. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 

ABSTRACT 

Same as

Report (SAR) 

18. NUMBER

OF PAGES 

15 

19a. NAME OF

RESPONSIBLE PERSON 
a. REPORT 

unclassified 

b. ABSTRACT 

unclassified 

c. THIS PAGE 

unclassified 



Standard Form 298 (Rev. 8-98) 

Prescribed by ANSI Std Z39-18 



2 Joel M. Esposito et al.

Test generation – a well established concept for software design – is a relatively

new approach to analyzing control systems. Rather than prove controller safety ex-

haustively, our approach is to try to generate a set of test scenarios, using Rapidly

Exploring Random Trees (RRT), that cause the system to fail. In addition to con-

sidering traditional continuous inputs, we have extended the method to consider

uncertain time invariant parameters. We call our algorithm the rapidly exploring

Forest of Trees (RRFT). The merit of this approach as compared with reachability

analysis is that decidability issues do not come into play because we are not at-

tempting to represent or manipulate a reachable set. The drawback of the approach

is that it is a semi-decision method, meaning that we can only disprove system safety

by counter-example – safety cannot be proved. Despite this drawback we feel that

randomized approaches hold the most promise for addressing complex nonlinear

real-world problems for which trial and error testing is not sufficient; and formal

analysis is intractable. Similar work has recently appeared which uses genetic al-

gorithms [26]. Some works have used RRTs as a synthesis tool for hybrid control

systems [10,4]; but the idea of using RRTs to explore a system’s faults has only

appeared in passing [15,8].

Our approach consists of drawing a parallel to, and using methods from, motion

planning. Informally the motion planning problem is: given a robot with dynamics

and constraints (obstacles), to find a path (if one exists) from the starting configura-

tion to the goal configuration of robot in some complex high dimensional configu-

ration space. Similarly, the goal of test generation is to find a sequence of inputs (or

disturbances) and parameters (if one exists) which will take a hybrid system from an

initial state to some unsafe set in the hybrid state space. Interestingly motion plan-

ning research experienced a similar evolution from exact (symbolic) methods [28],

followed by the result that the problem was fundamentally hard [6], to a shift toward

approximate methods that worked well in practice [25]. Most recently research ac-

tivity focuses on randomized approaches to the problem which have been shown to

scale well with dimension.

The primary differences between motion planning and testing lie in the types of

systems considered. For example, motion planning approaches do not traditionally

consider hybrid systems (though recent work has [10]). Another difference is that

in motion planning problems the state space is not simple connected, in the geo-

metric sense, due to the presence of obstacles, necessitating the use of sophisticated

collision detection algorithms. For hybrid system the state space is usually simply

connected with a given mode. Perhaps most importantly, robotic systems are almost

always output controllable (by design), so the reachable space is the entire output

space. Therefore a solution usually exists, unlike testing problems. As a result con-

siderations of when to stop growing the tree are rarely discussed.

The contributions and outline of this paper are as follows

• Formally introduce the Test Generation problem for complex control systems,

point out the similarities to motion planning (Sections 2-3).

• Define new coverage criteria for RRTs (Section 4).
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• Introduce the RRFT algorithm which is capable of searching both over tradi-

tional continuous inputs (like the RRT) and uncertain time invariant parame-

ters. RRFT modifies its search strategy based on the run time coverage estimates

(Section 5).

Incidentally, the algorithm can be used for motion planning or testing. Finally we

apply the algorithms to validate two controllers for robotic unmanned aerial vehicles

in 6.

