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Abstract – High-performance networks require sophisticated management systems to identify sources of bottlenecks 

and detect faults.   At the same time, the impact of network queries on the latency and bandwidth available to the 

applications must be minimized.  Adaptive techniques can be used to control and reduce the rate of sampling of 

network information, reducing the amount of processed data and lessening the overhead on the network.  Two 

adaptive sampling methods are proposed in this paper based on linear prediction and fuzzy logic.  The performance 

of these techniques is compared with conventional sampling methods by conducting simulative experiments using 

Internet and videoconference traffic patterns.  The adaptive techniques are significantly more flexible in their ability 

to dynamically adjust with fluctuations in network behavior, and in some cases they are able to reduce the sample 

count by as much as a factor of two while maintaining the same accuracy as the best conventional sampling 

interval.  The results illustrate that adaptive sampling provides the potential for better monitoring, control, and 

management of high-performance networks with higher accuracy, lower overhead, or both. 
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1. INTRODUCTION 

In network management, accurate measures of network status are needed to aid in planning, troubleshooting, and 

monitoring.  For example, it may be necessary to monitor the bandwidth consumption of several hundred links in a 

distributed system to pinpoint bottlenecks.  If the monitoring is too aggressive, it may create artificial bottlenecks.  

With too passive a scheme, the network monitor may miss important events.  Network query rates must strike a 

balance between accurate performance characterization and low bandwidth consumption to avoid changing the 

behavior of the network while still providing a clear picture of the behavior.  This balance is often achieved through 

sampling.  Sampling techniques are used to study the behavior of a population of elements based on a representative 

subset.  In general, the samples are taken periodically at some fixed interval or in some random distribution.  Such 

sampling reduces bandwidth and storage requirements for the monitored data.   
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In a high-performance network, sampling overhead must have a minimal impact on the low-latency application 

transactions while high network throughputs require frequent sampling to capture transient behavior.   For example, 

many distributed applications (e.g. parallel discrete-event simulation, database systems, etc.) may require frequent 

synchronization, large data transfers, or both.  Network management queries could delay critical data on a single 

link and thus reduce the efficiency of the entire application.  

Under some traffic loads, simple periodic sampling may be poorly suited to the monitoring task.  For example, 

during periods of idle activity or low network loads, a long sampling interval provides sufficient accuracy at a 

minimal overhead.  However, bursts of high activity require shorter sample intervals to accurately measure network 

status at the expense of increased sample traffic overhead.  To address this issue, adaptive sampling techniques can 

be employed to dynamically adjust the sampling interval and optimize accuracy and overhead.   

Adaptive sampling monitors network behavior by dynamically adjusting the sampling time interval for each 

parameter monitored.  When levels of high activity are detected, a shorter sampling interval is employed to measure 

the behavior of the network with greater accuracy.  When less activity is detected, the sampling interval is 

lengthened to reduce sampling overhead.  The adaptive algorithms introduced in this paper are used to select the 

most representative samples of the population by polling and monitoring key fluctuations in the variables being 

measured.  Consequently, adaptive sampling techniques allow the management to take place in a less-intrusive 

fashion by avoiding unnecessary queries.   

This paper introduces two techniques for adaptive sampling.  The first technique is based on Linear Prediction 

(LP) [1,2].  The LP sampler uses previous samples to estimate or predict a future measurement.  The LP logic can be 

used in conjunction with a set of rules defining the sampling rate adjustments to make when the prediction is 

inaccurate.   

The second technique for adaptive sampling makes use of fuzzy logic.  Fuzzy logic mimics the decision 

processes employed by the human brain [3].  For example, a network administrator may reason that when network 

load is low, the sample interval can be increased.  The fuzzy logic model relies on previous experiences for defining 

the fuzzy set of parameters and boundaries for the fuzzy variables.   

In order to gauge the performance of the adaptive techniques, they are compared with systematic sampling.   This 

technique uses a deterministic interval of time to query the agents.  Other non-adaptive sampling techniques include 
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random sampling where samples are taken at intervals of time determined by a random distribution, and stratified 

random sampling where a sample is taken at a random point within a deterministic time interval [4,5]. 

This paper introduces the concept of adaptive network sampling and provides experimental results with the 

various sampling techniques comparing them in terms of accuracy and performance using Internet and 

videoconference traffic.  In Section 2, the sampling techniques used in this study are defined.  Section 3 describes 

the experiments and measurement techniques used to compare the performance of the sampling disciplines are 

described.  The performance results are shown in Section 4.  Related research is described in Section 5, while 

conclusions and directions for future research are provided in Section 6. 

2. SAMPLING TECHNIQUES FOR NETWORK MANAGEMENT 

In network management, status information regarding load, latency, queue occupancy, and other parameters is 

frequently available in devices such as routers, switches, and network interfaces.  Such information is often accessed 

through the Simple Network Management Protocol (SNMP) [6-9].  In SNMP, a Network Management Station 

(NMS) queries the network devices, or agents, to periodically assess the status of the network devices or links. 

