
IEEE SIGNAL PROCESSING LETTERS, VOL. 10, NO. 3, MARCH 2003 61

Adaptive Runlength Coding
Chengjie Tu, Student Member, IEEE, Jie Liang, Student Member, IEEE, and Trac D. Tran, Member, IEEE

Abstract—Runlength coding is the standard coding technique
for block transform-based image/video compression. A block of
quantized transform coefficients is first represented as a sequence
of RUN/LEVEL pairs that are then entropy coded—RUN being
the number of consecutive zeros and LEVEL being the value
of the following nonzero coefficient. We point out in this letter
the inefficiency of conventional runlength coding and introduce
a novel adaptive runlength (ARL) coding scheme that encodes
RUN and LEVEL separately using adaptive binary arithmetic
coding and simple context modeling. We aim to maximize com-
pression efficiency by adaptively exploiting the characteristics of
block transform coefficients and the dependency between RUN
and LEVEL. Coding results show that with the same level of
complexity, the proposed ARL coding algorithm outperforms the
conventional runlength coding scheme by a large margin in the
rate–distortion sense.

Index Terms—Adaptive entropy coding, context modeling,
image compression, runlength coding.

I. INTRODUCTION

T HE BLOCK-BASED coding scheme of runlength coding
coupled with the discrete cosine transform (DCT) is

the basis of many international multimedia compression
standards from JPEG [1] for still images to the MPEG and
H.26X family for video sequences. The beauty of this coding
scheme is its simplicity, low computational complexity, low
memory requirement, and flexibility on a block-by-block basis.
Although current state-of-the-art image coders are wavelet
based, block-based coding is still the dominant force in video
coding. Besides, block-based coding is preferred in real-time
or resource-constrained applications.

Runlength coding represents a quantized DCT block as a
RUN/LEVEL sequence that is then coded by various entropy
coding techniques. Conventional runlength coding, which is
used by JPEG and the MPEG family, codes a (RUN/LEVEL)
pair jointly by static Huffman coding or arithmetic coding
(AC). The inefficiency of this coding scheme in image coding
has been well documented. The DCT-based embedded zerotree
(EZ) coder [2] rearranges the DCT coefficients into the wavelet
zerotree structure and codes them using set partitioning in
hierarchical trees [3]. TheContext-basedEntropy coding for
Block transform coefficients (CEB) coder [4] uses advanced
context-based entropy coding to encode DCT coefficients.
Both coders are still constrained in the block-based framework,

Manuscript received January 2, 2002; revised July 3, 2002. This work was
supported by the National Science Foundation under Grant CCR-0093262. The
associate editor coordinating the review of this manuscript and approving it for
publication was Dr. Ricardo L. de Queiroz.

The authors are with the Department of Electrical and Computer Engi-
neering, The Johns Hopkins University, Baltimore, MD 21218 USA (e-mail:
cjtu@jhu.edu; jieliang@jhu.edu; trac@jhu.edu).

Digital Object Identifier 10.1109/LSP.2002.807873

yet consistently outperform baseline JPEG by a large margin.
If pre- and postfiltering are added to the block-DCT-based
framework as illustrated in Fig. 1, EZ [5] and CEB [4] achieve
competitive rate–distortion (R–D) performances compared
with the wavelet-based JPEG2000 coder [6]. Furthermore,
annoying block artifacts at low bitrates are suppressed. The cost
for implementing pre- and postfiltering is low, since various
fast algorithms exist [7].

The inefficiency of conventional runlength coding is mainly
a result of too many symbols being involved in coding the
(RUN/LEVEL) pairs jointly. Another disadvantage is that it is
not adaptive to input statistics, bitrates, and known information
(contexts). An obvious solution to the problem is to encode
RUN and LEVEL separately instead of jointly by context-based
adaptive entropy coding. H26L [8]—the new ITU-T recom-
mendation for video coding at low bitrates—encodes RUN and
LEVEL separately for 4 4 DCT blocks by either Huffman
coding or AC. However, adaptive context modeling is still
absent, and known information has been mostly ignored.