2 Problem Statement

Definition 1. We define a Finite Time Hybrid Control System with unknown pa-

rameters dependencies as (modified from the Hybrid Automata, see [22]) as a tuple

H = (X, Q, U, T, P, Init, f, Inv, E, G, R) where

• X ⊂ R
N is a set of continuous variables;

• Q ⊂ N is a set of discrete variables which index the system modes;

• U ⊂ R
m is a compact set of continuous input values;

• T = [t0, tf ] ⊂ R is a compact time interval the system evolves over;

• P ⊂ R
p is a compact set of uncertain, time invariant parameters;

• Init ⊂ Q × X is a set of possible initial conditions;

• f : Q×X×U ×P → R
N is a vector field which prescribes the time derivative

of the continuous variables (i.e., ẋ = f(q, x, u; p));
• Inv : Q → 2X assigns to each q ∈ Q an invariant set;

• E ⊂ Q × Q is a collection of edges describing the possible discrete transition

(a.k.a.- mode switches);

• G : E → 2X×P assigns to each e = (q, q′) ∈ E a guard; and

• R : E × X → 2X assigns to each e = (q, q′) ∈ E a reset relation.

Throughout this paper we refer to (x, q) as the state of the hybrid system. Note that

we use the term “input signal” in the most general sense in that it can include yet un-

specified feedback control inputs, human in the loop type inputs, disturbances, etc.

Note that the uncertain parameters can affect the continuous or discrete dynamics.

Again, many robotic system can be modelled in this way (see Sect. 1). Examples of

P could include a control gain, the initial condition of an adversarial agent, or the

width of a narrow passage.

Definition 2. The Testing Problem TP is specified as a tuple (H, x0, q0, s, Ū , δt)
where

• H is a finite time hybrid control system as described above;

• x0, q0 ∈ Init;
• Ū is user defined discretization of U ;

• δt is the fixed time period for which a constant u ∈ Ū is applied such that

(tf − to)/δt = k is an integer;

• s : X × Q × P → R is a specification;
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Given an initial state and a particular control function u(t), s can be used to define

a set. If s(x, q; p) > 0, then (x, q) is an acceptable state inside the specification set

for p; otherwise it is unacceptable.

Problem 1. Given an initial state, (x0, q0), the Testing Problem is to determine

{u1, u2, . . . uk} ∈ Ū , which define a piecewise constant control sequence

u(t) = ui if (i − 1) · δt ≤ t < (i) · δt (1)

for i = 1, . . . , k, and p ∈ P , if they exist, such that ∃t ∈ T for which s(x(t), q(t); p) ≤
0.

In words, the goal of the test generator is to determine a counter-example – an piece-

wise constant input sequence and a value of the time invariant uncertain parameters

which will cause the system to fail – if one exists. Note the similarity to trajectory

planning (for example see problem statement in [7])

3 Testing Through Rapidly Exploring Random Trees

The similarities between the Testing Problem and the motion planning problem,

suggest the use of a randomized methods such as Probabilistic Road Maps [13]

or Rapidly Exploring Random Trees (RRTs) [19]. We choose the RRT primarily

because it works directly with the set of admissible inputs and is therefore di-

rectly applicable to systems with complex dynamics. This algorithm has experi-

enced widespread success in solving a variety of high dimensional and nonlinear

problems in motion planning and has recently been applied to controller synthesis

problems for hybrid systems [10,15,4]. Figure 1 illustrates the concepts and a very

basic algorithm is given in Algorithms 1 and 2. Note that ρ is a suitable metric func-

tion; and the notation (x, q) +
∫ δt

H(u)dt means: using x, q as an initial condition,

simulate the evolution of the hybrid system for δt seconds using u(t) as the control

input. Various versions of the algorithm can be generated using different metrics, or

random distributions. In Sect. 5 we focus on stopping criteria if no solution is found.

Algorithm 1 Grow Test Set T

Initialize RRT: T .addvertex(x0, q0)
while 6 ∃(x, q) ∈ T such that s(x, q) ≤ 0 do

Extend(T )

end while

4 Coverage Measures

It has been shown that, for a controllable system, the RRT will ultimately cover the

entire state space as the number of sample points goes to infinity [20]. Unfortunately,
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xinit , qinit

xrand , qrand

xnear , qnear

xinit , qinit

xrand , qrand

xinit , qinit

xrand , qrand

xnew , qnew

Fig. 1. The Testing algorithm (inspired by the RRT [19]). The test set is represented as a tree

T with nodes as states (x, q) and edges as inputs u ∈ Ū . First a new state is generated at

random, xrand, qrand. The algorithm then determines the closest state, xnear, qnear in the

tree to the random state (left). It determines which u ∈ Ū brings xnear, qnear closest to

xrand, qrand (center). unew is applied for a duration δt and the new node xnew, qnew and

edge unew are added to the tree (right).