The period of the sampling determines the accuracy of the measured data.  Transient activity may not be 

accurately detected when the sampling interval is large, while small intervals consume more bandwidth on the 

network and require greater storage capacity at the NMS.  For example, a burst of high activity lasting only seconds 

is likely to go undetected with a sampling interval of several minutes.  In an effort to balance accuracy with 

sampling overhead, several sampling disciplines have been applied to network managers.    

2.1. Conventional Sampling 

Traditionally, network management has made use of simple, non-adaptive sampling techniques.  Such 

techniques use a fixed rule to determine when to sample data in each agent.   The sampling rule can be deterministic, 

such as in periodic sampling, or it can involve a random component.  Introducing randomness has been shown to 

improve accuracy in situations where the monitored data is uniform in nature [4].  There are three conventional 

methods used by network management systems for sampling of agents:    

a) Systematic sampling, or periodic sampling, deterministically samples data at a fixed time interval.  Fig. 

1(a) shows systematic sampling with a period of T seconds. 
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b) Random sampling employs a random distribution function to determine when each sample should be 

taken.  The distribution may be uniform, exponential, Poisson, etc.  As shown in Fig. 1(b), random 

sampling may take a varying number of samples in a given time interval.   

c) Stratified random sampling combines the fixed-time interval used in systematic sampling with random 

sampling by taking a single sample at a random point during a given time interval.  Fig. 1(c) shows 

stratified random sampling with a time interval of T. 

 
 

T 2T 3T 4T 5T T 2T 3T 4T 5T T 2T 3T 4T 5T      

                 (a) Systematic sampling            (b) Random sampling          (c) Stratified random sampling 

Fig. 1.  Conventional sampling methods. 

Since network traffic is frequently aperiodic, the rate for any of these non-adaptive sampling techniques is 

typically set based on the expected average network load, the traffic distribution, or simply to a value that will yield 

an acceptably small amount of overhead.  If the actual traffic differs from the expected pattern, the measurements 

may prove inaccurate or may take an excessive number of samples. 

2.2. Adaptive Sampling  

Adaptive sampling dynamically adjusts the sampling rate based on the observed sampled data.  A key element 

in adaptive sampling is the prediction of future behavior based on the observed samples.  The two adaptive sampling 

techniques presented in this paper differ by the technique used to predict the future behavior of the system.  The 

Linear Prediction (LP) method attempts to predict the value of the next sample.  If the prediction is accurate, the 

sampling rate can be reduced.  Inaccurate predictions indicate a change in the network behavior and require an 

increased sampling rate to determine the new pattern.   By contrast, the Fuzzy Logic Controller (FLC) adjusts the 

sampling rate based on experiences in past situations with similar sample data.  A rule structure is defined that the 

FLC can follow to determine the most appropriate action to take given a certain input condition.  
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2.2.1. Linear Prediction (LP) Method 

The LP method proposed for adaptive sampling is based on the Linear Prediction Coefficient (LPC) technique 

used by Jacobson and Karels in the congestion control protocol for the Transport Control Protocol (TCP) to predict 

the Round Trip Time (RTT) of a packet [10].  LPC employs a low-pass filter to predict future data values.  This 

technique filters out transient behavior, using the average value of the non-transient data as the prediction for the 

next value.  This predicted time value was used to adjust the transmission window base on the RTT of previous 

packets.  The low-pass filter is of the form:   

 ( ) RMxp ×+×−= αα1      (2.1) 

In this equation, xp is the predicted value for the next sample, M is the most recently measured value, and R 

represents the average of the previous two samples.  The coefficient α ranges between zero and one and is selected 

experimentally depending on the network load, where higher values of α reduce the impact of transient values on 

the average value. 

A similar LP-based technique is used in this paper to control the sampling time.  The main difference between 

the approach described in this paper and the one used by Jacobson and Karels is that here a variable number of 

previous samples are used to calculate the predicted value.  Instead of using only the previous two samples, a 

window of N samples is used for the prediction.  Moreover, the α coefficient for tuning to a specific network load is 

no longer employed. 

Eq. (2.2) below defines the LP logic for a sampler of order N.  As in Eq. (2.1), the value xp represents the 

predicted value for the next sample.  The vector x holds the value of the previous N samples, where x[N] is the most 

recent sample and x[1] is the oldest sample.  Sample refers to the value of the current sample.  Immediately prior to 

taking the next sample, the values in the vector x are shifted such that x[1] is discarded and replaced with x[2], x[2] 

is replaced with x[3], and so forth with the value of Sample replacing x[N].  Eq (2.2) is designed to work with non-

decreasing SNMP byte counters, and therefore the difference between any two values in x will always be non-

negative.  A second vector, t, records the time that each sample is taken and is shifted in the same manner as x, with 

the time at which Sample was taken replacing t[N].  Since the period between samples is not necessarily constant, 

the next value is predicted based on the average rate of change in the previous N samples.   
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The prediction is then used as shown in Fig. 2.  The predicted output, xp, which has been derived from the 

previous N samples, is then compared with the actual value of Sample.   A set of rules is applied to adjust the current 

sampling interval, ∆TCurrent = t[N] – t[N–1], to a new value, ∆TNext, which is used to schedule the next management 

query.  The rules used to adjust the sampling interval compare the rate of change in the predicted sample value, xp – 

x[N],  to the actual rate of change, Sample – x[N].  This rate, m, is given by Eq. (2.3). 