This letter presents an ARL coding algorithm that deals with
a small number of symbols by encoding RUN and LEVEL sep-
arately. It is highly adaptive, since binary adaptive alternating
current (ac) is used for entropy coding. Furthermore, different
adaptive models are employed for different contexts to fully ex-
ploit the correlation between a symbol and the known infor-
mation, resulting in more accurate symbol prediction and thus
leading to better compression. Detailed context modeling based
on the nature of RUN/LEVEL sequences is also presented.

II. RUN/LEVEL REPRESENTATION

The generic approach of runlength coding orders a block of
quantized coefficients into a zigzag sequence in the order of
increasing frequency. A RUN/LEVEL sequence is generated as
follows:

(DC)(RUN/LEVEL) (RUN/LEVEL)(EOB) (1)

which is then entropy-coded. DC is the value of the direct cur-
rent (dc) coefficient, which is usually treated seperately. RUN
represents the number of consecutive zero ac coefficients prior
to a nonzero one, whereas LEVEL is the value of the nonzero
ac coefficient. The zigzag order of LEVEL is defined as the
index of its corresponding coefficient in the zigzag sequence.
The end-of-block (EOB) symbol indicates that there are no ad-
ditional nonzero ac coefficients in the sequence. We treat EOB
as a special RUN symbol.

The most significant property of a DCT block is that the
coefficient magnitude typically decreases as the frequency in-
creases. After quantization, only a few coefficients are nonzero,
and most of them cluster in the top-left corner of the block.

1070-9908/03$17.00 © 2003 IEEE

62 IEEE SIGNAL PROCESSING LETTERS, VOL. 10, NO. 3, MARCH 2003

Fig. 1. Pre- and postfiltering. Global framework with block sizeM (left) and a fast eight-point prefilterP (right).

By the virtue of zigzag scanning, its RUN/LEVEL sequence is
usually short, and EOB represents a large number of zero ac
coefficients.

Other properties of RUN/LEVEL sequences include the
following.

• Smaller RUN occurs more frequently.
• LEVEL with a smaller magnitude occurs more often.
• The magnitude of LEVEL is expected to be small if its

zigzag order is large.
• RUN is more likely to be large if the zigzag order of its

preceding LEVEL is large.
• The probability that large RUN followed by LEVEL with

a large magnitude is small.
• LEVEL with a large magnitude is usually followed by

small RUN.
• EOB is generally preceded by LEVEL with magnitude 1.

All of these properties can be taken advantage of in the context
modeling of RUN and LEVEL.

Conventional runlength coding treats a (RUN/LEVEL) pair
as one symbol (possibly followed by one or several accessory
symbols), and then the symbol is coded by Huffman coding with
fixed Huffman tables or by arithmetic coding generally with pre-
defined statistics. Its coding efficiency at least suffers from the
following shortcomings.

• Entropy coding involves too many symbols, since the
number of possible (RUN/LEVEL) pairs is large. Hence,
the resulting entropy codes for most symbols are long.

• The aforementioned properties of RUN/LEVEL se-
quences are not fully exploited, and most of the known
information is ignored.

• Neither Huffman coding with fixed Huffman tables nor
arithmetic coding with predefined statistics is adaptive
to input images and bitrates, although the statistics of
(RUN/LEVEL) pairs are highly image and bitrate depen-
dent. For example, baseline JPEG uses four bits (1010) to
encode EOB, which is highly ineffective at low bitrates,
since most ac coefficients in this case are quantized to
zero.

In our proposed ARL coding scheme, coding efficiency is im-
proved by treating RUN and LEVEL separately and using con-
text-based adaptive AC. For 8 8 blocks, since there are only

TABLE I
BINARIZATION OF RUN AND LEVEL SYMBOLS

63 possible values for RUN and possible values for LEVEL,
if the maximum magnitude of LEVEL is , then the number
of symbols is small. It is also much easier to model RUN and
LEVEL separately than jointly, allowing better entropy coding.
All aforementioned properties of RUN/LEVEL sequences are
taken into account by using different adaptive models for dif-
ferent contexts. Adaptive AC optimizes the bit budget for each
symbol automatically for different images and different bitrates.
Proper context modeling as described in Section III turns out to
be the key to the success of ARL coding.

