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Abstract— Adaptive Control Lyapunov Functions (aCLFs)
were introduced 20 years ago, and provided a Lyapunov-
based methodology for stabilizing systems with parameter
uncertainty. The goal of this paper is to revisit this classic
formulation in the context of safety-critical control. This will
motivate a variant of aCLFs in the context of safety: adaptive
Control Barrier Functions (aCBFs). Our proposed approach
adaptively achieves safety by keeping the systems state within a
safe set even in the presence of parametric model uncertainty.
We unify aCLFs and aCBFs into a single control methodology
for systems with uncertain parameters in the context of a
Quadratic Program (QP) based framework. We validate the
ability of this unified framework to achieve stability and safety
in an adaptive cruise control (ACC) simulation.

I. INTRODUCTION

In many modern control applications, safety is of critical

importance. It is impossible to model the system dynamics in

these applications exactly—that is, parameters of the model

may not match the real system. For instance, the mass and

electrical properties of robotic systems are often approximate

values. Thus, to truly enforce safety, it is necessary to

quantify safety in the context of unknown parameters.

The use of Control Barrier Functions (CBFs) [1], [2] for

ensuring safety of nonlinear control systems has become

increasingly popular [18], [25], [26]. Controllers synthesized

via CBFs rely on a model, and the guarantees they achieve

may fail in the presence of model uncertainty. Robust control

methods can ensure safety [7], [28] or quantify how safety

properties degrade [9] in the presence of model uncertainty,

but may be overly conservative in restricting the behavior

of the system. Data-driven methods employing machine

learning [19], [5] provide probabilistic safety guarantees,

but may require episodic, offline training to improve model

estimates [6].

In this paper, we focus on an online, adaptive approach to

ensuring that a system remains safe in the presence of model

uncertainty. Adaptive control seeks to update a model of the

system as it evolves to achieve stability or a desired level of

performance [10]. In particular, we build upon the idea of

adaptive Control Lyapunov Functions (aCLFs) [11], which

have been used to stabilize nonlinear systems in the presence

of parametric model uncertainty [12], [13], [15]. That is, the

goal of this paper is to find conditions for adaptive safety

(via Control Barrier Functions) equivalent to those derived

for adaptive stability (via Control Lyapunov Functions).

One challenge in developing adaptive control methods that

guarantee safety is ensuring that the a nonlinear system’s
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state remains within a prescribed safe set at all times. In

contrast, guarantees on stability provided by aCLFs describe

the behavior of the state and parameter estimation error

jointly, allowing the state to grow large before stabilizing,

as long as the parameter estimation error diminishes. To

achieve this stricter guarantee of safety, we leverage stronger

assumptions on the initial parameter estimation error. The

end result are conditions for safety even under the presence

of model uncertainty, i.e., that a system with unknown

parameters can be rendered safe for all time.

The main contribution of this paper is a formal method-

ology for ensuring safety in nonlinear (control affine) sys-

tems with parameter uncertainty through the formulation of

adaptive Control Barrier Functions (aCBFs). Like aCLFs,

aCBFs provide a framework for updating model parameter

estimates online, but do so to ensure safety. Unlike aCLFs,

aCBFs require a different viewpoint on adaptive control to

make stronger statements on the behavior of the system’s

state. To the best of our knowledge, our approach is the first

that adaptively ensures safety utilizing CBFs. The definitions

and results in this paper provide the first steps towards a

framework for adaptive safety unifying both online and data-

driven, episodic updates of model parameters.

This paper is organized as follows. Section II reviews

CLFs and aCLFs and how quadratic program based con-

trollers can be synthesized to adaptively stabilize a system.

Section III discusses CBFs and how they can be used to

ensure the safety of a system. Section IV provides the main

result of the paper by defining aCBFs, and shows how a sys-

tem can be rendered adaptively safe in the presence of model

uncertainty. Section V offers a discussion on the assumptions

and constraints made in the preceding section through a

counter example. Section VI presents simulation results for

an adaptive cruise control (ACC) system using both a safety-

critical controller and a quadratic program based controller

implementing an aCLF and an aCBF simultaneously.

II. ADAPTIVE CONTROL LYAPUNOV FUNCTIONS

To develop provably correct controllers for nonlinear sys-

tems, it is typically assumed that the model is known. Yet

there are many practical applications where this assumption

is not adequate. A simple illustration is a mechanical system

whose parameters (masses, inertias, etc) are not completely

known—and one may not want to treat the unknown model

parameters as a perturbation from nominal parameters since

this would only guarantee stability to a region corresponding

to a bound on this difference (which also may not be known).