 

 

LP logic 
(order  N ) 

Rules 

xp 

vector  x 
(N  samples ) 

Sample 

∆ T Current 

∆ T Next 

 

Fig. 2.  LP-based adaptive sampling. 
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The rate of change provided by Eq. (2.3) will take on a value near unity when the predicted behavior is close to 

the actual behavior.  The range of values that satisfy this condition is defined as mmin < 1 < mmax.  If m is below mmin, 

the measured parameter is changing faster than the prediction.  Such behavior indicates more activity than predicted, 

so the sampling interval should be decreased to yield more accurate data values on which to base future predictions.  

Conversely, if m is above mmax, the measured value is changing more slowly than the prediction so the sampling 

interval can be increased.  Note that m can be undefined if the current value of Sample is unchanged from that of the 

previous sample, x[N].  Since this condition is indicative of an idle network, the sampling interval is increased 

exponentially.   



 7 

Table I.  LP rules for adjusting sample interval. 

Calculated m Value Next Sample Interval 

m  < mmin ∆TNext = m × ∆TCurrent 

mmin ≤ m ≤ mmax ∆TNext = ∆TCurrent 

mmax < m ∆TNext = ∆TCurrent + 1 sec 

m undefined ∆TNext = 2 × ∆TCurrent 

 

Table I lists the specific rules for generating ∆TNext given the current value of m.  Based on the results of 

experiments described later, mmin and mmax are set to 0.9 and 1.1 respectively.  These values were selected because 

they provided good performance over a range of traffic types.  An additional constraint can be used to limit the 

range of possible values for ∆TNext.  For example, in this paper, the sampling interval is restricted to be between 1 

and 10 seconds regardless of the output of the LP logic.  The lower bound is applied to limit the sampling to a rate 

the manager and agents can realistically service, while the upper bound ensures there is some minimum set of 

samples on which to base future predictions. 

2.2.2. Fuzzy Logic Controller (FLC) Method 

Rather than attempting to predict the exact values of future samples, fuzzy logic applies “rules of thumb” to the 

observed behavior to adjust the future sampling rate in a reasonable fashion.  Fuzzy logic has shown promising 

results in non-linear systems, especially those that are difficult to model or where an exact model is impossible.  The 

FLC mimics human reasoning by applying a set of rules based on one or more premises and a single implication.   

For example, if the premises “network load is very high” and “the sampling interval is somewhat low” are found to 

be true, the implication “reduce the sampling interval by a medium amount” might be taken.  In this section, an FLC 

is used to adaptively control the sampling rate of the network monitor. 

The proposed method for adaptive sampling using fuzzy logic is shown in Fig. 3.  The inputs of the FLC are the 

current sampling interval, ∆TCurrent, and the difference between the last two sample values, ∆X.   The FLC output, 

Fout, corresponds to the amount of time to increment or decrement the current sampling interval, ∆TCurrent.  This 

adjustment yields a new value for the next sampling interval, ∆TNext.  The following subsections describe the FLC, 

including the definition of the membership functions, the fuzzy rules, and the defuzzification process. 
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FLC Σ
∆X = Sample - τ

τ = Sample

∆TCurrent

∆TNext

Sample ∆X
Fout

 
Fig. 3.  Adaptive sampling based on fuzzy logic. 

2.2.3. FLC Membership Functions  

Unlike traditional digital systems, fuzzy logic differentiates between several levels such as “high,” “medium,” 

and “low” when making decisions.  The numerical ranges assigned to each of the levels are defined in a membership 

function.  The FLC makes use of a set of membership functions such as those illustrated in Fig. 4 to determine a 

suitable output value given the state of the input values.  In this case, there are two membership functions for the 

inputs and one for the output.  For the two input membership functions, ∆X and ∆TCurrent, the horizontal axis 

corresponds to the value of the input.  A given value of the input is interpreted as being in one or more fuzzy states.  

For the ∆X input, the fuzzy states are No-Change (NC), Change-Slight (CS), Change-Low (CL), Change-Medium 

(CM), and Change-High (CH).  The ∆TCurrent input falls into the categories of Small (S), Small-Medium (SM), 

Medium (M), Medium-Large (ML), and Large (L).   

The output of the FLC is also defined in terms of fuzzy variables.  In Fig. 4, the output of the FLC, Fout, falls 

into one of five fuzzy states: Decrease-High (DH), Decrease-Low (DL), No-Change (NC), Increase-Low (IL), and 

Increase-High (IH). 