III. CONTEXT MODELING

A. Binarization of RUN and LEVEL

The entropy coding engine for ARL coding is binary adap-
tive AC, the simplest and fastest version of adaptive AC. It ap-
proaches the underlying statistics very promptly and thus suffers
little from context dilution.

To encode a nonbinary symbol by binary AC, the symbol
must be binarized first. Binary AC is then employed to each bi-
nary symbol, or bin for short. Simple binarization rules for RUN
and LEVEL are illustrated in Table I: EOB is binarized as “1”;
other RUN is binarized asRUN “0’s” followed by a “1”;
LEVEL is binarized as “0” if it is positive or “1” if it is negative
followed by LEVEL “0’s” and a “1”, where LEVEL
is the magnitude of LEVEL. Here, shorter binary sequences are
used for smaller RUN symbols and LEVEL symbols with small
magnitudes, since they occur more frequently. Since the statis-
tics of different bins may differ greatly, different models are usu-
ally used for different bins to maximize coding efficiency.

TU et al.: ADAPTIVE RUNLENGTH CODING 63

TABLE II
COMPARISON OFCODING PERFORMANCES INPEAK SIGNAL-TO-NOISE RATIO (IN DECIBELS)

B. Context Models for DC Coefficients

The dc coefficient of a block is predicted as the mean of the
reconstructed dc coefficients of its left and top block neigh-
bors. Three models are used depending on whether the quan-
tized residue is zero or not: one for , one for , and
one for , where is the number of nonzero quantized
residues of the two neighboring blocks. We denote this as

(2)

The idea behind this is that if the dc coefficients of the neigh-
boring blocks can be predicted well, the probability of an accu-
rate estimation of the current dc coefficient is also high. If the
quantized dc residue is nonzero, it is coded in the same manner
as that of a regular LEVEL symbol.

C. Context Models for RUN

Define or if neither of, either of, or both the left
and top block neighbors have nonzero quantized ac coefficients.
Here, estimates how flat the current block is. If , the first
RUN of the current block is most likely to be EOB, which means
the block is flat (every ac coefficient is quantized to zero). The
context modeling for coding the first bin of the first RUN is

(3)

Two more models are needed for coding the first RUN: one for
the second bin and one for all the remaining bins.

Other RUN symbols are coded conditioned on the magnitude
and the zigzag order of the preceding LEVEL, denoted as
and , respectively. Based on the aforementioned observation
that RUN is more likely to be small if is large or is small,
the context modeling is chosen as

and and

and and

(4)

Different models are used for the first bin, the second bin, and
all remaining bins. Including the five models for the first RUN,
a total of 20 models are used for RUN symbols.

D. Context Models for LEVEL

The first bin of LEVEL contains its sign information: one
single model is employed here. The remaining bins are coded

64 IEEE SIGNAL PROCESSING LETTERS, VOL. 10, NO. 3, MARCH 2003

conditioned on, the zigzag order of LEVEL, and, the current
RUN. The detailed context modeling is

and

or (5)

Different models are used for the second bin and all the fol-
lowing bins. The modeling reflects the fact that LEVEL with
large zigzag order usually has a small magnitude and large RUN
is generally followed by LEVEL with a small magnitude. In-
cluding the single model for the first bin, altogether we need
nine models to encode LEVEL symbols.

Comparing to conventional runlength coding, the proposed
ARL coding scheme does not need more memory, since only
32 binary models are involved, and there is no need to buffer
any Huffman tables or predefined statistics.