The purpose of this section, therefore, is to review the

framework of adaptive Control Lyapunov Functions.
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Consider a state space X ⊂ R
n and a control input space

U ⊂ R
m, where it is assumed X is path-connected and 0 ∈

X . Consider the affine dynamic system given by:

ẋ = f(x) + g(x)u (1)

where x ∈ X , u ∈ U , f : X → R
n and g : X → R

n×m

are smooth on X . We additionally assume f(0) = 0. We

will use the following definition, found in [8], to study the

stability of (1).

Definition 1 (Class K Function). A continuous function α :
[0, a) → R+, with a > 0, is a class K function (α ∈ K)

if α(0) = 0 and α is strictly monotonically increasing. If

a = ∞ and limr→∞ α(r) = ∞, then α is said to be a class

K∞ function (α ∈ K∞).

Given this definition, we can define a Control Lyapunov

Function (CLF) as in [3], [14].

Definition 2 (Control Lyapunov Function (CLF)). A smooth

function V : X → R+ is a Control Lyapunov Function

(CLF) for (1) if there exists α1, α2, α3 ∈ K∞ such that:

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) (2)

inf
u∈U

V̇ (x,u) ≤ −α3(‖x‖) (3)

for all x ∈ X .

This definition can be constructed with α1, α2, α3 ∈
K, with resulting stability guarantees holding locally. The

existence of a CLF for (1) implies there exists a smooth

(except at x = 0) state-feedback controller k : X → U , that

renders the origin globally asymptotically stable [3], [22],

noting that global refers to the state space X . k can be made

continuous at 0 if V satisfies the small control property [23].

Following the classic formulation of aCLFs in [11], un-

certainty in the dynamics (1) appears as:

ẋ = f(x) + F(x)θ⋆ + g(x)u, (4)

where θ⋆ ∈ Θ ⊂ R
p is a vector of unknown parameters and

F : X → R
n×p is assumed to be smooth on X with F(0) =

0. The impossibility of designing explicit controllers that

are robust to unbounded unknown parameters suggests that

we need to consider a larger class of controllers to stabilize

(4). In particular, controllers that update an estimate of the

unknown parameters. These are called adaptive controllers,

and take the form:

u = k(x, θ̂) (5)

˙̂
θ = Γτ (x, θ̂), (6)

where θ̂ ∈ Θ represents an estimate of the parameters θ⋆

maintained by the controller, Γ ∈ R
n×n is a matrix adaptive

gain, and τ : X ×Θ → R
p is the adaptation law. We make

the following assumption on these functions:

(A1) k is locally Lipschitz continuous on (X\{0})×Θ
and k(0, θ̂) = 0,

(A2) τ is locally Lipschitz continuous on X ×Θ,

(A3) Γ ∈ R
p×p is symmetric and positive-definite.

Introducing this parameter update results in a composite

dynamic system:
[
ẋ
˙̂
θ

]
=

[
f(x) + F(x)θ⋆ + g(x)k(x, θ̂)

Γτ (x, θ̂)

]
(7)

Solutions to this system evolve in X × Θ. Given this

construction we introduce the following definition from [11]:

Definition 3 (Globally Adaptively Stabilizable). The system

with unknown parameters (4) is globally adaptively stabiliz-

able if there exists a dynamic controller of the form (5)-(6)

satisfying (A1)-(A3) such that solutions (x(t), θ̂(t)) of (7)

are globally bounded and limt→∞ x(t) = 0.

Remark 1. Note that the requirements for global adaptive

stabilizability are rather weak in the sense that θ̂ is not

required to converge to θ⋆. We will see, in fact, that

convergence of θ̂ to θ⋆ is not necessary for x(t) to converge

to the equilibrium.

The strategy in designing adaptive controllers is to show

that this problem is equivalent to a non-adaptive controller

design problem. Such equivalence is shown via the notion

of adaptive control Lyapunov functions as in [11]:

Definition 4 (Adaptive Control Lyapunov Function (aCLF)).

Let α1(·,θ), α2(·,θ), α3(·,θ) ∈ K∞ for all θ ∈ Θ. A

smooth function Va : X ×Θ → R+, satisfying:

α1(‖x‖,θ) ≤ Va(x,θ) ≤ α2(‖x‖,θ), (8)

is called an adaptive Control Lyapunov Function (aCLF) for

(4) if there exists a symmetric positive-definite matrix Γ ∈
R

p×p such that for every θ ∈ Θ, Va is a CLF for the system:

ẋ = f(x) + F(x)λclf (x,θ) + g(x)u, (9)

where

λclf (x,θ) , θ + Γ

(
∂Va

∂θ
(x,θ)

)T

. (10)

That is,

inf
u∈U

[
∂Va

∂x
(f(x) + F(x)λclf (x,θ) + g(x)u)

]

≤ −α3(‖x‖,θ). (11)

Adaptive control Lyapunov functions can be used to obtain

the following result establishing the equivalence between

the original adaptive controller design problem and a non-

adaptive one.