1
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Fig. 4.  Membership functions used by the FLC. 
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In Fig. 4, the labels at the top of each peak in the graph represent the fuzzy states for the given input or output 

variable.  The y-axis shows the fractional membership in each state for a given value along the x-axis.  The x-axis 

value corresponds to the numerical value of the input or output variable.  The membership function for input ∆X 

describes the amount of change in measured throughput (in terms of SNMP byte-count) between successive samples 

and ranges from 0 to P bytes.  Similarly, the membership function for input ∆TCurrent denotes the current sampling 

interval and ranges from 0 to K seconds.  Finally, the membership function for output Fout indicates the amount of 

increase or decrease to be applied to the sampling interval and ranges from -L to +L seconds. 

Table II.  Parameter values selected for the membership functions in the FLC. 

Type of Traffic P (bytes) K (sec) L (sec) 
Internet  InternetS×4.0  12 2.0 
Videoconference videoS×0.4  12 0.5 

 

The appropriate selection of the membership parameters P, K, and L requires some understanding of the traffic 

behavior.  When determining the values for these FLC parameters, it is desirable to select values that lead to a 

relatively uniform spread in frequency of occurrence of inputs across the states of the membership function.  For 

instance, with parameter P, the goal is select the value that distributes the input data in a relatively uniform fashion 

across all five of the stages, from NC to CH.  Based on several tuning experiments with the Internet and 

videoconference traffic models described in the next section, the values selected for this controller were determined 

as shown in Table II.  In this table, the variables SInternet and Svideo refer to the peak throughputs (i.e. the maximum 

change in SNMP transmitted byte-count measured over a span of one second) in the Internet and videoconference 

data, respectively.  These values are multiplied by a scaling factor to produce the desired value for parameter P.  For 

Internet traffic, a small scaling factor is selected, which allows the FLC to respond to smaller changes in network 

behavior.  Coupled with a larger value of L, the FLC can make large adjustments in the sampling interval in 

response to small changes in network behavior.  The videoconference traffic employs a larger scaling factor and 

smaller value of L since the periodic nature of the traffic requires less drastic adjustments to sample rate.  Although 

beyond the scope of this paper, the use of an FLC in a network with arbitrary traffic would require a training period 

during which the optimal spread of these three parameters across the fuzzy states in the membership functions could 

be ascertained. 
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2.2.4. FLC Rules 

In addition to the membership functions for the inputs, the FLC needs a fuzzy set of rules to map the input 

values to an output response.  The twenty-five statements shown in Table III represent a proposed set of fuzzy rules 

for the FLC.  Each row in this table provides two premises along with a single implication. In the table, the first and 

second columns are correlated using the logic operator AND, which is analogous to the intersection in set theory.  

For example, the fuzzy logic expression shown in the first row of the table indicates that given no measured changes 

in the input, ∆X, and a small sampling interval, ∆TCurrent, then Fout should cause the sampling interval to be increased 

by a high amount.   

Table III.  Rules for the fuzzy controller. 

Rule ∆X ∆TCurrent Fout 
1 No-Change             (NC)    Small                  (S)       Increase-High    (IH)   
2 No-Change             (NC)     Small-Medium   (SM)   Increase-High    (IH) 
3 No-Change             (NC)     Medium             (M)       Increase-Low     (IL) 
4 No-Change             (NC)     Medium-Large  (ML) Increase-Low     (IL) 
5 No-Change             (NC)     Large                (L) No-Change        (NC) 
6 Change-Slight        (CS) Small                 (S)       Increase-High    (IH)   
7 Change-Slight        (CS) Small-Medium  (SM)   Increase-Low     (IL) 
8 Change-Slight        (CS) Medium             (M)       No-Change         (NC) 
9 Change-Slight        (CS) Medium-Large  (ML) Decrease-Low    (DL) 

10 Change-Slight        (CS) Large                (L) Decrease-Low    (DL) 
11 Change-Low          (CL)   Small                 (S)       Increase-Low     (IL) 
12 Change-Low          (CL)   Small-Medium  (SM)   No-Change         (NC) 
13 Change-Low          (CL) Medium             (M)       Decrease-Low    (DL) 
14 Change-Low          (CL)   Medium-Large  (ML) Decrease-High   (DH)  
15 Change-Low          (CL)   Large                (L) No-Change         (NC) 
16 Change-Medium   (CM) Small                 (S)       Decrease-Low    (DL) 
17 Change-Medium   (CM) Small-Medium  (SM)   Decrease-Low    (DL) 
18 Change-Medium   (CM) Medium             (M)       Decrease-High   (DH) 
19 Change-Medium   (CM) Medium-Large  (ML) Decrease-High   (DH) 
20 Change-Medium   (CM) Large                (L) Decrease-High   (DH) 
21 Change-High         (CH) Small                 (S)       Decrease-Low    (DL) 
22 Change-High         (CH) Small-Medium  (SM)   Decrease-High   (DH) 
23 Change-High         (CH) Medium             (M)       Decrease-High   (DH) 
24 Change-High         (CH) Medium-Large  (ML) Decrease-High   (DH) 
25 Change-High         (CH) Large                (L) Decrease-High   (DH) 

 

The “fuzziness” of the FLC stems from the fact that a given input value may correspond to multiple fuzzy 

states.  For example, referring to Fig. 4(a), if ∆X has a value between P/3 and P/2 then it would be a partial member 

in the CS state and a partial member in the CL state.  Such fuzziness makes it hard to determine a fixed expression 

for the output value from Table III.  In order to find the non-fuzzy output, the defuzzification process takes place.  