IV. CODING RESULTS

An image coder is implemented to verify the R–D perfor-
mance of ARL coding. The coder is similar to baseline JPEG:
an image is mapped to nonoverlapped 88 coefficient blocks;
each block is transformed, uniformly quantized, and coded by
runlength coding. Besides the slight difference in dc prediction
as discussed in Section III-B, the only difference is that ARL
coding replaces JPEG’s runlength coding. The advanced ver-
sion has pre- and postfiltering between neighboring blocks as
shown in Fig. 1 turned on to improve coding efficiency and to
eliminate blocking artifacts.

Three groups of eight-bit grayscale images are used: 512
512 Lena, Goldhill, and Barbara; 20482560 Bike, Cafe, and
Woman; and the first luminance frames of quarter common in-
termediate format (176 144) sequences News and Glasgow.
Baseline JPEG (with optimized Huffman coding) and JPEG
with arithmetic coding (AC-JPEG) [1], the improved EZ coder
[5], and JPEG2000 in the single-layer mode (JPEG2000-SL)
[6] serve as benchmarks. As many levels of dyadic wavelet de-
compositions as possible are employed in JPEG2000-SL and for
EZ’s dc subbands. The popular biorthogonal 9/7 filters are used.

Table II tabulates the coding results. With the same level
of complexity, our proposed ARL coder consistently outper-
forms baseline JPEG (0.5–3.4 dB and 1.8 dB on average) and
AC-JPEG (0.2–2.9 dB and 1.4 dB on average) by a large margin

for all images at all bitrates. This confirms that ARL coding
is much more efficient than conventional runlength coding. If
pre- and postfiltering are added, ARL is 0.9–4.3 dB (2.4 dB
on average) better than baseline JPEG and 0.7–3.8 dB (2 dB
on average) better than AC-JPEG. Most of the time the ARL
coder is comparable to EZ and even to JPEG2000-SL despite
the fact that EZ and JPEG2000 are a lot more complex. Note
that the ARL coder is penalized significantly by its simple dc
treatment (only simple dc prediction is used, since it is not our
main focus in this letter), whereas both EZ and JPEG2000-SL
employ many levels of wavelet decomposition to the lowpass
(dc) subbands. This explains ARL’s inferior R–D performances
for high-resolution images such as Bike. For the low-resolution
176 144 images where there is not much correlation left in
the dc subbands, ARL outperforms other coders.

V. CONCLUSION

We have presented a novel ARL coding algorithm. Benefit-
ting from advanced context modeling and adaptive arithmetic
coding, the proposed coding scheme demonstrates much
improved R–D performance comparing to the conventional
runlength coding scheme while maintaining the same level of
computational complexity.

REFERENCES

[1] W. B. Pennebaker and J. L. Mitchell,JPEG Still Image Data Compres-
sion. New York: Van Norstrand Reinhold, 1992.

[2] Z. Xiong, O. Guleryuz, and M. T. Orchard, “A DCT-based embedded
image coder,”IEEE Signal Processing Lett., vol. 3, pp. 289–290, Nov.
1996.

[3] A. Said and W. A. Pearlman, “New, fast, and efficient image codec
based on set partitioning in hierarchical trees,”IEEE Trans. Circuits
Syst. Video Technol., vol. 6, pp. 243–249, June 1996.

[4] C. Tu and T. D. Tran, “Context based entropy coding of block transform
coefficients for image compression,” inProc. SPIE Applications of Dig-
ital Image Processing XXIV, San Diego, CA, Aug. 2001, pp. 377–389.

[5] T. D.Tran and T. Q. Nguyen, “A progressive transmission image coder
using linear phase uniform filterbanks as block transforms,”IEEE Trans.
Image Processing, vol. 8, pp. 1493–1507, Nov. 1999.

[6] “JPEG-2000 VM3,1A software,” ISO, ISO/IEC JTC1/SC29/WG1
N1142, Jan. 1999.

[7] J. Liang, C. Tu, and T. D. Tran, “Fast lapped transforms via time-domain
pre- and post-filtering,” inProc. ICICS, Singapore, Oct. 2001.

[8] H26L Test model long term number 8 (TML-8) draft0, ITU-T Study
Group 16 (VCEG), June 2001.