Theorem 1. [11] System (4) is globally adaptively stabiliz-

able iff there exists an aCLF for (4).

It is useful to give a sketch of the proof for the sufficiency

portion of this result, as it will inform the proof of the

analogous result in the context of control safety functions.

Sketch. Assume that we have an aCLF Va for (4). As Va

is a CLF for (9) with θ = θ̂, we can construct a smooth

(away from x = 0) controller u = k(x, θ̂) stabilizing (9)

(a specific example of a Lipschitz continuous controller will



be given after the proof), i.e., we can construct a controller

u = k(x, θ̂) such that:

Lf̃clf
Va(x, θ̂) + LgVa(x, θ̂)k(x, θ̂) ≤ −α3(‖x‖, θ̂), (12)

where f̃ is given by:

f̃clf (x, θ̂) = f(x) + F(x)λclf (x, θ̂). (13)

We note that this controller only depends on the current

estimate of the parameters θ̂, and does not depend on the

actual parameters θ⋆. Define the parameter error:

θ̃ = θ⋆ − θ̂ (14)

to be the difference between the actual and estimated pa-

rameters. Consider now the candidate composite Lyapunov

function:

V (x, θ̂) = Va(x, θ̂) +
1

2
θ̃
T
Γ−1θ̃. (15)

Computing its derivative we obtain:

V̇ = V̇a − θ̃
T
Γ−1 ˙̂θ

≤ −α3(‖x‖, θ̂) + θ̃
T
a(x, θ̂)

−

(
∂Va

∂θ
(x, θ̂)

)
Γa(x, θ̂).

where:

a(x, θ̂) =

((
∂Va

∂x
(x, θ̂)F(x)

)T

− τ (x, θ̂)

)
. (16)

It is now easy to see that using the update law

τ (x, θ̂) =

(
∂Va

∂x
(x, θ̂)F(x)

)T

(17)

implies

V̇ ≤ −α3(‖x‖, θ̂), (18)

from which we conclude that the equilibrium point (0,θ⋆) of

(7) is globally stable. In particular, we see that (x(t), θ̂(t)) is

globally bounded. It now follows from the LaSalle invariance

principle that x(t) converges to the largest invariant subset

of the collection of points x ∈ X satisfying α3(‖x‖, θ̂) = 0
which is the singleton x = 0.

As noted in the preceding proof, given an aCLF Va,

we can correspondingly synthesize a Lipschitz continuous

controller u = k(x, θ̂). This can be achieved in a point-wise

optimal fashion by considering an optimization based control

framework. In particular, since the aCLF condition (11) is

satisfied, we can consider the following quadratic program:

k(x, θ̂) = argmin
u∈U

1

2
‖u‖2 (aCLF-QP)

s.t.
∂Va

∂x
(x, θ̂)

(
f̃clf (x, θ̂) + g(x)u

)
≤ −α3(‖x‖, θ̂)

This QP based controller will be guaranteed to have a

solution, again because (11) is satisfied, and is Lipschitz

continuous [16]. Moreover, a closed form solution to this

optimization problem, termed the min-norm controller, can

be obtained via the KKT conditions [4]. To see this, define:

φ0(x, θ̂) ,
∂Va

∂x
(x, θ̂)f̃clf (x, θ̂) + α3(‖x‖, θ̂)

φT
1 (x, θ̂) ,

∂Va

∂x
(x, θ̂)g(x)

wherein the solution to (aCLF-QP) follows from :

k(x, θ̂) =

{
− φ0(x,θ̂)φ1

(x,θ̂)

φT
1
(x,θ̂)φ

1
(x,θ̂)

if φ0(x, θ̂) > 0

0 if φ0(x, θ̂) ≤ 0

III. CONTROL BARRIER FUNCTIONS

The goal of this work is to provably enforce safety,

even in the context of uncertain models. As a result, we

will leverage the framework of Control Barrier Functions

(CBFs) [1], [2], [28]. This section, therefore, will review the

basic concepts related to these functions and corresponding

controller synthesis.

In the context of safety, we consider a set S defined as

the 0-superlevel set of a continuously differentiable function

h : X → R, yielding:

S , {x ∈ X | h(x) ≥ 0}, (19)

∂S , {x ∈ X | h(x) = 0}, (20)

int(S) , {x ∈ X | h(x) > 0}, (21)

We refer to S as the safe set.

Consider again the known dynamics (1). A feedback

controller u = k(x) induces closed loop dynamics:

ẋ = fcl(x) , f(x) + g(x)k(x) (22)

which is assumed to be locally Lipschitz continuous. This as-

sumption implies that for any initial condition x0 ∈ X there

exists a maximum interval of existence I(x0) = [0, τmax)
such that x(t) is the unique solution to (22) on I(x0); in the

case when fcl is forward complete, τmax = ∞. This notation

allows us to define forward invariance and safety:

Definition 5 (Forward Invariant). The set S is forward

invariant if for every x0 ∈ S, x(t) ∈ S for x(0) = x0

and all t ∈ I(x0).