Algorithm 2 Extend(T )

xrand, qrand ← random()

xnear, qnear ← nearestNeighbor(T , (xrand, qrand) )

unew = arg minu∈Ū{ρ( (xrand, qrand), (xnear, qnear) +
∫ δt

H(u)dt)}

(xnew, qnew) = (xnear, qnear) +
∫ δt

H(unew(t))dt
T .add vertex(xnew , qnew)

T .addEdge(unew , (xnear, qnear)→ (xnew, qnew))

because many of the systems we consider are not controllable with respect to the

test inputs, the reachable set is not the entire space. It is very difficult in practice

to estimate coverage quality because the reachable set is not known a priori. It is

therefore important for us to estimate coverage for two reasons.

• Many testing problems may have no solution, meaning that there is not a counter-

example to be found. In such a case we must decide when to terminate Algo-

rithm 1.

• It is possible for Algorithm 1 to get stuck in “local minima” due to its greedy

strategy [8] or to slow down because a tree is fully grown.

Regarding the second point, we can use coverage measures to determine when it

might be appropriate to alter the search strategy. Indeed we explore this further in

Section 5

4.1 Coverage: previous work

It has been pointed out many times [18] that coverage of X by T is related to the

Voronoi Diagram of the vertices of the tree. While this connection is useful for

theoretical analysis the major problem is that it is impractical to compute Voronoi

diagrams in dimensions over 2. The Discrepancy (a concept from the Monte Carlo

literature) is also mentioned in [18] but it too is very difficult to compute. Another
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appealing idea to measure the growth or coverage of the RRT is to compute the

volume of the convex hull. Unfortunately the convex hull is more indicative of the

distribution of the points than it is of the coverage. For example, in Figure 2 the left

and right panels represent two sample sets whose convex hulls are identical. Obvi-

ously the sample shown to the right covers the state space better. In [21] a variant

of the convex hull is explored. Rather than compute the hull of all tree vertices, ver-

tices are grouped according to their depth from parent nodes. The union of these

hulls clearly provides a better approximation however the selection of the group-

ing is somewhat arbitrary. It is not clear how to relate the union to coverage due to

possible overlaps.

Fig. 2. Two sample sets which have the same convex hull. The set on the left clearly has

inferior coverage to the set on right.

Fig. 3. Two sample sets which have the same dispersion (the size of the largest empty ball,

drawn with dashed line). The set on the left clearly has inferior coverage to the set on right.

It appears that the most accepted measure to date is the Dispersion (see [12] or

more recently [18]). Assuming we have a sample set X̄ , which contains N points,

over the space X , it is defined as

µ(X̄, ρ) = sup
x∈X

min
x̄∈X̄

ρ(x, x̄) (2)

and can be thought of as the radius of the largest empty ball in X and obviously

depends greatly on the choice of metric ρ. While its use has been advocated for an-

alyzing planners we reject it for computation on two grounds: (1) it is impractical to

compute in high dimensions; and, (2) it is an overly conservative coverage measure

because it only considers the largest ball. For example, in Figure 3 the left and right
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Fig. 4. A grid is super imposed on the state space. The shaded regions indicate unreachable

sets. The distances from the grid points to the closest nodes are dj(shown as dashed arrows)

and the grid spacing is δ.

panels represent two sample sets with the same dispersion. Obviously the sample

shown on the right covers the state better.

4.2 New Coverage Measures

We have three goals: to measure the coverage of the state space X by the tree T ;

to measure the growth of the tree T and to measure the coverage of the set of time

invariant parameters P by a countable finite set of values P̄ .