This process is composed of an inference method that makes use of the rules and membership functions to produce 

the control output.  The correlation-product method is used here for defuzzification with the FLC [3]. 
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 2.2.5. FLC Defuzzification Process 

Consider the example in Fig. 5 using the correlation-product method for defuzzification. The figure 

assumes the input values of ∆X0 and ∆T0 for ∆X and ∆TCurrent, respectively.  The membership functions indicate two 

degrees of membership for each input:  a value of α in the CS state and β in the NC state for the input ∆X0, and a 

value of δ in the ML state and ε in the M state for T0.  There are three steps in the defuzzification process using the 

correlation product method.  The first step is to find the set of all rules that correspond to the input membership 

states by considering all permutations of the states.  In this example, the rules 3, 4, 8, and 9 from Table III apply.  

The second step is to choose the minimum value of the degree of membership of the inputs among the matching 

rules.  For instance, rule 3 involves the fuzzy states NC and M in the membership functions ∆X and ∆TCurrent, 

respectively.  The degree of membership for ∆X0 is β and for ∆T0 is ε.  Since  ε < β, then ε is the minimum input 

value for rule 3.  The third step scales the shape of the membership function for the Fout value of each rule by the 

minimum input value determined in the previous step.  In the example below, rule 3 defines the IL state for Fout, so 

the IL shape is scaled down by ε.  This process is repeated for all the rule graphs and the resulting scaled shapes are 

combined.  The center of mass of the combined graph is calculated using Eq. (2.4) [3,11].  The resulting outcome, z, 

corresponds to the numerical value used for Fout.  
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Fig. 5.  Correlation-product inference method and defuzzification process. 
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For each of the n scaled shapes in the combined graph, the center of mass equation uses Uj and Vj to represent 

the values for the peak of the shape on the x-axis and y-axis, respectively.  For example, Fig. 5 shows the 

combination of the scaled rule graphs where the Uj values are L/3, L/3, 0, and -L/3, and the Vj values are ε, β,  ε, and 

α, from rules 3, 4, 8, and 9, respectively.  The result of this equation represents the numerical (i.e. non-fuzzy) output 

for membership function Fout.  Future sampling queries are rescheduled based upon this scalar result as shown in 

Fig. 3.  
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3. EXPERIMENTS AND MEASUREMENT TECHNIQUES 

This section describes a set of simulative experiments to compare the adaptive and systematic sampling 

techniques for network management.  The computing testbed that generated the traffic in the simulation is described 

in this section, as well as the metric used to compare the sampled data sets. 

3.1. Traffic Models and Sampler Simulation 

Two traffic traces of network activity are used as data models for the experiments.  The two were selected to 

represent the opposite ends of the spectrum of potential traffic that might be encountered in a high-performance 

network, one characterized by bursty, aperiodic traffic and the other by streaming, periodic traffic.   

The first trace is a two-hour sample taken from the outgoing 100 Mb/s Fast Ethernet port on a Fore Systems 

PowerHub 7000 router providing Internet connectivity to a laboratory with dozens of computers during a busy part 

of the day.  This Internet trace is representative of random, bursty TCP/IP network data and includes traffic from 

Hypertext Markup Language (HTML), File Transfer Protocol (FTP), and Telnet activity.  This type of data should 

be ideally suited to adaptive sampling because the sample rate can be adjusted to compensate for the level of loading 

on the network at any given time.  Thus, the goal with adaptive sampling for this type of traffic is to reduce the 

sample count while maintaining the accuracy achieved by the equivalent systematic sampler.  Or, conversely, the 

goal is to increase the accuracy while maintaining the same sample count as the equivalent systematic sampler. 

A second trace was captured from a port of a Fore Systems ASX-200BX Asynchronous Transfer Mode (ATM) 

switch that was connected directly to a Fore Systems AVA-300 ATM audio/video decoder.  This connection hosts a 

continuously running videoconference feed transferring variable-bit-rate compressed video and uncompressed audio 

at 30 frames/second over a dedicated 155 Mb/s ATM link.  The resulting videoconference trace is representative of a 

highly periodic pattern of network traffic.  The periodic nature of this data may not be better suited to adaptive 

sampling techniques than the systematic sampler.  However, the adaptive sampling algorithm can dynamically select 

a sampling interval that accurately measures the data.  By contrast, a systematic technique requires the proper 

interval to be correctly selected a priori by the network administrator, which is not easily realized. 