Definition 6 (Safety). The system (22) is safe with respect

to the set S if the set S is forward invariant.

It is desirable to achieve safety without the need to specify

a specific controller as was done in (22). This leads to the

notion of Control Barrier Functions. Before defining these,

we require the following definition as in [2]:

Definition 7 (Extended Class K Function). A continuous

function α : (−b, a) → R, with a, b > 0, is an extended

class K function (α ∈ Ke) if α(0) = 0 and α is strictly

monotonically increasing. If a, b = ∞, limr→∞ α(r) = ∞,

limr→−∞ α(r) = −∞. then α is said to be an extended

class K∞ function (α ∈ K∞,e).

This enables the following definition as in [2]:

Definition 8 (Control Barrier Function (CBF)). Let S ⊂
X be the 0-superlevel set of a continuously differentiable



function h : X → R. h is a Control Barrier Function (CBF)

for S if there exists an extended class K∞ function α such

that for the system (1):

sup
u∈U

[Lfh(x) + Lgh(x)u+ α(h(x))] ≥ 0. (23)

for all x ∈ S.

We can consider the pointwise set consisting of all control

values that render S safe:

Kcbf (x) = {u ∈ U : Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0}.
(24)

The main results of [1], [28] is that the existence of a CBF for

S implies the system (1) can be rendered safe with respect

to S:

Theorem 2. Given a set S ⊂ X defined as the 0-superlevel

set of continuously differentiable function h : X → R, if h
is a CBF on S, then any Lipschitz continuous controller k

such that k(x) ∈ Kcbf (x) for all x ∈ S renders the system

(1) safe with respect to the set S.

In addition, if k(x) ∈ Kcbf (x) for all x ∈ X , then the set

S is asymptotically stable in X .

IV. ADAPTIVE CONTROL BARRIER FUNCTIONS

Motivated by the construction of adaptive control Lya-

punov functions (aCLFs), we now explore the notion of an

adaptive Control Barrier Function.

We again assume the control system has the form given in

(4), wherein θ⋆ is a set of unknown parameters, and extend

the previous construction of the safe set S to be parameter

dependent. In this case, we construct a family of safe sets

parameterized by θ and defined as the 0-superlevel sets of a

continuously differentiable function ha : X ×Θ → R:

Sθ , {x ∈ X | ha(x,θ) ≥ 0}, (25)

∂Sθ , {x ∈ X | ha(x,θ) = 0}, (26)

int(Sθ) , {x ∈ X | ha(x,θ) > 0}, (27)

In particular, we will see this construction allows the states in

the state space that are considered safe to change according

to the current estimate of the parameters. If set in the state

space to be kept safe is independent of the parameters, the

preceding construction is identical to that in (19)-(21).

Given this construction, we can define adaptively safe

in a similar fashion to the definition of global adaptively

stabilizable given in Definition 3 (note that in this case we

opt for a local rather than global definition).

Definition 9 (Adaptively Safe). The system with unknown

parameters (4) can be rendered adaptively safe with respect

to a family of sets S
θ̂

if there exists a dynamic controller

of the form (5)-(6) satisfying (A1)-(A3) such that solutions

(x(t), θ̂(t)) of (7) controlled by (5)-(6) satisfy x(t) ∈ S
θ̂(t)

for all t ∈ I(x(0), θ̂(0)).

This definition implies that the state of the system must

remain within a potentially time-varying set, S
θ̂(t), even

in the presence of uncertainty in the dynamics. It is not

necessary that the parameters converge, or even that they

remain bounded, as in the adaptively stabilizable formulation.

As will be seen, this is inherently connected to the fact

that safety does not force the system to converge to an

equilibrium point, but only requires it remains within a set.

Before defining aCBFs, we also specify that a set of

adaptive gains G is defined such that:

Γ ∈ G =⇒ Γ satisfies A(3). (28)

We note that G need not be all values of Γ satisfying A(3).

We can now define aCBFs as an extension of Definitions 4

and 8.

Definition 10 (Adaptive Control Barrier Function (aCBF)).

Let Sθ ⊂ X be a family of 0-superlevel sets of a contin-

uously differentiable function ha : X × Θ → R, with ∂ha

∂x

Lipchitz continuous. Then ha is an adaptive control barrier

function (aCBF) on the family of sets Sθ over adaptive gains

G for (4) if for any θ ∈ Θ and Γ ∈ G:

sup
u∈U

[
∂ha

∂x
(x,θ) (f(x) + F(x)λcbf (x,θ) + g(x)u)

]
≥ 0.