RRT Coverage We begin by overlaying a grid of ng points and spacing δ on the

state space. We calculate the minimum distance from each grid point j to the set

of nodes in the tree, dj . The quantity min(dj , δ) may be thought of as the radius

of the largest ball centered at each grid point which does not contain a tree node or

adjacent grid points (see Figure 4). Given a tree T we define its coverage, c(T ), as

c(T ) =
1

δ

ng∑

j=1

min(dj , δ)

ng

(3)

which is the average of all the node distances, normalized by the grid spacing.

Our measure is similar to an approximation of an “average” dispersion, but far

less conservative and faster to compute. Clearly this measure is a monotonically

decreasing function. If it goes to zero on a given grid it tells us that any set whose

distance along its smallest dimension is greater than the grid spacing has been en-

tered. Said another way, the state space is covered up to a resolution equal to the grid

spacing. Overall one of the advantages of this measure is that, the grid size can be

as fine or coarse as one chooses. Finer grids will require more distance queries but

are more accurate indications of coverage. Of course grids can be generated in the

“output” or specification space to measure coverage there as well. From a compu-

tational point of view it should be stressed that this list of distances can be updated

incrementally as new tree nodes are added, since the affect of each new node is

local.
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RRT Growth The derivative of c(T ) with respect to the number of vertices in the

tree, nv, indicates the growth. Therefore

g(T ) = −dc(T )/dnv (4)

In practice the derivative is actually a finite difference and we may choose to look

at the change in c over the course of adding several new vertices to T .

Time invariant parameter set coverage The set of parameters over which we may

tests the system may be generated directly since they are not subject to differential

constraints and therefore the sample set can be engineered to have a certain coverage

of P . Halton sequences [12] have naturally low dispersions and are cheap to com-

pute. Therefore we define the coverage of P using the dispersion defined in eq.(2)

normalized by µmax.

5 Forest of Random Trees Algorithm

The original RRT given in Alg. 1 only addresses time varying inputs such as u(t).
Recall that the evolution of our system is characterized by time invariant parameters,

p ∈ P as well. In our RRFT algorithm (see Alg. 3), the repeated application of the

RRT algorithm results in a tree for every choice p ∈ P (called the seed value).

Accordingly, we need to consider a set of trees (a forest) that rapidly explore the

state space. We call a RRT grown (or rooted) at pi ∈ P̄ , Tpi
. Initially we plant

trees at P̄ = {p1, . . . , pnt
}, where nt is the maximum number of active trees we

can consider concurrently. At any point if a counter example is found (a state and

parameter s(x, q; pi) ≤ 0 for which (x, q) ∈ Tpi
) the algorithm terminates.

Because we have limited computational resources, we must decide how to allo-

cate them in growing the trees – choosing which to grow and which to terminate.

As the RRT algorithm progresses, we monitor the progress of each tree. If at any

point the growth of one of the trees as measured by g(Tpi) drops below a threshold

ḡ, the tree is considered no longer actively growing; or, if the coverage c(Tpi) is

less than a threshold c̄, the tree is considered fully grown. In either case the tree is

terminated. Provided the set P is not adequately covered with seeds (as measured

by the dispersion) a new “seed” is planted and a new tree is initiated. The process

of planting and growing new trees continues until a counter example is discovered,

or until P is sufficiently covered (µ(P̄ ) ≤ µ̄) with seed values, whose trees have

stopped growing.

One key component of this approach is that each RRT can be computed in par-

allel on a different CPU’s, therefore we assume a fixed computational resource that

will dictate the number of trees that can be simultaneously computed in parallel.