Each trace was taken by measuring the cumulative number of bytes received over a two-hour period using 

SNMP queries.  The resolution of the measurements was 0.1 seconds, yielding a total of 72,000 samples.  The 

adaptive and systematic sampling methods were then simulated and evaluated by resampling the data in each trace.  
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For example, a systematic sampling with Ts = 1 sec would select every tenth element from the original data, yielding 

a new trace with 7,200 samples.  During the simulation, all sampling intervals were rounded to the nearest 0.1 

seconds so that they correspond to a single measurement from the original trace.  For simplicity, the throughput 

measurements gathered by the systematic and adaptive samplers with these traces are all normalized to the peak 

value stored in the baseline data model (i.e. either Internet or videoconference) used in the experiment. 

3.2. Metric for Comparison 

In order to compare the performance of the adaptive sampling techniques with the systematic baseline, a 

measure of accuracy is needed.  The sum of squared error metric [2] for comparing two N-sample sets, as shown in 

Eq. (3.1), is used in Section 4.3 to compare the accuracy of the different techniques.  This expression makes a point-

by-point comparison between the reference and sampled signals using the normalized magnitude of the 

instantaneous throughput.  The reference signal, fR(n), is a systematic sampling of the original trace of Internet or 

videoconference data with a period of Ts = 1 sec.  The comparison signal, fC(n), is the output from one of the 

adaptive or systematic sampling methods applied to the original trace.  Since Eq. (3.1) requires sets with an equal 

number of samples, both the reference and the comparison traces are resampled to 72,000 samples.  Linear 

interpolation is used to produce the added points.  

 ∑
=

−=
N

n
CR nfnfError

1

2))()((    (3.1) 

4. RESULTS AND ANALYSES 

This section presents results and analyses from experiments conducted to ascertain the performance of the 

systematic and adaptive sampling algorithms as applied to the Internet and videoconference traces.  In the next two 

subsections, a qualitative comparison of the signals produced by several systematic and adaptive sampling 

measurements is provided.  Then, a quantitative assessment of the adaptive sampling techniques is conducted by 

comparing the adaptive techniques to an equivalent systematic baseline in terms of sample count and mean-squared 

error relative to the reference trace.   
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4.1. Systematic Sampling Measurements 

In this section, the effect of sampling rate is qualitatively illustrated using traditional, systematic sampling 

techniques.  Fig. 6 and Fig. 7 show the normalized throughput sampled using fixed sampling intervals (Ts) from one 

to ten seconds on the Internet and videoconference traces, respectively.  The shapes for Internet and videoconference 

traffic at Ts  = 1 sec shown in Fig. 6(a) and Fig. 7(a) are used as the reference value in the comparisons of the 

different sampling disciplines.    

Both figures demonstrate a “smoothing” effect at larger sampling intervals.  This effect results from the fact 

that the samples actually measure a cumulative SNMP byte-count rather than a throughput.  Therefore, at higher 

values of Ts, the measured byte-count is averaged over a longer interval of time.  The result is that large throughput 

spikes are averaged with periods of low activity.  This effect both reduces the magnitude of the throughput spikes as 

well as filters much of the variation from the actual traffic pattern. 
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(a) Ts = 1 sec (7200 samples) (b) Ts = 2 sec (3600 samples) 
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(c) Ts = 5 sec (1440 samples) (d) Ts = 10 sec (720 samples) 

 
Fig. 6.  Measured traffic patterns of Internet data using systematic sampling. 
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(a) Ts = 1 sec (7200 samples) (b) Ts = 2 sec (3600 samples) 
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(c) Ts = 5 sec (1440 samples) (d) Ts = 10 sec (720 samples) 
 

Fig. 7.  Measured traffic patterns of videoconference data using systematic sampling. 

 

 

The measurements conducted at Ts = 10 sec for the Internet data in Fig. 6 indicate a maximum throughput of 

only about 55% of the peak value at the reference.  Fig. 7 illustrates a similar situation with videoconference traffic.  

For example, in the trace sampled at Ts = 5, the highly fluctuating behavior found at the reference is completely lost.  

In fact, the variation observed in Fig. 7(c) is only approximately 25%, whereas the reference indicates a variation of 

50-70% of the maximum peak throughput.  

Since high-performance management services require precise throughput estimations, an inappropriate selection 

of the sampling time would lead to inaccurate observations.  The following section will show how adaptive 

sampling can be used to maintain accurate measurements for Internet and videoconference traffic. 

 4.2. Adaptive Sampling Measurements  

The results of applying the adaptive sampling techniques to the Internet trace using second-, third-, and fourth-

order LP samplers and the FLC sampler are shown in Fig. 8.  The second-order LP sampler was able to reduce the 

sample count to about 51% of the reference with almost no discernable change in the peak magnitude or variation of 

throughput behavior.  As the order of the LP sampler is increased, the number of samples are further reduced with 
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only a small visible loss in peak magnitude and variation.  The FLC approach yields the fewest number of samples 

at 29% of the reference.  The FLC shows more variation than the higher-order LP samplers but with marginally 

lower peaks.   

Fig. 9 shows the results of applying the adaptive sampling techniques to the periodic videoconference trace.  