(29)

with

λcbf (x,θ) , θ − Γ

(
∂ha

∂θ
(x,θ)

)T

. (30)

Let us make a few observations of this definition:

Remark 2. As will be seen in the proof that an aCBF can

ensure a system is adaptively safe, there is a requirement

on the smallest eigenvalue of Γ. As not every value of

Γ satisfying A(3) will satisfy this requirement, we must

consider a restricted set of values for Γ, given by G. This

leads to the incorporation of the set G in the definition of an

aCBF. If the family of sets Sθ does not depend on θ, such

that:
∂ha

∂θ
(x,θ) ≡ 0, (31)

then Γ will not appear in (29). This implies ha being an

aCBF for (4) will not depend on G.

Remark 3. The constraint in (29) differs from (23) in that

the term α(ha(x,θ)) does not appear. Rather, this closely

resembles early definitions of barrier certificates and Lya-

punov barrier functions [21], [27], [24], which did not allow

the state to approach the boundary of the safe sets, enforcing

forward invariance of level sets of ha. As will be shown in

Section V, using the constraint from (23) doesn’t lead to the

state safe set remaining forward invariant.

We note that a QP-based Lipschitz continuous con-

troller attaining safety can be constructed similarly to the

(aCLF-QP) given an aCBF. We now have the necessary

framework in which to present the main result of this paper—

that the existence of an aCBF implies safety of the family

of sets S
θ̂

even under parameter uncertainty.

Theorem 3. Let ha : X → R be an adaptive control barrier

function on the family of sets S
θ̂

over G. Assume that θ̃0 =



θ̃(0) with ‖θ̃0‖2 ≤ c for c > 0 and x0 = x(0) ∈ int(S
θ̂0

)
If there exists a positive definite gain matrix, Γ ∈ G, such

that:

λmin(Γ) ≥
c2

2ha(x0, θ̂0)
, (32)

then there exists a Lipschitz continuous function τ (x, θ̂) such

that for the update law:

˙̂
θ = Γτ (x, θ̂), (33)

the family of sets S
θ̂

is forward invariant.

The main idea is to approach the proof much in the

same way as the proof of Theorem 1. Yet the construction

of a composite CBF as was done in (15) in the case of

aCLFs requires more care. Adding the parameter error term

would result in the composite safety function 0-superlevel set

properly containing the 0-superlevel set of the aCBF, adding

additional states to the set that can be rendered safe. This

extension of the safe set can be quantified if the parameter

estimates (and thus the parameter error) remains bounded,

as in the case of aCLFs, but this is not guaranteed given the

necessary form of τ .

Proof. Define the following composite candidate CBF for

the extended system dynamics (7):

h(x, θ̂) = ha(x, θ̂)−
1

2
θ̃
T
Γ−1θ̃ (34)

By assumption, x0 ∈ int(S
θ̂0

), implying that ha(x0, θ̂0) >

0. Further, our assumption that ‖θ̃0‖2 ≤ c implies that:

1

2
θ̃
⊤

0 Γ
−1θ̃0 ≤

1

2λmin(Γ)
‖θ̃0‖

2
2 ≤

c2

2λmin(Γ)
(35)

Therefore, choosing Γ such that

λmin(Γ) ≥
c2

2ha(x0, θ̂0)
(36)

leads to:

h(x0, θ̂0) ≥ 0 (37)

Now consider the time derivative of h as given in Table I.

The second equality follows the addition and subtraction of

the term:

∂ha

∂x
(x, θ̂)F(x)

(
θ̂ − Γ

(
∂ha

∂θ
(x, θ̂)

)⊤
)

(38)

The third equality is a rearrangement revealing the form of

the aCBF time derivative as given in (29)-(30). In particular,

condition (29) permits the choice of an input u such that the

first inequality is satisfied. Choosing the update law τ as:

τ (x, θ̂) = −

(
∂ha

∂x
(x, θ̂)F(x)

)⊤

(39)

results in the last inequality. This inequality, in conjunction

with (37) and the comparison lemma in [8] imply that

h(x(t), θ̂(t)) ≥ 0 (40)

for all t ≥ 0. Given the construction of h in (34), it follows

that:

ha(x(t), θ̂(t)) ≥
1

2
θ̃(t)⊤Γ−1θ̃(t) ≥ 0. (41)

Lastly, we conclude that x(t) ∈ S
θ̂(t) for t ≥ 0.