6 Examples

We demonstrate the algorithm on two examples involving Robotic Unmanned Arial

Vehicles.
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Algorithm 3 Test Generation: Tp = RRFT(H, x0, q0, s, Ū , ḡ, c̄, µ̄, nt)

Generate initial seed set P̄ = {p1, . . . , pnt} where pi ∈ P
for i = 1, . . . nt do

Initialize RRT: Tpi
.addvertex(x0, q0)

end for

while nt 6= 0 do

for i = 1, . . . nt do

Extend(Tpi
)

if ∃(x, q) ∈ Tpi
such that s(x, q; p) ≤ 0 then

return Tpi

break (test case found)

else

if g(Tpi
) ≤ ḡ, OR, c(Tpi

) ≤ c̄ then

terminate Tpi

nt ← nt − 1
if µ(P̄ ) > µ̄ then

nt ← nt + 1
Generate new pi ∈ P via Halton sequence and append to P̄
Initialize RRT: Tpi

.addvertex(x0, q0)

end if

end if

end if

end for

end while

6.1 Example 1: Aircraft conflict resolution

As a first example we test an aircraft collision avoidance protocol proposed in [24].

We test over a continuous input (u(t), a wind disturbance) and a constant parameter

(p, the minimum separation distance) and consider a scenario involving 5 aircraft.

The problem has 15 states, which is considerably larger than problems which have

been considered in the literature on reachability and verification.

Each aircraft has three states, Xi = (x, y, θ) and there are 5 aircraft so the

continuous state space is X = X1× . . .X5. The continuous dynamics f : Q×X ×
U × P are

ẋi = v cos(θi) + (−d1 sin(θi) + d2 cos(θi))(− sin(θi)) (5)

ẏi = v sin(θi) + (−d1 sin(θi) + d2 cos(θi))(cos(θi)) (6)

θ̇i = ω(q; p) (7)

Where v is a constant forward velocity; u = [d1 d2]
T ∈ [−w, w] × [−w, w] is a

wind disturbance whose normal component to the planes alters their dynamics (this

is the main difference versus [24]). Note that q and p do not explicitly appear in

the dynamics but rather determine ω, the preset yaw rate control law. The control

law was designed to bring each plane from Init to its own predetermined final

destination (xg
i , y

g
i ) without colliding. The function ω switches depending on the
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mode. At the start positions, the aircrafts are in q = 1, (heading mode) and rotate

until pointing toward their goal positions, so ω(1) = θgoal −θi. Once they reach the

desired heading, they switch to q = 2 (cruise mode), ω(2) = 0, and cruise straight

toward the goals. If two aircrafts get within a distance p km of each other, each of the

two aircraft enters q = 3 (avoid mode) and makes instantaneous −90o turns, then

it follows a half circle with angular velocity ω(3) = c. After finishing the circular

turn, they make instantaneous turns again until pointing to their own goal positions

and return to cruise mode. In case the aircraft sees another aircraft within p km

during the avoid mode, it makes −90o turn again and executes the same operation

as above. This is illustrated in (see Figure 5 left). The specification is the minimum

distance between all pairs of planes.

When ‖u‖ ≤ 0.03km/sec and p = 5.25km a collision among the aircraft

was discovered (see Figure 5 right) after about 8,600 nodes and 5 parameters were

explored. A uniform distribution was used to generate samples, and a simple metric

based on a weighted Euclidean distance is utilized

ρ = d + wa|∆θ| (8)

where d is a Euclidean distance between two (x, y) positions, ∆θ ∈ (−π, π] is

a heading difference, and wa is a weight factor. Figure 6 shows c(T ) and g(T )
for the trees. Figure 7 shows the coverage of the seed set, µ(P̄ ) as new seeds are

generated. Three initial seeds are planted and two new seeds are generated until

solution trajectory is found. Therefore total 5 seeds are tried to obtain the trajectory.

�
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collision 

Fig. 5. The modes of operation for the aircraft collision avoidance example (left). Testing the

aircrafts with v = 0.3km/sec, ω = 0.03rad/sec, and p = [4.5, 5.5]km under bounded

disturbances ‖u‖ ≤ 0.03km/sec (right). We define the collision distance as 1km. Circles

represent initial positions and rectangles are goal positions. A collision is discovered after

exploring about 8,600 nodes with p = 5.25km.