The LP techniques reduce the number of samples to approximately 65% of the reference but at a slight reduction in 

signal variation.  The FLC achieves shows slightly less variation at 43% of the reference sample count.  However, 

the accuracy of the adaptive sampling techniques on the videoconference data is not nearly as good as it is with the 

Internet data.  

Although a qualitative comparison of the adaptive sampling techniques shows the ability of the adaptive 

sampling techniques to reduce sample count while retaining a certain degree of accuracy, an accurate picture of the 

performance is difficult to ascertain.  For example, a simple systematic sampler with Ts = 2 sec is also able to reduce 

the number of samples by 50% while still retaining much of the characteristics in the reference signal.  Therefore, it 

is necessary to quantify the accuracy of the adaptive and systematic sampling techniques.    
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(a) Second-order LP (3728 samples) (b) Third-order LP (3028 samples) 

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000

Time (Seconds)

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

 

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000

Time (Seconds)

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

 
(c) Fourth-order LP (2641 samples) (d) FLC (2095 samples) 

Fig. 8.  Measured traffic patterns of Internet data using adaptive sampling. 
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(a) Second-order LP (4769 samples) (b) Third-order LP (4651 samples) 
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(c) Fourth-order LP (4621 samples) (d) FLC (3095 samples) 

Fig. 9.  Measured traffic patterns of videoconference data using adaptive sampling. 

4.3. Quantitative Analysis of Adaptive Samplers 

It is difficult to quantitatively compare the performance of the adaptive sampling techniques to an equivalent 

systematic approach when the measurements differ in both the number of samples and the squared-error relative to 

the reference.  In general, traces with more samples show a lower error.  Therefore, two forms of experiments were 

conducted to compare the adaptive and systematic sampling methods, first with a fixed number of samples and then 

with a fixed error.  In both cases, a single run of the adaptive sampling techniques was used.  As demonstrated in the 

previous section, each technique yielded a different number of samples with a different relative error when 

compared to the reference.  In the fixed sample-count comparison, a systematic sampling interval was selected for 

each adaptive sampling result such that it would contain the same number of samples.  The relative error from each 

adaptive sampler was then calculated and compared to its equivalent systematic sampler.  For the constant-error 

comparison, a chart of sample count versus relative error was made for a range of systematic sample intervals.  

Using this chart, the minimum number of systematically distributed samples necessary to achieve a certain relative 

error was determined. 
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(a) Sample count with constant error 
 

(b) Error with constant sample count 

Fig. 10.  Sample count and error variation with Internet traffic. 

Fig. 10 shows the results of the experiments conducted with Internet traffic.  In Fig. 10(a), the amount of 

sampling error is held constant and then the sample count is measured for each of the adaptive samplers and 

compared to a systematic sampler with the same number of samples.  In Fig. 10(b), the sample count is held constant 

and the error is measured for each case.  As the results indicate, each of the four adaptive samplers outperforms its 

corresponding systematic sampler.  The greatest improvement is seen with the FLC sampler.  The FLC sampler 

achieves nearly twice the performance of its equivalent systematic sampler, which can be interpreted either as 

decreasing the sample count by a factor of two for a given level of accuracy or as increasing the accuracy by a factor 

of two for a given number of samples.  In contrast, the second-order LP sampler is only marginally better in 

performance than its systematic counterpart.  As previously hypothesized, traffic of a bursty, aperiodic nature is 

found to be well suited for the capabilities of adaptive sampling, since these samplers are able to dynamically adjust 

their sampling rate with periods of increased and decreased activity on the network. 

 

(a) Sample count with constant error 
 

(b) Error with constant sample count 

Fig. 11.  Sample count and error variation with videoconference traffic. 
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Fig. 11 shows the results of the same experiments with the videoconference traffic.  As before, Fig. 11(a) 

displays the measurements of sample count for a fixed level of accuracy and Fig. 11(b) displays the measurements 

of accuracy for a fixed number of samples.  The results in these experiments with videoconference traffic are 

markedly different from those with the Internet traffic.  The LP samplers show slightly higher error or slightly larger 

sample counts than their systematic counterparts.  The FLC sampler achieves slightly lower sample counts and 

slightly smaller error rates.   Given the nature of the traffic being sampled, these results are also promising.  When 

dealing with traffic of a periodic nature, as is the case with the videoconference, systematic sampling is effective 

provided that the appropriate sampling interval can be identified and employed.  Thus, the primary goal of using an 

adaptive sampler for periodic traffic is to match the performance of the best systematic sampling rate.  This 

performance is achieved and even surpassed in results from the experiments with videoconference data by using the 

FLC sampler, and the LP samplers show only a marginal degradation in performance.  An advantage of adaptive 

sampling is that this optimal rate can be dynamically adjusted if the frequency or type of periodic traffic changes.   