The proof reveals that superlevel sets of h are forward

invariant. As h can not be computed without knowing the

true parameters θ⋆, it is not possible to set ḣ ≥ −α(h) as

is typical with CBFs. Furthermore, we have that ha ≥ h,

implying that −α(ha) ≤ −α(h). Thus setting ḣ ≥ −α(ha)
does not yield the desired lower bound on ḣ. One may note

that setting ḣ ≥ −α(ha) leads to ḣ ≥ 0 when ha = 0,

or when the state is on the boundary of the safe set. This

fact is concurrent with the common forward invariance proof

technique utilizing Nagumo’s theorem [17]. Despite this, it

is in fact possible to construct simple examples (in R
2) such

that the state must leave the safe set defined by ha for any

choice of differentiable α and Γ as shown in Section V.

Remark 4. The assumption on θ̃ implies that the initial pa-

rameter error must be bounded, unlike the aCLF formulation.

This is due to the fact that we seek to keep a particular

set forward invariant. In contrast, the only set kept provably

forward invariant in the aCLF formulation is the sublevel

set of the composite Lyapunov function V corresponding

to the initial conditions (x(0), θ̂(0)). Evaluating that set

would too require assumptions on the boundedness of θ̃(0).
Additionally, while this may seem restrictive, we note that

the input for the system will not be chosen to be robust

to all uncertainties in this initial uncertainty set. Rather, the

uncertainty will be handled by adapting parameter estimates.

Remark 5. The lower bound on the adaptive gain allows us

to ensure that the system can adapt quickly enough to ensure

safety from the given initial condition. Initial distance from

the safety set boundary and smaller possible initial parameter

error allow the adaptive gain to be made smaller.

A quadratic program based controller similar to

(aCLF-QP) can be constructed using an aCBF. To this

end, we adopt the safety-critical control formulation in [25],

[7] that filters a desired but potentially unsafe controller

kd : X ×Θ → U to find the nearest safe control action:

k(x, θ̂) = argmin
u∈U

1

2
‖u− kd(x, θ̂)‖

2 (aCBF-QP)

s.t.
∂ha

∂x
(x, θ̂)(f̃cbf (x, θ̂) + g(x)u) ≥ 0

where f̃cbf is defined like f̃clf in (13). As with (aCLF-QP),

this quadratic program has a closed form solution.

V. ANALYSIS OF ACBF FORMULATION

In this section we analyze the aCBF conditions to verify

that, in fact, they do not appear overly conservative. In partic-

ular, changing the aCBF condition ḣa ≥ 0 to ḣa ≥ −α(ha)
does not necessarily lead to adaptive safety. Consider the

simple dynamic system given by:

ẋ = θ + u (42)



ḣ(x, θ̂,u) =
∂ha

∂x
(x, θ̂) (f(x) + F(x)θ⋆ + g(x)u) +

∂ha

∂θ
(x, θ̂)

˙̂
θ + θ̃

⊤

Γ
−1 ˙̂

θ

=
∂ha

∂x
(x, θ̂) (f(x) + F(x)θ⋆ + g(x)u) +

∂ha

∂θ
(x, θ̂)Γτ (x, θ̂) +

∂ha

∂x
(x, θ̂)F(x)

(
θ̂ − Γ

(
∂ha

∂θ
(x, θ̂)

)
⊤
)

−
∂ha

∂x
(x, θ̂)F(x)

(
θ̂ − Γ

(
∂ha

∂θ
(x, θ̂)

)
⊤
)

+ θ̃
T

τ (x, θ̂)

=
∂ha

∂x
(x, θ̂)

(
f(x) + F(x)

(
θ̂ − Γ

(
∂ha

∂θ
(x, θ̂)

)
⊤
)

+ g(x)u

)

+
∂ha

∂x
(x, θ̂)F(x)

(
θ̃ + Γ

(
∂ha

∂θ
(x, θ̂)

)
⊤
)

+
∂ha

∂θ
(x, θ̂)Γτ (x, θ̂) + θ̃

⊤

τ (x, θ̂)

≥

(
∂ha

∂θ
(x, θ̂)Γ+ θ̃

⊤

)((
∂ha

∂x
(x, θ̂)F(x)

)
⊤

+ τ (x, θ̂)

)

≥ 0

TABLE I. Calculation of ḣ as used in the proof of the main result.

with θ unknown and the safety function ha(x) = 1 − x2

defining the state safe set S = {x ∈ R | x2 ≤ 1}. Assume

that x0 ∈ int(S) and θ̃20 ≤ c2. The resulting composite safety

function is given by:

h(x, θ̂) = ha(x)−
1

2
γ−1θ̃2 (43)

with any γ satisfying:

γ ≥
c2

2ha(x0)
. (44)

We additionally define the following sets:

U = {(x, θ̃) ∈ R
2 | x ∈ S} (45)

H0 = {(x, θ̃) ∈ R
2 | h(x, θ̂) ≥ 0} (46)

We note that the set U extends infinitely along the θ̃-axis,

and completely contains H0. Furthermore, H0 ∩ ∂U =
{(−1, 0), (1, 0)}. The time derivative of the composite safety

function is given by:

ḣ(x, θ̂, u) = −2x(θ̂ + u) + θ̃(−2x+ τ(x)) (47)

for
˙̂
θ = γτ(x). Choosing the update law τ(x) = 2x

and controller u = −θ̂ + 1
2xα(ha(x)), with extended K∞

function α, we have:

ḣ(x, θ̂) = −x2α(ha(x)) ≥ −α(ha(x)). (48)

as when α(ha(x)) ≥ 0, x2 ≤ 1, and when α(ha(x)) ≤
0, x2 ≥ 1. Noting the construction of U , we have the

implication that (x, θ̃) ∈ U =⇒ ḣ(x, θ̂) ≤ 0. The closed-

loop state and parameter error dynamics are given by:
[
ẋ
˙̃
θ

]
=

[
θ̃ + 1

2xα(ha(x))
−2γx

]
=

[
θ̃ − F (x)
−g(x)

]
, (49)

which has an unstable equilibrium point at the origin. This

system is an example of a Liénard system (like the Van der

Pol oscillator) as in [20], with F (x) = − 1
2xα(ha(x)) and

g(x) = 2γx. For systems of the this form, the following

theorem, attributed to Liénard, provides the existence of a

unique, stable limit cycle:

Theorem 4 (Liénard’s Theorem, [20]). Under the assump-

tion that F, g ∈ C1(R), F and g are odd functions of x,

xg(x) > 0 for x 6= 0, F (0) = 0, F ′(0) < 0, F has single

positive zero at x = a, and F increases monotonically to

infinity for x ≥ a as x → ∞, it follows that the Liénard

system (49) has exactly one limit cycle and it is stable.

If α is continuously differentiable in addition to an ex-

tended K∞ function, the assumptions of this theorem are met

by the functions given in (49). We note that a = 1 in this

given example. Thus we can conclude that the system (49)

has a stable periodic orbit, which we denote Φ. We denote

the open set in R
2 enclosed by the limit cycle as int(Φ).

Additionally, the proof of this theorem as in [20] implies the

following corollary regarding the stable limit cycle:

Corollary 1. The stable limit cycle Φ is symmetric about the

origin and passes through a point, denoted as P2 = (x2, θ̃2),
such that x2 > a.

Given that a = 1, this corollary reveals that the stable

limit cycle leaves the set U , for which the state is considered

safe. Additionally, as the limit cycle is symmetric about the

origin, and the origin is an unstable equilibrium, the origin

is contained in int(Φ).
This corollary also implies that H0 ⊂ (Φ∪ int(Φ)). To see

this, note that as the limit cycle encircles the origin, it must

reenter the set U after leaving the point P2. At any point

v = (v1, v2) ∈ U that the limit cycle enters, we must have

h(v) ≤ 0, given the two points in H0 ∩ ∂U . Once the limit

cycle enters U , we have ḣ ≤ 0 until the limit cycle leaves

U as previously noted. Thus, h ≤ 0 along the portion of the

limit cycle contained in U , implying H0 ⊂ (Φ∪ int(Φ)). To

complete the proof, we will employ the following definition

and lemma from [8]:



Definition 11 (Positive Limit Set). The positive limit set L+

is defined as all points p ∈ R
2 such that there is a sequence

{tn} with tn → ∞ as n → ∞, and (x(tn), θ̃(tn)) → p as

n → ∞.

Lemma 1. If a solution (x(t), θ̃(t)) of (49) is bounded for

t ≥ 0, then its positive limit set L+ is a nonempty, compact,

invariant set, and (x(t), θ̃(t)) approaches L+ as t → ∞.

We note that the unstable equilibrium point is not con-

tained within the positive limit set L+. As the 0-superlevel

set of h, and thus all possible initial conditions given our

bound on θ̃0, are contained inside the limit cycle, all solutions

to (49) are bounded (by the limit cycle). Furthermore, L+ =
Φ, and thus all solutions starting in the 0-superlevel approach

set approach Φ. As the point P2 ∈ Φ, and P2 /∈ U , we see

that any solution starting in the 0-superlevel set of h leaves

the desired state safe set S. Hence, the relaxation does not

achieve safety of the state as desired, as seen in Figure 1.
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Fig. 1. Evolution of the system governed by (49) with α(r) = kr, k = 10,

(x0, θ̃0) = (0.2, 1), c = 5, and γ = 26 achieving the lower bound.