6.2 Example 2: Unmanned blimp control law

In this section, we consider the validation of a feedback control algorithm for way-

point to waypoint navigation of an unmanned outdoor blimp under unpredictable
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Fig. 6. Coverage of the trees. New trees are started when the growth rate slows below a

specified threshold (ḡ = 1 × 10−10 used in this example). Solution is discovered in one

of the initial seeds.
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Fig. 7. The coverage improves (µ(P̄ ) decreases) as new trees are seeded. A collision is dis-

covered at ns=5.

but bounded disturbances. The blimp has a 12-dimensional state space. Closed loop

control laws use proportional inertial feedback to keep the blimp at the desired al-

titude with the target speed and to move from one inertial waypoint to the next.

Waypoints are generated in the 3-dim space (x, y, z). Change of the waypoints can

be considered as a system mode change. We bound the input(u(t), wind disturbance)

by limiting the magnitude of the wind gust and the rate of change of wind veloc-

ity. The max. change rate of wind direction=0.05(1/s) and the max. change rate

of wind direction=18o/m and the magnitude is bounded as ‖u‖ ≤ 0.03km/sec.

For detailed description of the feedback control law, sampling strategy, metric de-

sign, and the bounded wind disturbance, refer to [15]. In this case the time invariant

parameters we will test over is the position of the waypoints. The waypoints are

specified by a high level planner which does not account for the blimp’s dynamics.

We would like to see if it is possible for this planner to specify a waypoint which

would cause the blimp to collide with the obstacle.
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Figure 8 shows the trajectories of the blimp. The initial forward velocity is

0.5m/sec. The target forward velocity is 1m/sec. The starting waypoint is [0 0 −
5]T and the goal waypoint is [150 − 150 − 10]T . We assume the high level planner

can generate intermediate waypoints p ∈ [80 100]T × [−80 −60]T ×(−10) to avoid

a collision. We assume the navigation plan is achieved if the blimp can reach within

20m of the goal waypoint avoiding the obstacle under the wind disturbance. A

counter-example is discovered with the intermediate waypoint at [95 −62.2 −10]T

after exploring about 9,000 nodes. The solution requires 315 minutes of computa-

tion time on 1.4GHz PC. Coverage criteria are shown in Figure 9 and Figure 10.

In this application, the RRFT analysis technique allows the designer to efficiently

explore the safeness of the blimp closed loop flight control laws for navigation plans

in the presence of obstacles.
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Fig. 8. RRFT of the blimp under wind disturbance ‖u‖ ≤ 0.03km/sec and uncertain in-

termediate waypoints (left). Solution trajectory is obtained after exploring about 9000 nodes

(right)
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Fig. 9. Coverage of the trees. New trees are started when the growth rate slows below a

specified threshold (ḡ = 1 × 10−10 used in this example). Solution is discovered in one

of the initial seeds.
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Fig. 10. The coverage improves (µ(P̄ ) decreases) as new trees are seeded. A solution is dis-

covered at ns=8.

7 Conclusion

The RRT method is a powerful technique to explore high-dimensional configuration

spaces and find motion plans for systems with kinematic and dynamic constraints. In

this paper, we presented two enhancements to this method and a novel application.

First, we showed how sets of time-invariant parametric uncertainties can be explored

with this method to generate a forest of trees. Second, we developed an on-line

measure of dispersion that allows us to adapt the growth of the forest to the growth

rate of the tree. We presented the application of both methods to the testing and

validation of hybrid robot control systems, systems that do not lend themselves to

proofs of convergence and stability. In both these examples, because the controller

is fixed, the resulting trees do not expand to fill the configuration space. Instead,

they fill a ”tube” of configuration space that is defined by allowable disturbances

and external inputs. The first example showed the ability to analyze multiple-agent

systems with uncertainties, while the second example addressed the generation of

worst case disturbances for the analysis of full dynamic models of aerial vehicles.

The adaptation of the growth of the individual tree to coverage in configuration

or state space is a direction of current research and is reported in a forthcoming

publication [14].
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