Taken together, the results of the experiments with Internet and videoconference traffic confirm that adaptive 

sampling can play an important role in decreasing the load on the network and the network manager, increasing the 

accuracy of the measurements, or both.  While these two traffic models do not of course encompass the entire 

universe of possible traffic patterns, they are reasonably representative of the boundaries of that universe in terms of 

bursty, aperiodic traffic versus streaming, periodic traffic.  Thus, these results illustrate that adaptive sampling 

provides the potential for better monitoring, control, and management of high-performance networks. 

5. RELATED WORK 

Several researchers have studied sampling techniques in networks.  Claffy et al. studied three non-adaptive 

sampling methodologies: systematic (i.e. periodic), random, and stratified random sampling [4].  Their results 

indicated that stratified random sampling has better accuracy when the three methods are used to capture the same 

number of samples.  Cozzani and Giordano made use of conventional sampling methods and studied their effects in 

quality of service measurements for ATM networks [5].  Drobisz proposed a network capture device for Gigabit 

Ethernet, adapting CPU utilization based on traffic burst anticipation by increasing CPU usage when a bursty period 

of traffic was expected [12]. 
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Fuzzy and LP adaptations have been used in network applications for congestion, admission, and flow control.  

Jacobson and Karels studied flow-control protocols based on filters for the congestion control algorithm for TCP 

[10].  Kalampoukas et al. applied filter-based techniques for window adaptation in TCP [13].  These methods 

control protocol parameters based upon network traffic behavior.  The adaptive sampling techniques presented 

herein employ a similar approach, but by contrast the purpose is for more efficiency in sampling of network 

management data with the goal of reducing sample count and/or increasing accuracy in a dynamic traffic 

environment. 

Fuzzy-logic controllers have also been studied for ATM networks.  Bonde and Ghosh [14] and Catania et al. [15] 

proposed queue managing and congestion control based on fuzzy sets.  Cheng and Chang suggested a fuzzy 

architecture for both congestion and call admission control in ATM networks [11], and discovered that congestion 

control, using fuzzy logic, performed better than the leaky bucket algorithm inherent to ATM.  The FLC-based 

sampling technique proposed herein uses an adaptation of the methods applied in these studies on control of ATM 

networks.  Whereas these other studies used fuzzy logic to control parameters in the ATM network, our FLC-based 

adaptive sampling applies fuzzy logic to the monitoring of network traffic in any environment.  Givan and Chong 

applied Markov and Bernoulli processes to model network traffic behavior and to create learning algorithms to 

predict future traffic measurements in a switch-based application [16].  By contrast, the adaptive techniques 

presented herein assume minimal knowledge of the traffic model, instead applying linear prediction and fuzzy-logic 

to adapt to any traffic pattern. 

6. CONCLUSIONS 

This paper has presented two techniques to adaptively monitor network behavior.  One approach is based on 

using linear prediction to dynamically alter the sample rate based on the accuracy of the predictions, where 

inaccurate predictions indicate a change in the network’s behavior and result in a smaller sampling interval.  The 

second approach models the cognitive process of a human network manager by using fuzzy logic.  When certain 

pre-determined conditions are met, such as an increase in network traffic, corresponding actions are taken such as a 

decrease in sampling interval. 

These adaptive techniques are shown to perform well on random, bursty data such as conventional Internet 

traffic.  All approaches are able to reduce the sample count while maintaining the same degree of accuracy as the 
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best systematic sampling interval.  Equivalently, all approaches are able to increase accuracy while maintaining the 

same sample count.  The higher-order LP samplers perform better than the lower-order ones, while the FLC sampler 

shows the greatest reduction in sample count.  The reduced sample count is an important factor for network 

management in high-performance networks.  Accurate measurements are required to find bottlenecks, while at the 

same time the impact on the network must be minimized to allow applications to take advantage of the low latency 

and high throughputs such networks provide. 

For periodic data such as that found in a videoconference environment, the adaptive sampling approaches 

perform comparably to the best systematic approach in terms of accuracy and sample count.  In particular, 

systematic sampling marginally outperforms the LP samplers while the FLC approach shows a slight improvement 

over systematic sampling.  However, perhaps more importantly, the adaptive techniques have the ability to adjust to 

changing traffic loads, and therefore in an environment with dynamic traffic patterns, such as with data 

communications, multimedia and integrated services, adaptive sampling techniques hold the potential to outperform 

systematic sampling with its pre-selected and fixed sampling interval. 

In general, the evidence suggests that the fuzzy-logic adaptive technique provides more flexibility and better 

performance than the LP methods.  The main disadvantages of the FLC are the selection of the boundaries of the 

membership functions and the computational overhead required to implement it.  Future work is needed to study 

methods to optimally tune the parameters of the adaptive samplers.  One possible area of concentration is the 

development of an autonomous adaptive manager using fuzzy logic that dynamically adapts the parameters for its 

membership functions while the monitoring process is underway.  Furthermore, the FLC could maintain a history of 

past samples as in the LP approach, at the cost of even more storage and computational overhead, but could 

potentially yield better results.   In addition, other approaches for the design of adaptive samplers and management 

systems are worthy of investigation, such as samplers based on neural-network or neuro-fuzzy controllers. 
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