VI. ADAPTIVE CRUISE CONTROL

To demonstrate how an aCBF can be used to render a

system adaptively safe, we consider the problem of adaptive

cruise control (ACC) as posed in [1]. The dynamics of the

system are given by:

d

dt

[
v
D

]
=

[
0

v0 − v

]
−

1

m

[
1 v v2

0 0 0

]

f0
f1
f2


+

[
1
m

0

]
u (50)

with v the velocity of the vehicle, D the distance between the

vehicle and a leading vehicle traveling at a fixed velocity v0,

m the vehicle’s mass, and f0, f1, and f2 unknown parameters

associated with rolling frictional force. In this problem, we

seek to drive the velocity to a desired velocity, vd, while

simultaneously ensuring the distance between the vehicles

satisfies a safety constraint given by:

D ≥ 1.8v. (51)

The parameters f0, f1, and f2 are often determined empiri-

cally, and if they are not accurate, the desired velocity may

not be accurately tracked. Furthermore, if the parameters do

not exactly match the true parameters, it may not be possible

to certify that the system will satisfy the safety constraint.

The control objective of tracking a desired velocity can

be achieved with a hand-designed controller kd or encoded

using a CLF, and the safety constraint can be encoded using

a CBF. Additional constraints on the maximum acceleration

and deceleration can be enforced to maintain passenger

comfort. To handle uncertainty in the parameters, we utilize

the tool of aCBFs to maintain and update estimates of these

parameters. An aCBF that yields desirable results is defined

as the following continuously differentiable function:

ha(v,D) =

{
α2 if D − 1.8v ≥ α

α2 − (D − 1.8v − α)2 if D − 1.8v < α

for α > 0. This particular construction of ha is constant away

from the safety boundary and diminishes to 0 (quadratically

to preserve differentiability) as the boundary is approached.

In practice, this is to handle the fact that superlevel sets of the

composite safety function h are forward invariant. In regions

where ha is constant, ∂ha

∂x
, and thus the update law in (39),

is 0, thus making ḣ = 0 as in the first equality in Table I.

aCBF-QP Controller: A simple proportional controller on

tracking error v − vd can be implemented and achieve good

tracking performance, but is not necessarily safe. A CBF

alone would not ensure the safety of this controller with

model uncertainty, but treating the proportional controller as

kd in aCBF-QP with an aCBF, safety can be achieved.

aCLF-aCBF-QP Controller: Additionally, we can unify

aCLF and aCBFs in a quadratic program based controller to

receive the benefits of optimal and adaptive tracking while

remaining safe. Separate estimates of the parameters are

mainted for the aCLF and the aCBF, as the form of the update

laws in (17) and (39) may not be simultaneously satisfiable

for only one estimate of the parameters. The CLF in [1] on

the velocity tracking error v− vd, given by Va = (v− vd)
2,

also satisfies the aCLF condition (11). Letting x = (v, z) and

θ̂ and ψ̂ be parameter estimates associated with the aCLF

and aCBF, respectively, we formulate a QP-based controller:

k(x, θ̂, ψ̂) = argmin
u∈U

J(u) + cV (x)δV + cp(x)δp

s.t. Lf̃clf
Va(x, θ̂) + LgVa(x, θ̂)u ≤ −α3(‖x‖, θ̂) + δV

Lf̃cbf
ha(x, ψ̂) + Lgha(x, ψ̂)u ≥ 0

u ≤ umax + δp

u ≥ −umax − δp

δV , δp ≥ 0

with parameter updates for θ̂ and ψ̂ as in (17) and (39),

respectively. δV and δp are relaxations to the optimization

problem to ensure its feasibility, while safety is ensured.

The functions cV and cp are Lipschitz continuous and are

used to achieve smoothness. With initial parameter estimates[
f̂0 f̂1 f̂2

]
= 10

[
f⋆
0 f⋆

1 f⋆
2

]
(less friction than mod-

eled), the results of this controller appear in Figure 2.
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Fig. 2. Comparison of different adaptive and non-adaptive control methodologies. The aCBF-QP is able to enforce safety of the proportional controller
(left). An aCLF controller is able to track the desired velocity with zero steady state error (center). Both aCBF controllers are able to keep the vehicle
within the safe region for all time (right)

We see that the proportional controller fails to keep the

vehicle safe, but filtering it with the aCBF-QP keeps it safe

(with D ≥ 1.8v for all time) even with model uncertainty.

A CLF-CBF controller with no adaptive elements fails to

either track the desired velocity (with steady state error)

or keep the vehicle safe. The CLF-aCBF controller keeps

the vehicle safe but has steady state tracking error, while an

aCLF-aCBF controller accurately tracks the desired velocity

with no steady state error, and keeps the vehicle safe.

VII. CONCLUSION

We presented a novel approach for ensuring the safety of a

system under a form of parametric uncertainty. This approach

builds off the structure established with adaptive Control

Lyapunov Functions, and highlights the differences that must

be considered when ensuring the forward invariance of a

specific set. Future work includes considering this framework

within a batched-data framework, in which initial parametric

uncertainty can be iteratively and episodically reduced to

permit less conservative safe sets.
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